
Visual Odometry and Control for an Omnidirectional Mobile Robot
with a Downward-Facing Camera

Marc Killpack1, Travis Deyle1, Cressel Anderson1, and Charles C. Kemp1

1Healthcare Robotics Lab, Georgia Institute of Technology, USA

Abstract— An omnidirectional Mecanum base allows for
more flexible mobile manipulation. However, slipping of the
Mecanum wheels results in poor dead-reckoning estimates from
wheel encoders, limiting the accuracy and overall utility of
this type of base. We present a system with a downward-
facing camera and light ring to provide robust visual odometry
estimates. We mounted the system under the robot which allows
it to operate in conditions such as large crowds or low ambient
lighting. We demonstrate that the visual odometry estimates
are sufficient to generate closed-loop PID (Proportional Integral
Derivative) and LQR (Linear Quadratic Regulator) controllers
for motion control in three different scenarios: waypoint
tracking, small disturbance rejection, and sideways motion. We
report quantitative measurements that demonstrate superior
control performance when using visual odometry compared to
wheel encoders. Finally, we show that this system provides high-
fidelity odometry estimates and is able to compensate for wheel
slip on a four-wheeled omnidirectional mobile robot base.

I. INTRODUCTION AND RELATED WORK

Omnidirectional robot bases have been developed for
research purposes since the 1980s and are rising in popularity
for mobile manipulation. One such base is the Mecanum
or Swedish wheel omnidirectional base where each wheel
consists of a number of passive rollers mounted at a fixed
angle to provide off-axis forces [1]. Our robot, Cody, with
a Mecanum base is shown in Figure 1. We have found
that wheel slip, which is especially common for side-to-
side translation and rotation of the mobile base, results
in very poor wheel-encoder odometry estimates. The de-
graded odometry and dead reckoning navigation is especially
problematic for motion controllers, and thus, for mobile
manipulation tasks that require motion estimates.

Overconstrained kinematic equations exist to detect slip,
but do not quantify it [1]. This problem is exacerbated by
other factors such as unbalanced wheel friction caused by
uneven weight distribution. To successfully and effectively
control the motion of the robot to facilitate manipulation
tasks, we propose an additional form of odometry.

The cost and ubiquity of cameras has made them a promis-
ing supplement to wheel encoder odometry, particularly for
conditions where wheels commonly slip on mobile robot
bases. Work in visual odometry (VO) with both monocular
and stereo sequences of images has shown improvement
over simple dead-reckoning from wheel encoders in these
situations [2], [3], [4]. Other researchers have examined
inexpensive optical flow sensors, like those used in optical
mice, but this work used extensive calibration or did not

Fig. 1. A mobile manipulator platform with superimposed coordinate
frame. The downward-facing camera and light ring sit under the robot to
provide visual odometry.

subsequently implement mobile base controllers for evalua-
tion [5], [6], [7], [8]. Work by Cooney et al probably most
resembles our own [9]. They employed optical mice and a
PID controller to command a Mecanum base. However, they
show the results of only one trajectory and ignore the fact that
the system is actually a MIMO system and not theoretically
well suited to SISO control schemes.

By constraining ourselves to planar indoor environments
common for mobile service robots, VO techniques can be
simplified as robot pose is reduced from six degrees-of-
freedom (6-DoF) to a planar rotation and translation (3-
DoF) [10]. A calibrated downward-facing camera (shown in
Figure 1) captures images of the floor. We use a homography
to adjust for slight camera mounting offset angles, thereby
rectifying (planarizing) the image. We mounted the camera
on the robot’s underside and included a specialized light
which allows us to maintain a controlled environment in
terms of lighting and specular reflections. Our setup results
in robust VO estimates even when the robot operates in
challenging environments with moving objects or people and
in variable or low light conditions. We also believe this
technique may facilitate future research in localization and
mapping similar to work by Kelly [11], but applied to homes
and office work spaces.

