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Abstract—This paper presents a set of fundamental prop-
erties of the velocity of a snake robot conducting lateral
undulation on a planar surface. In particular, the derived
properties state that the average forward velocity of the snake
robot 1) is proportional to the squared amplitude of the
sinusoidal motion of each joint of the robot, 2) is proportional
to the angular frequency of the sinusoidal motion of each joint,
3) is proportional to a particular function of the constant phase
shift between the joints, and 4) is maximized by the phase shift
between the joints that also maximizes the particular phase shift
function. The paper presents simulation results that support the
validity of the derived properties.

I. INTRODUCTION

Inspired by biological snakes, snake robots carry the
potential of meeting the growing need for robotic mobil-
ity in challenging environments. Snake robots consist of
serially connected modules capable of bending in one or
more planes. The many degrees of freedom of snake robots
make them difficult to control, but provide traversability
in irregular environments that surpasses the mobility of
the more conventional wheeled, tracked and legged forms
of robotic mobility. Research on snake robots has been
conducted for several decades. However, our understanding
of snake locomotion so far is for the most part based on
empirical studies of biological snakes and simulation-based
synthesis of relationships between parameters of the snake
robot.
There are several reported works aimed at analysing

and understanding snake locomotion. Gray [1] conducted
empirical and analytical studies of snake locomotion already
in the 1940s. Hirose [2] studied biological snakes and devel-
oped mathematical relationships characterizing their motion,
such as the serpenoid curve. Saito et al. [3] optimized the
parameters of the serpenoid curve based on simulations
of a planar snake robot. Hicks [4] investigated general
requirements for the propulsion of a three-linked snake robot.
Nilsson [5] employed energy arguments to analyse planar
snake locomotion with isotropic friction. Transeth et al. [6]
proved that the velocity of a planar snake robot is bounded.
Li et al. [7] studied the controllability of the joint motion
of a snake robot. The authors have previously studied the
stability properties of snake locomotion based on Poincaré
maps [8] and investigated the controllability properties of a
planar snake robot influenced by anisotropic friction [9].
Research on robotic fish and eel-like mechanisms is

relevant to research on snake robots since these mechanisms
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are very similar. The works in [10]–[12] investigate the
controllability of various fish-like mechanisms, synthesize
gaits for translational and rotational motion based on Lie
bracket calculations, and propose controllers for tracking
straight and curved trajectories.
The contribution of this paper is a set of fundamental

properties of the velocity dynamics of a planar snake robot
that are useful from a motion planning perspective. The
properties are derived based on a simplified model of a snake
robot proposed by the authors in [13]. The derived properties
state that the average forward velocity of a planar snake robot
1) is proportional to the squared amplitude of the sinusoidal
motion of each joint of the robot, 2) is proportional to the
angular frequency of the sinusoidal motion of each joint, 3)
is proportional to a particular function of the constant phase
shift between the joints, and 4) is maximized by the phase
shift between the joints that also maximizes the particular
phase shift function. To the authors’ best knowledge, these
fundamental properties of snake locomotion have never be-
fore been derived analytically. The paper presents simulation
results that support the theoretical findings.
The paper is organized as follows. Section II presents

a complex model of a snake robot that will be used for
simulation purposes. Section III presents a simplified model
of a snake robot that the theoretical findings are based
upon. Section IV presents a controller for the snake robot.
Section V derives the fundamental properties of the velocity
dynamics of the snake robot. Section VI presents simulation
results. Finally, Section VII presents concluding remarks.

II. A COMPLEX MODEL OF A PLANAR SNAKE ROBOT

This section summarizes a complex model of a planar
snake robot previously presented in [9]. We will use this
model to simulate the motion of the snake robot in Section
VI.

