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Abstract— Audio-visual (AV) integration is one of the key
ideas to improve perception in noisy real-world environments.
This paper describes automatic speech recognition (ASR) to
improve human-robot interaction based on AV integration. We
developed AV-integrated ASR, which has two AV integration
layers, that is, voice activity detection (VAD) and ASR. However,
the system has three difficulties: 1) VAD and ASR have
been separately studied although these processes are mutually
dependent, 2) VAD and ASR assumed that high resolution
images are available although this assumption never holds
in the real world, and 3) an optimal weight between audio
and visual stream was fixed while their reliabilities change
according to environmental changes. To solve these problems,
we propose a new VAD algorithm taking ASR characteristics
into account, and a linear-regression-based optimal weight
estimation method. We evaluate the algorithm for auditory-
and/or visually-contaminated data. Preliminary results show
that the robustness of VAD improved even when the resolution
of the images is low, and the AVSR using estimated stream
weight shows the effectiveness of AV integration.

I. INTRODUCTION

In a daily environment where service/home robots are
expected to communicate with humans, the robots have
a difficulty in Automatic Speech Recognition (ASR) due
to various kinds of noises such as other speech sources,
environmental noise, room reverberations, and robots’ own
noise. In addition, properties of the noises are not always
known. Therefore, an ASR system for a robot should cope
with the input speech signals with an extremely low Signal-
to-Noise Ratio (SNR) by using less prior information on the
environment.

An ASR system generally consists of two main processes.
One is Voice Activity Detection (VAD) and the other is
ASR. VAD is the process, which detects start and end points
of utterances from an input signal. When the duration of
the utterance is estimated shorter than the actual one, the
beginning and/or the last part of the utterance is missing,
thus ASR fails. Also, an ASR system requires some silent
signal parts (300-500 ms) before and after each utterance.
When the silent parts are too long, it also affects the ASR
system badly. Even if VAD detects an utterance correctly,
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ASR may fail due to a noise. Thus, to make an ASR system
robust, both VAD and ASR should be noise-robust.

To realize such a noise-robust ASR system, there are
mainly two approaches. One is sound source separation to
improve SNR of the input speech. The other is the use of
another modality, that is, Audio-Visual (AV) integration.

For sound source separation, we can find several studies,
especially, in the field of “Robot Audition” proposed in [1],
which aims at building listening capability for a robot by
using its own microphones. Some of them reported highly-
noise-robust speech recognition such as three simultaneous
speeches [2]. However, in a daily environment where acous-
tic conditions such as power, frequencies, locations of noises
and speech sources dynamically change, the performance
of sound source separation sometimes deteriorates, and thus
ASR does not always show such a high performance.

Regarding AV integration for ASR, many studies have
been reported as Audio-Visual Speech Recognition (AVSR)
[3], [4], [5]. However, they assumed that the high resolution
images of the lips are always available. Thus, their methods
have difficulties in being applied to robot applications.

To tackle with these difficulties, we reported AVSR for
a robot based on two psychologically-inspired methods [6].
One is Missing Feature Theory (MFT), which improves
noise-robustness by using only reliable audio and visual
features by masking unreliable ones out. The other is
coarse phoneme recognition, which also improves noise-
robustness by phoneme groups consisting of perceptually-
close phonemes instead of using phonemes as units of
recognition. The AVSR system showed high noise-robustness
to improve speech recognition even when either audio or
visual information is missing and/or contaminated by noises.
However, the system assumed that the voice activity was
given while VAD affects ASR performance. To cope with
this issue, we reported an ASR system based on AV-VAD
and AVSR [7]. The AVSR system showed high speech recog-
nition performance when either audio or visual information
is contaminated by noises. However, the system has three
issues as follows:

1) A priori information was used to integrate audio and
visual information,

2) VAD and ASR have been separately studied although
these processes are mutually dependent,

3) The evaluation of the system was done without using
an actual robot.

For the first issue, we introduce stream weight optimization
which can control AV integration to improve AVSR per-
formance depending on acoustic- and visual-noise. For the
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second issue, we evaluate the performance of AVSR system,
that is, the combination of VAD and ASR. For the third issue,
we evaluate the performance of the proposed method using
an actual robot.

The rest of this paper is organized as follows: Section II
discusses issues and Section III explains approaches in audio-
visual integration for an ASR system. Section IV describes
our ASR system for a robot using two-layered AV integra-
tion. Section V shows evaluations in terms of VAD and ASR.
The last section concludes this paper.

II. ISSUES IN AUDIO AND VISUAL INTEGRATION FOR
SPEECH RECOGNITION

AV integration methods for VAD and ASR are mainly
classified into two approaches. One is early integration which
integrates audio and visual information on the feature level
and the other is late integration which integrates audio and
visual information on the decision level.