Our work is distinguishing in a number of ways. First, we
demonstrate a closed-loop LQR controller on a Mecanum



base with downward-facing camera. Others have examined
PID controllers on Mecanum bases using optical flow [9],
but we report experiments that provide more extensive quan-
titative evaluation of both the PID controller and the new
LQR controller. Second, we demonstrate performance of
a visual odometry system whose closed-loop error is less
than 0.52% over short distances with significant angular
rotations, which is comparable to other results reported in
the literature. We show that the visual odometry estimates
are sufficient to construct robust closed-loop controllers
that perform significantly better than controllers using the
wheel encoder odometry and are capable of operation in
challenging or adverse conditions, such as in large crowds
or low ambient lighting. Finally we have already used our
system in application for mobile manipulation tasks, [12].

II. THE VISUAL ODOMETRY SYSTEM

A. The Mobile Robot Platform

The mobile robot, Cody, shown in Figure 1 is a statically
stable mobile manipulator with arms from MEKA Robotics
(MEKA A1), an omnidirectional mobile base from Segway
(RMP 50 Omni composed of two RMP 50 differential drives)
and a 1-DoF linear actuator from Festo. The Mecanum
wheels are eight inches in diameter.

Two Mac Mini computers running Ubuntu GNU/Linux
provide on-board computation. One computes visual odome-
try and has Intel IPP installed to speed up image processing.
The other computer logs odometry data and transmits control
commands to the Segway base. The Segway base operates
as two differential drive controllers (front and back), each
taking a forward linear velocity and an angular velocity
command. Commands generated for individual wheel veloc-
ities, as required for our controllers, are decomposed into
the requisite linear and angular velocity commands through a
linear transformation and sent to the Segway base controllers.
We wrote our software in Python and used OpenCV [13] and
ROS (Robot Operating System) [14] both of which are open
source.

B. The Camera and Light Ring

We used a Dragonfly2 camera with remote head from
Point Grey Research with a 4 mm focal length micro-lens.
We mounted the camera approximately 10 cm off the ground
between the two RMPs (front and back), facing it directly
downwards. The camera is capable of returning 1024x768
resolution, 8-bit color images at 30 fps. Using ROS we were
able to grab frames and transmit them at full resolution at 30
fps. However, our practical loop rate for the control system
was limited to 10 Hz due to feature extraction and tracking.
Images from four different floors on which the odometry
system worked are found in Figure 2

We designed a light ring using 16 1.3W Luxeon Star White
Lambertian LEDs. We angled each LED downwards to the
center of the luminous cone (see Figure 3) in the cameras
field of view. We also mounted the light ring under the
robot and centered it around the downward-facing camera
(as seen in Figure 1). This allowed for illumination under the

Fig. 2. Four examples of flooring that were imaged during the operation
of our visual odometry system.

Fig. 3. Diagram of light ring showing showing how geometry helps avoid
specular reflections.

robot without causing primary reflections to become specular
reflections on reflective surfaces such as wood flooring.

C. Coordinate Frames

Coordinate frames play an important role in the derivation
and explanation of the system, so we define the robot frame
here. As shown in Figure 1, the robot’s frame is located at
the geometric center of the robot base. The x-direction points
forward from the robot, the y-direction is to the robot’s left.
Following a right-handed coordinate system, the z-direction
is up. We assume that the camera center is coincident
with the origin of the robot’s reference frame, a reasonable
assumption due to the design of our mounting bracket. We
also require that the xy-plane be parallel to the ground.
To satisfy this requirement we calibrated the camera to
account for small angular deflection errors in the mounting.
To perform the calibration, we imaged a calibration grid
with known physical dimensions that we placed on the
floor, allowing us to extract known correspondences between
points in physical-space and those in pixel-space. We then
found a mapping (homography) between the original image
and a rectified image plane that is parallel to the ground
plane using OpenCV.