A. Notation and defined symbols

We consider a planar snake robot consisting of  links of
length  interconnected by −1 active joints. The kinematics
and dynamics of the snake robot are defined in terms of the
symbols illustrated in Fig. 1 and Fig. 2. All  links have
the same mass  and moment of inertia  . The total mass
of the snake robot is therefore . The mass of each link
is uniformly distributed so that the link CM (center of mass)
is located at its center point.
The snake robot moves in the horizontal plane and has

a total of  + 2 degrees of freedom. The position of the
CM (center of mass) of the snake robot is denoted by p =
(  ) ∈ R2. The absolute angle  of link  is expressed
with respect to the global  axis with counterclockwise
positive direction. As seen in Fig. 1, the relative angle
between link  and link  + 1 is given by  = +1 − .
The local coordinate system of each link is fixed in the CM



Fig. 1. Kinematic parameters of the snake robot.

Fig. 2. Forces and torques acting on each link of the snake robot.

of the link with  (tangential) and  (normal) axis oriented
such that they are oriented in the directions of the global 
and  axis, respectively, when the link angle is zero. The
rotation matrix from the global frame to the frame of link 
is given by

R
global
link =

∙
cos  − sin 
sin  cos 

¸
(1)

The forces and torques acting on link  are visualized in
Fig. 2. The ground friction force is denoted by  and acts on
the CM of the link. The joint constraint forces from link +1
and link  − 1 are denoted by  and −−1, respectively.
The actuator torque applied at joint  is denoted by .

B. Friction model

We will consider two ground friction models in this
study, i.e. a viscous and a Coulomb friction model. Both
models assume that the links have anisotropic ground friction
properties, which is essential for efficient snake locomotion
on planar surfaces.
The viscous ground friction is characterized by the two

friction coefficients  and  describing the friction force in
the tangential (along link  axis) and normal (along link 
axis) direction of a link, respectively. Using (1), the viscous
friction force on link  in the global frame as a function of
the global link velocities, ̇ and ̇, is defined as

f =R
global
link f

link
 =−Rglobal

link

∙
 0
0 

¸
v
link


= −Rglobal
link

∙
 0
0 

¸³
R
global
link

´ ∙̇
̇

¸ (2)

where f link and vlink are, respectively, the friction force
and the link velocity expressed in the local link frame.
The Coulomb ground friction force is defined in a similar

way by the two friction coefficients  and  describing
the friction force in the tangential and normal direction of
a link, respectively. The Coulomb friction force on link  in
the global frame is defined as

f  = R
global
link f

link


= −R
global
link

∙
 0
0 

¸
sgn

³
v
link


´
= −R

global
link

∙
 0
0 

¸
sgn

µ³
R
global
link

´ ∙̇
̇

¸¶ (3)

where  is the gravitational acceleration constant and sgn(·)
is the signum function.

C. Equations of motion

It is shown in [9] that the equations of motion of the
snake robot in terms of the joint angles, φ ∈ R−1, the
absolute angle of the head link,  ∈ R, the position of the
CM of the snake robot, ( ) ∈ R2, and the joint torques,
u ∈ R−1, can be written as

φ̈ = u

̈ = (φ   φ̇ ̇  ̇ ̇u)

̈ =
P

=1 

̈ =
P

=1 

(4)

where (φ   φ̇ ̇  ̇ ̇u) ∈ R is a complex function
of the state vector and the joint torques. The global frame
friction force on each link, represented by  and , is
either the viscous friction force defined in (2) or the Coulomb
friction force defined in (3).

III. A SIMPLIFIED MODEL OF A PLANAR SNAKE ROBOT

This section summarizes a model of a planar snake robot
which is described in detail in [13]. The model forms the
basis of the investigation of the fundamental locomotion
properties in Section V.

A. Overview of the model

We consider a planar snake robot with links intercon-
nected by active revolute joints. The surface beneath the
robot is flat and horizontal, and each link is subjected to
a viscous ground friction force. The body shape changes of
the robot induce friction forces on the links that produce the
translational and rotational motion of the robot. A simplified
model that captures only the most essential part of the snake
robot dynamics is proposed in [13]. The idea behind this
model is illustrated in Fig. 3 and motivated by an analysis
presented in [13], which shows that:
• The forward motion of a planar snake robot is produced
by the link velocity components that are normal to the
forward direction.