In the following sections, we discuss issues in audio-visual
integration methods for VAD and ASR for a robot because
VAD and ASR are essential functions for an ASR system.

A. Audio-Visual Integration for VAD

AV integration is promising to improve the robustness of
VAD, and thus audio visual integration should be applied
to VAD in the real world. Almajai et al. presented an AV-
VAD based on early integration [8]. They integrated an audio
feature (Mel-Frequency Cepstral Coefficient: MFCC) and
a visual feature based on 2-D Discrete Cosine Transform
(DCT). The integrated AV feature was used to detect voice
activities and this approach showed a high performance.
However, they assumed that the high resolution image of
the lips is always available. Murai et al. presented an AV-
VAD based on late integration [9]. They detected lip activity
by using a visual feature based on a temporal sequence of lip
shapes. Then, they detected a voice activity from the detected
lip activity by using speech signal power. Therefore, this
method detects the intersection of the lip activity and the
voice activity. However, in this case, when either the first
or the second detection fails, the performance of the total
system deteriorates.

B. Audio-Visual Integration for ASR

For AVSR, we use early integration because when we
use late integration for AVSR, we have to consider the dif-
ference between alignments of two recognition results. The
alignments are separately estimated in the audio- and visual-
based speech recognizers. Thus, it is time consuming to
integrate the recognition results, because a lot of hypotheses
are tested to find the best alignment correspondence between
the results.

The issue in early integration is how to integrate audio and
visual features. When an audio feature is reliable and a visual
feature is unreliable, AVSR should place more emphasis
on the audio feature and less on the visual feature, and
vice versa. AVSR realizes this control by using a weight
called stream weight. So, a lot of stream weight optimization

methods have been studied in the AVSR community. They
mainly used log likelihoods in audio and/or visual speech
models. Optimization methods based on discriminative cri-
teria, such as minimum classification error criterion [10],
maximum mutual information criterion [11], and maximum
entropy criterion [12] have been proposed. These methods
have been reported with good performance. However, these
methods mainly dealt with acoustic noise and assumed that
ideal images are available. Thus, these methods are difficult
to apply an ASR system to a robot directly. To apply
these methods, we have to cope with dynamic changes
of resolution, illumination, or face orientation. Resolution
is especially important because the performance of visual
speech recognition (lip reading) drops when the resolution
is low.

III. APPROACHES IN AUDIO AND VISUAL INTEGRATION
FOR SPEECH RECOGNITION

A. Audio-Visual Integration for VAD

To solve the issues in AV-VAD, we introduced AV-VAD
based on Bayesian network [13], because Bayesian network
provides a framework that integrates multiple features with
some ambiguities by maximizing the likelihood of the total
integrated system. Actually, we used the following features
as the inputs of the Bayesian network:

• The score of log-likelihood for silence calculated by
speech decoder (xdvad),

• An eight dimensional feature based on the height and
the width of the lips (xlip),

• The belief of face detection which is estimated in face
detection (xface).

The first feature xdvad is calculated by using an acoustic
model of speech recognition and thus, takes the property
of voice into account. This feature reported high noise-
robustness [14]. The second feature is derived from the
temporal sequence of the height and width information by
using linear regression [13]. The last feature is calculated
in the face detection process. Since these features, more or
less, have errors, the Bayesian network is an appropriate
framework for AV integration in VAD.

First, we calculate a speech probability by using a
Bayesian network. The Bayesian network is based on the
Bayes theory defined by

P (ωj |x) =
p(x|ωj)P (ωj)

p(x)
, j = 0, 1 (1)

where x corresponds to each feature such as xdvad, xlip, or
xface. A hypothesis ωj shows that ω0 or ω1 corresponds to
a silence or a speech hypothesis, respectively. A conditional
probability, p(x|ωj), is obtained by using a Gaussian Mixture
Model (GMM) which is trained with a training dataset in
advance. The probability density functions p(x) and the
probability P (ωj) are also pre-trained with the training
dataset.
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Fig. 1. Hangover processing based on erosion and dilation

A joint probability, P (ωj |xdvad, xlip, xface), is thus cal-
culated by

P (ωj |xdvad, xlip, xface) =

P (ωj |xdvad)P (ωj |xlip)P (ωj |xface). (2)

By comparing this probability and a threshold, we estimate
a voice activity.

Next, we perform hangover processing based on dilation
and erosion for the temporal sequence of estimated voice
activity. Dilation and erosion are commonly used in pattern
recognition. Figure 1 shows hangover process based on
dilation and erosion. In the dilation process, a frame is added
to the start- and the end-points of a voice activity as below.