III. MEASUREMENT AND MOTION MODEL

A. Odometry Measurement Model

For our VO system we use the Harris corner descrip-
tor [15] and the pyramidal Lucas-Kanade feature tracker
[16] in OpenCV to extract features and then find putative
correspondences from two consecutive raw camera images.
The images are queried using a python process in order
to grab them at frame rate. They are subsequently passed
using ROS to another python process that does the feature
tracking at approximately 10 Hz. If we assume that the
robot only moves in the plane and that two consecutive
images are coplanar, then the transformation between feature
correspondences is described by a planar rotation (θ) about
the z-axis and a translation (t ε R2). We then consider the
< X,Y > set of coordinates for 2D points known in both the
previous < Xp, Y p > and next < Xn, Y n > frames. The
goal is to reconstruct the coordinate frame transformation
that describes the motion of the camera with respect to



Fig. 4. Representative image of feature correspondences and their rela-
tionship from two consecutive frames.

the observed features. In homogeneous coordinates this is
represented in Figure 4.

Linearizing the 2D homogeneous transformation equation
under a small angle assumption yields: 1 δθ δx

−δθ 1 δy
0 0 1

xpyp
1

 =

xnyn
1

 (1)

Rearranging the rows of interest results in the following:

yp · δθ + δx = xn − xp (2)
xp · −δθ + δy = yn − yp (3)

By replicating the process for m pairs of points, we obtain:
1 0 yp0
0 1 −xp0

...
1 0 ypm
0 1 −xpm


δxδy
δθ

 =


xn0 − xp0
yn0 − yp0
...

xni − xpi
yni − ypi

 (4)

Using the Moore-Penrose pseudo-inverse or overcon-
strained linear least squares solution to this problem min-
imizes the norm of the error. This result is valid assuming
that all of the putative correspondences are valid inliers. In
practice this will not likely be the case as the feature tracker
appears to be very dependent on guesses (< Xn, Y n >)
provided to the feature tracking algorithm. To help reject
gross outliers, we perform an initial estimate as described
above. We can then calculate an approximate error for
each feature correspondence by using the solution found to
forward project the features in the previous image into the
next and compare them with the actual features in order to
compute an error in pixel units. We discard correspondences
whose error is both greater than one pixel and greater
than one standard deviation from the mean error, and then
recompute a new odometry estimate using the remaining
feature correspondences (presumably inliers).

We compute the current robot pose in an arbitrary but
static global frame of reference by adding the latest VO
estimate (in the robot’s frame) to the previous step’s global
pose estimate (also expressed in the robot’s frame). Being
computed in pixel units, this pose is only known to a scale.
Obtaining physically-meaningful units required an additional
scaling factor that we determined during the calibration step
described in Section II-C.

Fig. 5. Coordinate frame and labeling for Segway base with Mecanum
wheels.

B. Kinematic Motion Model

The coordinate frame imposed on the mobile base shown
in Figure 5 is also the robot coordinate frame from Figure
1 seen from above. Following the development of kinematic
equations from [1], and according to the coordinate frame
shown in Figure 5 we show that:

ω1

ω2

ω3

ω4

 =
1

R


1 1 lab
1 −1 −lab
1 1 −lab
1 −1 lab


ẋẏ
θ̇

 (5)

Where wi from Figure 5 is the ith wheel of the base and ωi

is the associated angular velocity input from that wheel. R is
the wheel radius which is 4 inches for our Mecanum wheels
and lab is defined as la + lb, the sum of the distances shown
in Figure 5. The variables ẋ, ẏ, θ̇ are the linear velocities in
the x and y directions and the angular velocity about the
center of the robot. Equation 5 is referred to by Muir et al.
[1] as the actuated inverse solution and is used to directly
compute wheel velocities in order to attain a desired linear
and angular velocity of the base. In commanding the base, we
assume that the location of the robot when the odometry is
initialized is the origin of a global coordinate frame. This is
done without loss of generality since any frame of reference
could be used at initialization or after a localization step.
Velocity commands are then given in a global coordinate
frame and afterwards transformed into the local robot frame
as follows:ẋrẏr

θ̇r

 =

sin(θg) cos(θg) 0
cos(θg) sin(θg) 0

0 0 1

ẋgẏg
θ̇g

 (6)

Where the subscripts g and r denote the coordinates in
global and robot frame. The result is that we can command
velocities in the global frame and decompose them at each
discrete time step into the robot’s local frame.