• The change in body shape during forward locomotion
primarily consists of relative displacements of the CM
of the links normal to the forward direction of motion.

Based on these two properties, the simplified model
describes the body shape changes of a snake robot as linear
displacements of the links with respect to each other instead
of rotational displacements. The linear displacements occur
normal to the forward direction of motion and produce
friction forces that propel the robot forward. This essentially
means that the revolute joints of the snake robot are modelled
as prismatic (translational) joints and that the rotational mo-
tion of the links during body shape changes is disregarded.



Fig. 3. The revolute joints of the snake robot are modelled as prismatic
joints that displace the CM of each link transversal to the direction of
motion.

Fig. 4. Illustration of the two coordinate frames employed in the model.
The global - frame is fixed. The - frame is always aligned with the
snake robot.

However, the model still captures the effect of the rotational
link motion during body shape changes, which is a linear
displacement of the CM of the links normal to the forward
direction of motion.
The model of the snake robot is summarized in the

following subsections in terms of the symbols illustrated in
Fig. 4 and Fig. 5.

B. Kinematics of the snake robot

The snake robot has  links of length  and mass 
interconnected by −1 prismatic joints. The prismatic joints
control the normal direction distance between the links. As
seen in Fig. 5, the normal direction distance from link  to
link + 1 is denoted by  and represents the coordinate of
joint . The positive direction of  is along the  axis.

Fig. 5. Symbols characterizing the kinematics and dynamics of the snake
robot.

The snake robot moves in the horizontal plane and has
 + 2 degrees of freedom. The motion is defined with
respect to the two coordinate frames illustrated in Fig. 4.
The - frame is the fixed global frame. The - frame is
always aligned with the snake robot, i.e. the  and  axis
always point in the tangential and normal direction of the
robot, respectively. The origin of both frames are fixed and
coincide.
As seen in Fig. 4 and Fig. 5, the global frame position

of the CM (center of mass) of the snake robot is denoted by
(  ) ∈ R2, while the - frame position is denoted by
(  ) ∈ R2. The global frame orientation is denoted by
 ∈ R and is expressed with respect to the global  axis with
counterclockwise positive direction. The angle between the
global  axis and the  axis is also  since the - frame
is always aligned with the snake robot. The relationship
between the - frame and the global frame position is given
by

 =  cos  +  sin  (5a)

 = − sin  +  cos  (5b)

C. Equations of motion

The state vector of the model is chosen as

x = (φ   v   ) ∈ R2+4 (6)

where φ =
¡
1 · · ·  −1

¢ ∈ R−1 are the joint coordi-
nates,  ∈ R is the absolute orientation, (  ) ∈ R2 is
the - frame position of the CM, v = φ̇ ∈ R−1 are
the joint velocities,  = ̇ ∈ R is the angular velocity, and
(  ) ∈ R2 is the tangential and normal direction velocity
of the snake robot.
As illustrated in Fig. 5, each link is influenced by a ground

friction force (acting on the CM of the link) and constraint
forces that hold the joints together. A model of these forces
is presented in [13], where it is also shown that the complete
model of the snake robot can be written as

φ̇ = v (7a)

̇ =  (7b)

̇ =  +  (7c)

̇ =  −  (7d)

v̇ = −1

v +

2


AD

φ+
1


DDu (7e)

̇ = −3 + 4

 − 1e
φ (7f)

̇ = −1

 +

22


e

φ− 2


φADv (7g)