V̂ [k] =

{
1 if V [k − 1] = 1 or V [k + 1] = 1
0 otherwise (3)

where V [k] = {0(non-speech), 1(speech)} is the estimated
voice activity at k frame and V̂ [k] is the result of dilation.
This process removes fragmentation as shown in Fig. 1a). In
erosion process, a frame is removed from the start- and the
end-points of a voice activity as below.

V̂ [k] =

{
0 if V [k − 1] = 0 or V [k + 1] = 0
1 otherwise (4)

This erosion process removes false detects as shown in
Fig. 1b). AV-VAD performs these processes several times
and decides a voice activity.

Finally, the detected term and additional margin are ex-
tracted as an input data for speech recognition, because a
speech model assumes that the first and the last period are
silent. These margins before and after the detected period
correspond to the silent period in the first and last part of a
HMM-based speech model used in ASR. Therefore, when
we extract a voiced term strictly, the mismatch between
the speech model and the inputted data badly affects to the
performance of ASR.

B. Audio-Visual Integration for ASR

To cope with the issues in section II-B, we introduced
stream weight optimization. This optimization is based on
SNR and a face size which is directly affected by the image
resolution.

-5
0

5
10

15
20

0

0.2

0.4

0.6

0.8

1

Resolution

A
u

d
io

 s
tr

ea
m

  
 w

ei
g
h

t
SNR [dB]

Full si
ze

Half s
ize

One-third
Quarter si

ze
One-fif

th
One-six

th

Fig. 2. The linear regressions of optimal stream weight

We first evaluate AVSR by changing the audio stream
weight from 0 to 1 at 0.1 increments. From the word
correct rate of this test, we decide optimal stream weights
for every SNR and image resolution. The estimated audio
stream weight is calculated from linear regression of optimal
audio stream weights. Figure 2 shows the linear regressions
obtained by optimal stream weights.

IV. AUTOMATIC SPEECH RECOGNITION BASED ON
TWO-LAYERED AUDIO-VISUAL INTEGRATION

Figure 3 shows our automatic speech recognition system
for a robot with two-layered AV integration, that is, AV-
VAD and AVSR. It consists of four implementation blocks
as follows;

• Visual feature extraction block,
• Audio feature extraction block,
• The first layer AV integration for AV-VAD,
• The second layer AV integration for AVSR.

In the following sections, we describe three of these four
blocks because AV-VAD is already described in the previous
section.

A. Visual Feature Extraction Block

This block consists of four modules, that is, face detec-
tion, face size extraction, lip extraction, and visual feature
extraction. Their implementation is based on Facial Feature
Tracking SDK which is included in MindReader 1. Using

1http://mindreader.devjavu.com/wiki
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Fig. 3. An automatic speech recognition system with two-layered AV integration for robots

this SDK, we detected a face and facial components like
the lips. Because the face and the lips are detected with its
left, right, top, and bottom points, we can easily compute
the height and the width of the face and lips, and normalize
the lips height and width by using the face size estimated
in face detection. We use an 8-dimensional visual feature ??
both in VAD and in ASR.

B. Audio Feature Extraction Block

This block consists of five modules, that is, sound source
localization, SNR estimation, sound source separation, audio
VAD feature extraction, and audio ASR feature extraction.
Their implementation is based on HARK mentioned in
Section I. The audio VAD feature extraction module was
already explained in Section II, and thus, the other three
modules are described. We use an 8 ch circular microphone
array which is embedded around the top of our robots head.

For sound source localization, we use MUltiple SIgnal
Classification (MUSIC) [15]. This module estimates sound
source directions from a multi-channel audio signal input
captured with the microphone array.

For sound source separation, we used Geometric Sound
Separation (GSS) [16]. GSS is a kind of hybrid algorithm of
Blind Source Separation (BSS) and beamforming. GSS has
high separation performance originating from BSS, and also
relaxes BSS’s limitations such as permutation and scaling
problems by introducing “geometric constraints” obtained
from the locations of microphones and sound sources ob-
tained from sound source localization.

For an acoustic feature for an ASR system, Mel Frequency
Cepstrum Coefficient (MFCC) is commonly used. However,
sound source separation produces spectral distortion in a sep-
arated sound, and such distortion spreads over all coefficients
in the case of MFCC. Since Mel Scale Logarithmic Spectrum
(MSLS)[17] is an acoustic feature in the frequency domain,
and thus, the distortion is concentrated only on specific
frequency bands. Therefore MSLS is suitable for ASR with
microphone array processing. We used a 27-dimensional
MSLS feature vector consisting of 13-dim MSLS, 13-dim
∆MSLS, and ∆log power.