In order to later develop the Linear Quadratic Regulator
(LQR) controller, we also need the prediction of the linear
and angular velocities of the base given the angular velocities
of the four wheels. In [1], Muir and Neuman call this the
sensed forward solution because it is assumed that the wheel
velocities are known. The relation established by Equation



5 is overconstrained and therefore the solution for the linear
and angular velocities is a linear least squares approximation
which is shown below:

ẋẏ
θ̇

 =
R

4 lab

lab lab lab lab
lab −lab lab −lab
1 −1 −1 1



ω1

ω2

ω3

ω4

 (7)

When slipping occurs, which is the mode of operation
for Mecanum wheels, the equations no longer hold and
are only an approximation. The major reason for our VO
implementation is that the sensed forward solution is not
adequate for controlling the base due to wheel slippage from
uneven floors, uneven weight distribution on the base and
various other reasons, as will be shown in the results section.

IV. CONTROLLER FOR OMNIDIRECTIONAL BASE

A. PID Control

The first control scheme we implemented included three
separate PID loops wrapped around the measured variables.
This loop was the same for each controlled variable (x, y, θ)
as shown in Figure 6. The reference input is a global
pose (position or orientation). After being projected into
the robot’s frame the resultant control scalar from each of
the three PID loops is concatenated to form [ẋ ẏ θ̇]T . The
angular velocities for the wheels corresponding to the desired
velocity commands are then found through Equation 5. For
both the PID controller and the LQR controller, the actuator
or wheel velocities are limited to avoid VO failure due
to blurred images or loss of putative correspondences. The
feature tracker update rate currently limits the speed of the
robot.

We tuned the proportional, integral and derivative gains
for each loop individually using the common Ziegler-Nichols
method [17]. After this initial tuning, we performed further
iterations with all three loops active at the same time in order
to reduce common oscillation, which is a known problem
with this tuning method. There are two major drawbacks
with the PID method. First, we treat each PID loop as being
independent when, in fact, they are coupled. This can lead
to undesired behavior or overshoot. Second, tuning the gains
does not leverage information that may be provided by the
known kinematics of the base.

B. LQR Control

We formulate our LQR controller using the kinematic
equations previously shown for two reasons. First, with
unequal weight distribution and uneven flooring the wheels
slip in such a way that a useful dynamic model would be
difficult if not impossible to obtain. Second, although the
kinematic equations assume that velocities commanded are
equal to velocities attainable in a finite time step (which
is unrealistic in some scenarios), we have found it to work
well for moderate accelerations. In order to develop the LQR
controller, we discretized Equation 7. Assuming a simple first

order Euler approximation the following become the discrete
time state equations for the base:

x(k + 1) = Gx(k) +Hu(k)

y(k) = Cx(k) +Du(k) (8)

The state vector x(k) is:

x(k) = [x(k) y(k) θ(k)]T (9)

The matrices G,H,C and D are defined as:

G =

 1 0 0
0 1 0
0 0 1

 , H =

 t lab t lab t lab t lab
t lab −t lab t lab −t lab
t −t −t t


C =

 1 0 0
0 1 0
0 0 1

 , D = [0]

(10)
with t being the change in time for each discrete step and

the input u as:

u = [ω1 ω2 ω3 ω4]
T (11)

Although we treated each state variable in the PID con-
troller as a SISO (single input single output) system, this
state space representation allows the use of MIMO state
space theory to form a more theoretically rigorous and robust
controller. Although the PID controller works in practice, it
seems to have problems with oscillation that we hypothesize
is due at least in part to the coupling between the rotation
and translation since they are treated as being independent.
Although it might be possible to tune the PID controller to
obtain acceptable behavior, LQR control design allows us to
model the MIMO system including the coupling of different
states in a straightforward manner.