̇ = −1

 +

22


e

φ (7h)

where u ∈ R−1 are the actuator forces at the joints and
e =

£
1   1

¤ ∈ R−1,
D =D

³
DD

´−1
∈ R×(−1),

A =

⎡⎢⎣1 1
 

 
1 1

⎤⎥⎦D =

⎡⎢⎣1 −1
 

 
1 −1

⎤⎥⎦ 



whereA ∈ R(−1)× andD ∈ R(−1)× . The parameters
1, 2, 3, and 4 are scalar friction coefficients that char-
acterize the external forces acting on the snake robot. More
specifically, the coefficient 1 determines the magnitude of
the friction forces resisting the link motion, 2 determines the
magnitude of the induced friction forces that propel the snake
robot forward, 3 determines the friction torque opposing the
rotation of the snake robot, while 4 determines the induced
torque that rotates the snake robot. This torque is induced
when the forward direction velocity and the average of the
joint coordinates are nonzero. The role of each coefficient is
explained in more detail in [13].

IV. CONTROLLER DESIGN

The actuator forces are set according to the linearizing
control law

u = 
³
DD

´−1 ³
u+

1


φ̇− 2


AD

φ
´

(8)

where u ∈ R−1 is a new set of control inputs. This control
law transforms the joint dynamics (7e) into v̇ = u.
We will control the snake robot according to a motion

pattern called lateral undulation [2], which consists of hori-
zontal waves that are propagated backwards along the snake
body from head to tail. Lateral undulation is achieved by
controlling joint  ∈ {1 · · ·   − 1} of the snake robot
according to the sinusoidal reference

ref =  sin (+ (− 1) ) +  (9)

where  and  are the amplitude and frequency, respectively,
of the sinusoidal joint motion and  determines the phase
shift between the joints. The parameter  is a joint offset
coordinate used to control the direction of the locomotion.
We assume that  is a constant offset, so that

̇ref =  cos (+ (− 1) ) (10)

̈ref = −2 sin (+ (− 1) ) (11)

We choose the control input u of the snake robot as

u = φ̈ref + 

³
φ̇ref − φ̇

´
+  (φref − φ) (12)

where  and  are positive scalar controller gains and
φref ∈ R−1 are the joint reference coordinates. The error
dynamics of the joints is therefore given by³

φ̈ref − φ̈
´
+ 

³
φ̇ref − φ̇

´
+  (φref − φ) = 0 (13)

which is clearly exponentially stable [14].

V. ANALYSIS OF THE VELOCITY DYNAMICS BASED ON
AVERAGING THEORY

In this section, averaging theory [15] is employed in order
to study the velocity dynamics of the snake robot during
lateral undulation. We employ averaging theory since we are
primarily interested in the overall, i.e. average, speed and
direction of the locomotion. The periodic fluctuations about
the average trajectory of the snake is not of particular interest.

A. Model of the velocity dynamics of the snake robot

The velocity dynamics of the snake robot is defined by
(7f), (7g), and (7h), which give the dynamics of the forward
direction velocity , the normal direction velocity , and
the angular velocity  of the snake robot. It was shown in
Section IV that we can achieve exponentially stable tracking
of the joint reference coordinates (9) with the control law
(12). We will therefore assume that φ and v = φ̇ are given
by (9) and (10), respectively. Furthermore, we assume that
the amplitude  and frequency  of the joint motion are
always set according to the rule

 =


2
(14)

where   0 is a constant controller parameter. This rule
allows us to write the model of the velocity dynamics in
a particular standard averaging form in the next subsection.
Note that  and  are still independent parameters since any
choice of  and  can be obtained by choosing  = 2.
Using (9), (10), and (14), and introducing the velocity state
vector v = (  ) ∈ R3, the velocity dynamics can be
written as

v̇ =

⎡⎣ ̇̇
̇

⎤⎦ = f(v) (15)

where

f(v) =

⎡⎣− 1

 +

22


1()− 2


2()

− 1

 +

22


1()
−3 + 4

−11()

⎤⎦ (16)

1() = ( − 1) +
−1X
=1

 sin (+ (− 1) ) (17)

2() =
−1P
=1

−1P
=1

£


 cos (+(−1) )

+ sin (+(−1) ) cos (+(−1) )]
(18)

and where  denotes element  of the matrix AD.