C. The Second Layer AV Integration Block

This block consists of two modules, that is, stream weight
estimation and AVSR. We introduced a stream weight opti-
mization module which is mentioned in Section II. For AVSR
implementation, MFT-based Julius [18] was used.

V. EVALUATION

A. Experiments and Evaluations

We evaluated the system through three experiments.
Ex.1: The effectiveness of AV-integration for VAD.
Ex.2: The effectiveness of two-layered AV-integration for

ASR.
Ex.3: The robustness against an auditory- and/or visually-

contaminated data using an actual robot.
In Ex. 1 and Ex. 2, we used a Japanese word AV dataset,
and in Ex. 3, we used a scenario captured by using an actual
robot.

AV dataset contains speech data from 10 males and 266
words for each male. Audio data was sampled at 16 kHz and
16 bits, and visual data was 8 bit monochrome and 640×480
pixels in size, recorded at 33 Hz.

For training, we used acoustically- and visually-clean AV
data. To train an AV-VAD model, we used 216 clean AV data
from 5 males. To train an AVSR acoustic model, we used
216 clean AV data from 10 males.

For evaluation, we used two kinds of datasets. One is 50
AV data which is not included in the training dataset. The
other is AV data captured by the actual robot. For the former
data, the audio data was converted to 8 ch data so that each
utterance comes from 0 degrees by convoluting the transfer
function of the 8 ch robot-embedded microphone array. After
that, we generated two kinds of audio data whose SNR is
20 and 5 dB by adding a musical signal from 60 degrees
as a noise source. Also, we generated low resolution visual
data whose resolution is 1/3 compared with the original
one by using a down-sampling technique. The latter data
is a 20-second scenario shown in Fig. 7. Audio data was
contaminated by a musical noise from t = 0 sec. to t = 16
sec as shown in Fig. 8. Visual data includes occlusion of
the face and dynamic changes of face size and orientation
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Fig. 4. Audio and vision sensors for humanoid, SIG

as shown in Fig. 7, 8. As a testbed, we used an upper-
torso humanoid called SIG shown in Fig 4. SIG has 8 ch
microphone array around its head and a camera at its right
eye.

The ground truth of voice activity is shown in Fig. 9. For
the ground truth, we hand-labeled input data by listening
to sounds and looking at wave form. Therefore, this graph
shows the voice activity, not the lip activity.

B. Results

1) Ex. 1: The results of Ex. 1 are shown in Fig. 5
as word detect rate. We compared four kinds of VAD
methods, that is, A-VAD, V-VAD, AV-VAD(proposed), and
AV-VAD(and). AV-VAD (and) is the AV integration method
described in section II-A which detects the intersection of
Audio-VAD and Visual-VAD results. When SNR is low as
shown in Fig. 5c), AV-VAD(proposed) and AV-VAD(and)
improve VAD performance. On the other hand, when the
resolution is low as shown in Fig. 5b), the performance
of AV-VAD(proposed) shows high performance while AV-
VAD(and) deteriorates. So, we can say that the proposed
method improves robustness for both resolution and SNR
changes.

2) Ex. 2: The results of Ex. 2 are shown in Fig. 6 as
word correct rate. When both SNR and resolution are high,
AVSR improves the word correct rate. In addition, when
ether of SNR and resolution is low, AVSR shows the best
performance. So, we can say that two-layered AV integration
is effective to improve robustness of the ASR system.

3) Ex. 3: The performance of Audio-VAD, Visual-VAD,
and Audio-Visual-VAD are shown in Fig. 10, 11, 12, respec-
tively. By comparing the results, we can see that only AV-
VAD detects word A and B indicated in Fig. 9. Even in the
case of AV-VAD, the detection result of word A and B have
error. However, the margin addition described in Section III-
A makes up the missing parts and almost all utterance of
these two wards are detected.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed a two-layered AV integration
framework to improve automatic speech recognition for a
robot. The framework includes Audio-Visual Voice Activity
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Fig. 6. The result of speech recognition

Detection (AV-VAD) based on a Bayesian network and
AVSR based on stream weight optimization to improve per-
formance and robustness of ASR. We showed that the robust-
ness improved for both auditory- and visually-contaminated
input data. In addition, to solve a problem that a priori stream
weight was used for so far, we proposed linear-regression-
based optimal stream weight estimation. We showed the
effectiveness of proposed method in terms of VAD and ASR.

We have a lot of future work. In this paper, we evaluated
the robustness for acoustical noises and face size changes, but
other dynamic changes such as reverberation, illumination,
and facial orientation exist in a daily environment where
robots are expected to work. To cope with such dynamic
changes is a challenging topic. Another challenge is to
exploit the effect of robot motions actively. Since robots are
able to move, they should make use of motions to recognize
speeches better.
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