A controller formulated with the state space equations
from Equation IV-B would be a regulator only and would
drive the states to zero. We therefore introduce a reference
input as seen in Figure 7. We can then define a new state
vector with an integrator term included, (also in Figure 7):

[
x̂(k)

]
=

 x(k)− x(N)
N∑

k=0

(x(k)− x(N))

 =

 xe(k)
N∑

k=0

xe(k)

 (12)

With the new state equations that introduce a reference
input and integral action, we can formulate the performance
index for a Linear Quadratic Regulator (LQR). We assume
an infinite time horizon for the controller development which
means that the LQR gain matrix, K will be constant and the
solution is found by resolving the discrete algebraic Ricatti
equation. Following common derivations for a discrete sys-
tem such as found in [18] , we let the control input and
performance index be defined as:



Fig. 6. Block diagram for a single loop of the PID controller.

Fig. 7. Block diagram for LQR controller.

û(k) = −Kx̂(k)

J = 1
2

∞∑
k=0

[x̂(k)TQx̂(k) + ρû(k)TRû(k)]
(13)

We initially set Q equal to a 6x6 identity matrix and R
to a 4x4 identity matrix. ρ defines the relative weighting
between the two terms and was initially defined as ρ = 1.
This weighting parameter was later modified after testing
with the mobile base in the loop to find an acceptable
response empirically. In addition, the relative weightings for
the diagonal terms of Q corresponding to the states of x and
y were weighted differently than for θ to account for the
difference in units.

We implemented the LQR controller, shown graphically
in Figure 7, in Python with a fixed time step t of 1

10 of a
second.

V. VALIDATION OF CONTROL AND MEASUREMENT
SYSTEM

We show the performance of the VO and the two con-
trollers through a series of three tests. The results show
the capabilities of the two controllers in conjunction with
the performance of the visual odometry. We tuned the two
controllers with hardware in the loop before any data was
taken. In addition, both had anti-windup measures added
which involved setting the integral control terms to zero
if common anti-windup conditions were met. Doing this
limited the amount of oscillation about the set points or
waypoints due to the integral term. Our current implementa-
tion of visual odometry runs at 10 Hz. This means that the
speed of the robot is limited to approximately 0.3 meters per
second. Possible improvements to the system are addressed
in Section V-D.

A. Small-Scale Motion and Waypoint Tracking

For each of the following results in this section, we
recorded the odometry from both the VO system and from
the sensed forward solution using wheel encoder values. In
addition we used an overhead calibrated camera to show
the performance of the odometry with respect to ground
truth (see Figure 8). The resolution of the ground truth
measurement is on the order of 1 cm and we believe it
has some distortion problems at the edges of the field of
view causing some error in the ground truth measurement.
However it is not subject to the same effects of drift found
in the dead reckoning estimates for the other odometry
measures. We describe the test scenarios in each of the
following sections, and they are represented graphically in
Figure 8. The view in this figure is from the overhead camera.
The red lines denote a translation in the direction of the
arrow and the green curves denote a rotation of 90◦ in the
indicated direction. For each test, we show the performance
of the odometry with ground truth as well as showing the
transient response for the PID and LQR controllers on each
state. The results are in Figure 9 and the column divisions
represent the three different tests and are labeled accordingly
in the figure.

1) Waypoint Tracking: The first test consisted of four
commands sent to the base in succession as waypoints.
The commands formed a square with edge length of 1.1
meters and included a 90 degrees counter clockwise rotation
for each of the first two edges and a negative 90 degrees
rotation for the last two edges. This means that the robot
should have ended in the pose where it began. The robot
was given 20 seconds for each edge or waypoint since this
was determined to be larger than the 95 percent rise time for
both controllers even in the presence of actuator saturation.