B. Averaged model of the velocity dynamics

The method of averaging [15] can be applied to systems
of the form

ẋ = f(x) (19)

where   0 is a small parameter and f(x) is  -periodic,
i.e. f( + x) = f(x). A system that, in ‘average’,
behaves similarly to the system in (19) is given by

ẋ = 
1



Z
0

f( x) (20)

The smallness requirement on  ensures that x varies slowly
with  relative to the periodic excitation of the system. The
system response will thereby be determined predominantly
by the average of the excitation.
To transform the model (15) into the standard form of

averaging (19), we change the time scale from  to  = 
and define  = 1. Since 


= 1




, the model (15) can

now be written as



v


= f( v) (21)

where

f( v) =

⎡⎣− 1

 +

22


1()− 2


2()

− 1

 +

22


1()
−3 + 4

−11()

⎤⎦ (22)

The averaged model of (21) is now given by calculating the
integral in (20) and changing time scale back to  using that


=  


. The resulting averaged model is shown in [16] to

be given by

v̇ = Av + b (23)

where

A = A() =
⎡⎣ − 1



2(−1)


2 0
2(−1)


2 − 1


0
4 0 −3

⎤⎦ (24)

b = b(  ) =

⎡⎣ 2
2


0
0

⎤⎦ (25)

and where the constant  ∈ R is defined as

 =

−1X
=1

−1X
=1

 sin (( − ) ) (26)

We see that the averaged model of the velocity dynamics is
a linear system characterized by the parameters of the joint
reference coordinates, i.e. by , , , and .

C. Analysis of the velocity dynamics

The averaged model (23) has a single equilibrium point at
v = −A−1b. By inspecting the eigenvalues of A, it is shown
in [16] that this equilibrium point is globally exponentially
stable as long as the joint coordinate offset  is below a
certain threshold. This means that the average velocity of the
snake robot will converge exponentially to the steady state
velocity

v = −A−1b = £  
¤

(27)

which is given analytically by

=
12

2
¡
221 − (42 − 8 + 4) 22

2


¢ (28a)

=
 ( − 1) 22

221 − (42 − 8 + 4) 22
2


(28b)

=
124

23
¡
221 − (42 − 8 + 4) 22

2


¢ (28c)

The work in [16] provides more details regarding the cor-
respondence between the average and the exact velocity of
the snake robot. The main result in [16] is basically that,
for sufficiently large , the average velocity of the snake
robot given by (23) will approximate the exact velocity given
by (15) for all time, and the error of this approximation is
bounded.
Eq. (27) represents an interesting result since it gives an

analytical expression for the steady state velocity of a snake
robot with an arbitrary number of links  as a function

Fig. 6. The optimal phase shift  that maximizes the forward velocity of
a planar snake robot as a function of the number of links  .

of the controller parameters , , , and . We can for
example immediately see that the steady state velocity of
the snake robot when it conducts lateral undulation with zero
joint offset ( = 0) is given by  =

2
21

,  = 0,
and  = 0. In the following, we will use this result to
deduce some fundamental relationships between the forward
velocity and the controller parameters of the snake robot.
The forward velocity is seen from (28a) to be proportional

to the controller parameter  = 2, i.e. the forward
velocity is proportional to the square of the amplitude of
the joint motion, 2, and also proportional to the angular
frequency, , of the joint motion. This information is useful
from a motion planning perspective since it tells us that an
increase/decrease of the forward velocity by a certain factor
can be achieved by increasing/decreasing  by the same
factor or by increasing/decreasing  by the square root of
this factor.
It is also seen from (28a) that the forward velocity of

the snake robot is proportional to the function  defined in
(26). Since  is a function of the phase shift  between the
joints, this means that the phase shift  that will maximize the
forward velocity can be determined analytically as the  that
maximizes . This is particularly interesting since we are
now able to analytically determine the optimal phase shift 
that maximizes the forward velocity of a planar snake robot
with an arbitrary number of links  . Fig. 6 presents a plot of
the maximum value of  as a function of the number of links
 . For each  , the maximum value of  was found using
the mathematical computer software Matlab. The optimal
phase shift is e.g.  = 90◦ for  = 3 links,  = 504◦ for
 = 5 links,  = 241◦ for  = 10 links, and  = 115◦

for  = 20 links.
The above results can be summarized as follows:
Proposition 1: Consider a planar snake robot with 

links modelled by (7) and controlled in exact accordance
with (9) and (10). The average forward velocity of the snake
robot given by (23) will converge exponentially to a value
which is proportional to:
- the squared amplitude of the sinusoidal joint motion, 2.
- the angular frequency of the sinusoidal joint motion, .
- the function of the constant phase shift, , between the



joints given by

 =

−1X
=1

−1X
=1

 sin (( − ) ) (29)

where  denotes element  of the matrix . Moreover,
for a given  and , the phase shift, , that maximizes the
average forward velocity is given by the  that maximizes
.

VI. SIMULATION RESULTS

Proposition 1 was derived from the simplified model of
snake locomotion given by (7). The authors have verified by
simulations that the velocity of the snake robot from the sim-
plified model complies very well with the properties stated
in Proposition 1. These simulation results are, however, not
included in this paper due to space restrictions. Instead, the
purpose of this section is to strengthen the significance of
Proposition 1 by illustrating that these properties also apply
to the velocity from the complex model of snake locomotion
given by (4).

A. Simulation parameters

The model of the snake robot (4) was implemented and
simulated in Matlab R2008b on a laptop running Windows
XP. The dynamics was calculated using the ode45 solver in
Matlab with a relative and absolute error tolerance of 10−3.
We considered snake robots with = 3,  = 5,  = 10,

and  = 20 links of length  = 014 m, mass  = 1
kg, and moment of inertia  = 0.0016 kgm2. Both viscous
and Coulomb ground friction were considered. The friction
coefficients of the viscous friction model defined in (2) were
set to  = 05 and  = 3, while the friction coefficients
of the Coulomb friction model defined in (3) were set to
 = 01 and  = 04.
The joints of the snake robot were controlled according

to (12) with controller gains set to  = 20 and  = 5.
The joint reference coordinates were calculated according
to the motion pattern lateral undulation defined in (9)
with zero joint angle offset ( = 0). The values of the
controller parameters , , and  are presented with each
simulation result. The initial state of the snake robot was³
 = 0  = 0  = 0 ̇ = 0 ̇ = 0 ̇ = 0

´
.

The simulation results below present the average forward
speed of the snake robot, denoted by , for different sets of
controller parameters. This average speed was calculated at
the end of each run of a simulation as the linear distance
travelled by the CM of the snake robot divided by the
simulation time, which was chosen to be sim = 10 s. The
average speed was, in other words, calculated as

 =

q
( (10)−  (0))

2
+ ( (10)−  (0))

2

10
(30)

B. Relationship between the forward velocity and 

Proposition 1 states that the average forward velocity of a
planar snake robot is proportional to the squared amplitude
of the sinusoidal joint motion, 2. We investigated the
validity of this result by simulating the snake robot with
different values of  and calculating the resulting average

forward velocity. The simulation results with viscous and
Coulomb ground friction, respectively, are shown in Fig. 7.
The number of links  and the corresponding values of 
and  are shown at the top of each plot. The range of 
values is shorter for large  compared to for small  since
a large angle amplitude will cause a collision between the
head and the tail of the snake when  is large. The plots
clearly show an exponential increase in the forward speed
 as the amplitude  increases. This is in accordance with
Proposition 1.
Note that the amplitude of the joint motion cannot be

increased indefinitely. For sufficiently large , the relative
link velocity components that are tangential to the forward
direction will no longer be negligible, which is assumed in
the simplified model of the snake robot. It is reasonable to
expect that the increase in the forward velocity starts to decay
for large . This decay can be seen in the plots with viscous
friction in Fig. 7, which shows that the velocity increase has
a more linear character when  becomes large.