Fig. 9. These results are organized with the column defining the test completed (col 1 = Sideways Motion, col 2 = Square Waypoint Motion, col 3 =
Disturbance Rejection). The first three rows also define the type of feedback and control used for these tests (row 1 = LQR control using VO, row 2 =
PID control using VO, row 3 = LQR control using encoder odometry). Row 4 shows the transient response of the controllers for each state variable of
interest across the three tests.

Fig. 8. View from overhead calibrated camera that was used to calculate
ground truth for odometry. The three images represent the three test cases.
Red lines denote translation and green arrows show a rotation of 90◦ in the
indicated direction.

The size of the square defined by the four waypoints was
restricted by the field of view of the overhead camera. We
ran tests using visual odometry as the measurement system
for both the LQR and PID controllers and the results in terms

of estimated position are in Figure 9 (a) and (b).
We ran the test again with the LQR controller, this time

using the encoder values from the Segway and the forward
sensed solution from [1] to measure the states. The results
for this test are shown in Figure 9(c). These first graphs show
only the coupled results of the controller and the odometry
system and no dependence on time is represented. For this
reason we also included the transient response for the PID
and LQR controller using the VO in Figure 9(d).

Having measured the visual odometry estimates, wheel-
encoder odometry estimates, and ground truth for these
scenarios, we were able to calculate the amount of closed-
loop error for this short trajectory with 360◦ of total angular
rotation. We defined the closed-loop error as the difference
between the ground truth and the odometry estimate after the
robot completed the square trajectory divided by the total dis-
tance estimated by the odometry method. We summarize the



TABLE I
CLOSED-LOOP ERROR BETWEEN GROUND TRUTH AND ODOMETRY

ESTIMATE FOR A SINGLE RUN.

Odometry Type Controller % Error
VO PID 0.31%
VO LQR 0.52%

Encoder PID 8.17%
Encoder LQR 14.4%

results for a single trial of each test scenario in Table I. The
closed-loop error for our visual odometry was under 0.52%,
which clearly outperformed the wheel-encoder odometry.

2) Disturbance Rejection: In the next test we commanded
only one waypoint but had a wooden board approximately
0.5 cm thick located in the wheel path to simulate a dis-
turbance. For each test the board was located at the same
spot to within approximately 1 mm of the other tests. This
was not a rigorous or thorough way to measure disturbance
rejection in the system. It did, however, give a qualitative idea
for robustness of the combined controller and measurement
feedback loop. As for the first test, the results are shown in
Figure 9

3) Sideways Motion for Manipulation: In this test we tried
to show the utility and feasibility of using the base with a
mobile manipulator to increase redundancy in the kinematic
chain. The robot end effector was extended over a table top.
The base was then commanded to move 50 cm to the left (in
the y-direction), then 50 cm back to where the manipulator
started. Again the results are shown in Figure 9.

B. Discussion

The first important result for this system is that control
using only the encoders was clearly deficient in terms of
accuracy. After only a single way point from the first test
(which included a 90 degree rotation and 1.1 meter transla-
tion), dead reckoning when controlling with the encoders
began to drift from ground truth by about 20 percent of
the total distance traveled to that point. However, control
with either the PID or LQR controller using VO was able
to complete the entire trajectory of waypoints with less than
1 percent error with respect to ground truth. Introduction of
disturbances such as uneven flooring or change in location
of the center of gravity would only worsen the problem of
controlling from the encoder output as any extra slip would
add to errors in the odometry estimate.

In the third test scenario, commanding straight line tra-
jectories in the y or sideways direction and controlling with
encoder values caused the robot to move along an arc rather
than a straight line. We hypothesize that this is due to the
fact that the center of mass is shifted towards the back of
the base causing greater friction contact forces on the back
wheels. This same trend does not appear on the trajectories
where we controlled using VO.