C. Relationship between the forward velocity and 

Proposition 1 states that the average forward velocity
of a planar snake robot is proportional to the angular fre-
quency, , of the joint motion. This result was investigated
by simulating the snake robot with different values of 
and calculating the resulting average forward velocity. The
simulation results with viscous and Coulomb ground friction,
respectively, are shown in Fig. 8. The number of links  and
the corresponding values of  and  are shown at the top
of each plot. With viscous friction, the plots show a clear
linear increase in the forward speed  as the frequency 
increases. This is in accordance with Proposition 1. With
Coulomb friction, the forward speed increases linearly for
 = 3 links. However, for  = 5,  = 10, and  = 20
links, the forward speed seems to increase linearly up to a
certain frequency, after which the forward speed decreases.
This suggests that the Coulomb friction model (3) introduces
nonlinear couplings between the controller parameters , ,
and  that are not present when the viscous friction model
(2) is used. To illustrate this nonlinear coupling further,
the simulation of the snake robot with  = 20 links was
repeated with the phase shift increased from  = 115◦ to
 = 20◦ as shown in Fig. 9. In the Coulomb friction case,
the forward speed now has a linear character over a much
wider range of frequencies.
In summary, the simulation results agree very well with

Proposition 1 for the case of viscous ground friction. With
Coulomb ground friction, however, the linear increase of
the forward speed as a function of  is present only up
to a certain frequency, which seems to depend on the other
controller parameters.

D. Relationship between the forward velocity and 

The final result stated in Proposition 1 is that the average
forward velocity is maximized by the phase shift  that
maximizes the function . To investigate the validity of this
result, we simulated the snake robot with different values
of  to identify the phase shift that produced the highest
forward velocity. The simulation results with viscous and
Coulomb ground friction, respectively, are shown in Fig. 10.
The number of links  and the corresponding values of



Fig. 7. The average forward velocity of the snake robot for different values
of . The number of links  and the corresponding values of  and  are
shown at the top of each plot.

 and  are shown at the top of each plot. The  value
that maximizes  is indicated with a vertical dashed line
in each plot. Except for the case of Coulomb friction with
 = 3 links, the maximum velocity of each plot in Fig.
10 seems to agree well with the  value that maximizes
. The best agreement seems to be produced with viscous
ground friction. The reason for the disagreement for the case
of Coulomb friction with  = 3 links is probably due to
nonlinear effects not captured by the simplified model of the
snake robot. Note that the forward velocity in this case is
very small.
In summary, the simulation results indicate that Proposi-

Fig. 8. The average forward velocity of the snake robot for different values
of . The number of links  and the corresponding values of  and  are
shown at the top of each plot.

tion 1 provides a reasonable prediction of the phase shift,
, that maximizes the average forward velocity from the
complex model of snake locomotion given by (4).

VII. CONCLUSIONS AND FUTURE WORK

This paper has derived a set of fundamental properties of
the velocity dynamics of a planar snake robot based on a
simplified model of the robot. The properties state that the
average forward velocity of a planar snake robot conducting
lateral undulation is proportional to 1) the squared amplitude
of the sinusoidal joint motion, 2) the angular frequency of
the sinusoidal joint motion, and 3) a particular function of
the constant phase shift between the joints. Moreover, the



Fig. 9. A rerun of the simulation of the snake robot with  = 20 links
from Fig. 8 with the phase shift increased from  = 115◦ to  = 20◦.

results showed that the phase shift between the joints that
maximizes the forward velocity of the snake is given by the
phase shift that maximizes the particular phase shift function.
The paper has presented simulation results that support the
validity of the derived properties. In future work, the authors
will employ the theoretical findings in this paper in order to
develop and analyse motion planning strategies for snake
robots.
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