A number of factors contribute to the viability of our
VO system for improving odometry on any mobile system
with indoor applications. Clearly cameras are ubiquitous
and cheap. In addition the LED light ring is a simple and

reproducible design. It is feasible that this type of odometry
could be a cost-effective and robust alternative to more
expensive systems such as high resolution wheel encoders
or odometry based on laser range scanners. Ease of use is
also an important factor as the only calibration necessary
to obtain reasonable results is finding the scaling factor and
homography to rectify the image with respect to the ground
plane. Another factor is that failure modes that are common
for other visual odometry systems are less of a concern
for our system. Poor lighting and crowded rooms do not
change the VO performance since the robot must be able to
physically occupy the area from which it measures and is
able to control the lighting in that space.

C. Comparing LQR and PID Controllers

Very little can be said in comparing the LQR and PID
controllers. One obvious observation is that the LQR con-
troller appears to produce less oscillation and overshoot than
the PID controller. One reason for this might be because
the Ziegler-Nichols method is known to exhibit quarter wave
decay. We tried to do additional tuning manually to minimize
the effects of oscillation, but because the output was coupled
it was difficult to tune in a satisfactory manner. For this
reason, the LQR controller was preferable because it was
simpler to tune the gains in a structured way.

D. Improvements on Current VO Implementation

There are many ways that the VO system could be
improved. One way is that feature tracking at 30 fps has
been shown for 1000 features on a 1024x768 resolution
image [19]. Speeding up the loop rate in this way would
improve the control and increase the maximum speed of the
robot. This in addition to more robust methods (RANSAC
or Kalman filters) for the odometry estimate would produce
better quality and more robust odometry.

E. Limitations of Current Platform

Although our controller formulation and visual odometry
system allowed us to overcome some of the obstacles for
useful applications of Mecanum bases, other obstacles re-
main. After the initial disturbance tests shown in Figure 9
we determined that further tests would be useful to prove the
robustness of the controllers and VO system. We placed three
disturbances that would commonly be found in a household
(a throw rug, a threshold and an extension cord) in the path
of the base. Our original intention was to have the base move
in a sideways trajectory over these objects. However, we
were unable to even teleoperate the base sideways across
the threshold as the Mecanum base became inoperable due
to high-centering. In addition, the extension cord was quickly
pulled up into the wheels because of spacing in the wheel
design. Finally, we also noticed that as the wheels turn in
opposite directions to move the base sideways, they are likely
to pull up throw rugs and damage our VO system or at least
detach it. We did not include quantitative results for these
tests. However, it is important to note that these types of



mechanical limitations would be important in determining
appropriate applications of the Mecanum base.

While this paper does not perform a thorough examination
of these limitations, further investigation is certainly war-
ranted. Further development should include more rigorous
testing of disturbance inputs using difficult terrain such as
ramps that are common in wheelchair accessible environ-
ments or throw rugs that cause uneven ground or more
importantly can be pulled up between the two Mecanum
wheels. Our experience suggests that Mecanum bases and
the techniques discussed in this paper are most applicable
to industrial or office settings with fairly flat flooring that is
uncluttered.

VI. CONCLUSIONS

In this paper we have presented a visual odometry system
that is accurate enough to give 0.52% closed-loop error
over small trajectories. Using this visual odometry we have
shown the development and performance of PID and LQR
controllers for a Mecanum omnidirectional base. This type
of control has already allowed us to successfully perform
mobile manipulation tasks. Finally, because of the design of
our system, it is possible for the odometry and controllers
to function in environments with moving people and varying
or low ambient light.

VII. ACKNOWLEDGEMENT

We gratefully acknowledge support from the US National
Science Foundation (NSF) grants CBET-0932592 and IIS-
0705130, and support from Willow Garage.

REFERENCES

[1] P. F. Muir and C. P. Neuman, “Kinematic modeling for feedback
control of an omnidirectional wheeled mobile robot,” pp. 25–31, 1990.

[2] M. Agrawal and K. Konolige, “Real-time localization in outdoor en-
vironments using stereo vision and inexpensive gps,” in International
Conference on Pattern Recognition (ICPR). Citeseer, 2006.

[3] K. Konolige, M. Agrawal, and J. Sola, “Large scale visual odometry
for rough terrain,” in Proc. International Symposium on Robotics
Research. Citeseer, 2007.

[4] J. Campbell, R. Sukthankar, I. Nourbakhsh, and A. Pahwa, “A robust
visual odometry and precipice detection system using consumer-grade
monocular vision,” in IEEE INTERNATIONAL CONFERENCE ON
ROBOTICS AND AUTOMATION, vol. 3. Citeseer, 2005, p. 3421.

[5] D. Sekimori and F. Miyazaki, “Self-localization for indoor mobile
robots based on optical mouse sensor values and simple global camera
information,” in 2005 IEEE International Conference on Robotics and
Biomimetics (ROBIO), 2005, pp. 605–610.

[6] J. Hu, Y. Chang, and Y. Hsu, “Calibration and on-line data selection
of multiple optical flow sensors for odometry applications,” Sensors
& Actuators: A. Physical, vol. 149, no. 1, pp. 74–80, 2009.

[7] M. Dille, B. Grocholsky, and S. Singh, “Outdoor Downward-facing
Optical Flow Odometry with Commodity Sensors,” 2009.

[8] X. Song, L. Seneviratne, K. Althoefer, Z. Song, and Y. Zweiri,
“Visual odometry for velocity estimation of UGVs,” in International
Conference on Mechatronics and Automation, 2007.

[9] J. Cooney, W. Xu, and G. Bright, “Visual dead-reckoning for motion
control of a Mecanum-wheeled mobile robot,” Mechatronics, vol. 14,
no. 6, pp. 623–637, 2004.

[10] H. Wang, K. Yuan, W. Zou, and Q. Zhou, “Visual odometry based
on locally planar ground assumption,” in 2005 IEEE International
Conference on Information Acquisition, p. 6.

[11] A. Kelly, “Mobile robot localization from large-scale appearance
mosaics,” The International Journal of Robotics Research, vol. 19,
no. 11, p. 1104, 2000.

[12] A. Jain and C. C. Kemp, “Pulling Open Doors and Drawers: Co-
ordinating an Omni-directional Base and a Compliant Arm with
Equilibrium Point Control,” in ICRA, 2010.

[13] G. Bradski, V. Pisarevsky, and J. Bouguet, “Open source computer
vision library,” Intel Corporation, 2001.

[14] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, R. W.
Eric Berger, and A. Ng, “ROS: an open-source Robot Operating
System,” in Open-Source Software workshop of (ICRA), 2009.

[15] C. Harris and M. Stephens, “A combined corner and edge detector,”
in Alvey vision conference, vol. 15. Manchester, UK, 1988, p. 50.

[16] J. Bouget, “Pyramid Implementation of the Lucas Kanade Feature
Tracker,” Technical report, Tech. Rep. included in the OpenCV library,
Tech. Rep., 2002, http://www. intel. com/research/mrl/research/ovencv.
3, Tech. Rep.

[17] J. Ziegler and N. Nichols, “Optimum settings for automatic con-
trollers,” Journal of dynamic systems, measurement, and control, vol.
115, p. 220, 1993.

[18] K. Ogata, Discrete-time control systems. Prentice-Hall Englewood
Cliffs, NJ, 1987.

[19] S. Sinha, J. Frahm, M. Pollefeys, and Y. Genc, “GPU-based video fea-
ture tracking and matching,” in EDGE, Workshop on Edge Computing
Using New Commodity Architectures, vol. 278. Citeseer, 2006.


