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Abstract— This paper presents a technique for the calibration
of multi-beam laser scanners. The technique is based on
an optimization process, which gives precise estimation of
calibration parameters starting from an initial estimate. The
optimization process is based on the comparison of scan data
with the ground truth environment. Detailed account of the
optimization process and suitability analysis of optimization
objective function is described, and results are provided to show
the efficacy of calibration technique.

I. INTRODUCTION

Multi-laser scanning systems are very interesting for appli-
cations in autonomous mobile robotic systems, because they
can provide 3D information about their environments in real-
time therefore and can efficiently be used for tasks such as
environment modeling, obstacle detection, and SLAM. One
of these systems is the Velodyne HDL-64E S2: it consists of
64 lasers located on a spinning head which can spin at a rate
of 5 to 15 Hz, and provides 3D data about its surroundings
at a rate of 1.33 million points per second. Another such
system is Ibeo LUX which scans its surroundings in four
parallel layers.

The performance of these scanners strongly depends on
their calibration. Indeed, precise 3D data from an environ-
ment can easily be processed to extract linear or planar
features, whereas extraction of these features can be difficult,
unreliable or impossible if the sensor is badly calibrated.
Similarly, imprecise calibration can result in inaccurate dig-
ital terrain maps, and thus erroneous interpretations of the
sensed terrain.

This paper provides a technique for the calibration of a
rotating multi-beam lidar. An optimization technique is em-
ployed to estimate the calibration parameters more precisely.
Starting from a coarse initial calibration, data acquired by
the scanner is compared to the ground truth environment
to precisely estimate calibration parameters. The paper is
organized as follows: section II discusses related work,
section III defines the various “ingredients” required by
a lidar calibration process, and section IV presents the
implementation of the proposed calibration technique on a
real multi-beam lidar system and also presents some results.

II. RELATED WORK

A lot of work has been done on the calibration of cameras,
multi-camera systems and omni-directional vision sensors.
E.g. [1] is a widely used tool for the calibration of intrinsic
and extrinsic calibration of cameras. Calibration techniques
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for multi-laser sensors, however, have not been investigated
to that extent. [2] provide a technique for extrinsic calibration
(i.e. estimation of the rotation and translation parameters
between the sensor frame and the robot body frame) of a
Sick lidar mounted on a mobile robot. Starting from a set
of inaccurate hand-measured extrinsic calibration parameters,
they present an optimization based calibration technique
which adjusts the calibration parameters by comparing scan
data and a ground-truth environment. Extensions of the
technique to incorporate multiple Sick laser scanners, and
a set of heterogeneous sensors are presented in [3] and [4].

In [5] a procedure for calibrating only the additive and
proportional distance correction factors of a multi-beam laser
scanner is described. [6] mention the calibration of distance
correction parameters for a multi-laser scanner by comparing
its distance readings to those from a Sick lidar but do
not provide any details on the calibration procedure. In
range imaging using time-of-flight cameras, similar “distance
correction” calibration parameters exist. [7] calibrate these
parameters by making a look-up table for the operational
range of device. [8] calibrate these parameters by fitting a B-
spline to the measurement errors made by camera at different
distances in the operational range.

So far a generic technique for intrinsic calibration of multi-
beam lidars has not been proposed to our knowledge. In this
paper, we present such a technique which is based on an
optimization process similar to the extrinsic calibration tech-
nique proposed in [4]. The lidar model we use is somewhat
similar to general imaging models, in which the camera is
not modelled as pin-hole central projection, but as a set of
3D lines without any single viewpoint constraint [9]. The
calibration process then becomes to estimate the parameters
of the supporting line associated to each laser beam.

III. APPROACH

A multi-beam lidar system is modelled as a set of rays, i.e.
straight lines. These rays define the position and orientation
of laser beams in a sensor-fixed coordinate frame. The
intrinsic calibration for such systems is the estimation of
parameters that define the position and orientation of each
of the laser beams. The principle underlying the calibration
technique proposed in this paper is an optimization process
performed to estimate the lidar calibration parameters so that
the 3D data acquired by lidar matches the ground truth.

Starting from a coarse measurement of calibration param-
eters for laser beams, we can convert the raw scan data
into a 3D point cloud. A calibration environment can be
designed and constructed to acquire lidar data for calibration.
The selection of a suitable calibration environment depends
on the system at hand and parameters to be calibrated,



and also on practicalities like simplicity in its structure and
construction. For example a simple planar surface might be
suitable for calibration of the orientation of a laser beam
but will not suffice for the estimation of its position. The
scenario changes if the edges of the scanned planar surface
are also taken into account: by introducing the fact that the
edges must correspond to straight lines, we can also optimize
the position parameters of a laser beam.

Another possibility can be using a straight pole. Perform-
ing optimization on the scans of such a structure intuitively
seems appropriate to estimate position and orientation param-
eters of a laser beam, but in practice issues like the small
width of the pole result in insufficient data to perform opti-
mization – and larger poles would require fitting a cylinder
to the scan data and not a straight line. Another cause for
insufficient data in this case is the decrease in resolution
of scan-data as the distance of scanned object increases.
Another very important factor to be taken into account during
calibration process is that calibration estimates should not
be biased on distances. This creates the need of scan data
used for performing calibration to cover objects at varying
distances from the sensor.

The rest of the section depicts the required steps to set up
a calibration process.

A. Choice of parameterization

A very basic requirement for the calibration process is
the choice of the parameters that define the position and
orientation of a laser beam in the multi-beam lidar system.
This choice depends on the physical setting of system at
hand, but also on practical issues, like a priori availability
of coarse calibration data for the system: if one has a coarse
calibration for the device, one might decide to stick to the
parameterization used in this coarse calibration and improve
it. Lets define this set of parameters by {M1, . . . ,Mn}.

At least five parameters are required to define one laser
beam in a 3D coordinate frame: two angles to define the
direction of the associated line and three parameters to define
the point origin of the beam. If an additive and/or propor-
tional distance correction factor is required to correct the
measurement made by laser beam, the number of calibration
parameters goes to six or seven per laser beam.

In practice however the exact location of the laser beam
origin is not required and therefore the additive distance
correction factor can be incorporated into the three param-
eters defining the position of laser beam. For example, to
incorporate an additive distance correction factor of 1m, the
point of origin of laser beam can be considered shifted 1m
along the laser beam.

Another possibility to parametrize a laser beam is by using
two angles and two distance parameters defining an infinitely
long line. A fifth parameter, an additive distance correction
factor completes the knowledge for converting a raw lidar
measurement to a 3D point. This parametrization is used for
the calibration implementation in this paper and is depicted
in section IV-A.

Fig. 1. Top view of a corner in a room (units in m)

B. Choice of objective function

The chosen calibration environment must also allow the
selection/definition of an objective/cost function C. This
function forms the basis of the optimization process and is
used to quantitatively compare the acquired 3D point cloud
data and the real environment. C should provide higher costs
if there is more difference between the acquired 3D data
and ground-truth environment, and lower costs as the match
between acquired 3D data and real environment improves.
Another important requirement for C is that it should be
sensitive to each of the parameters to be optimized. It means
that the cost provided by this function must vary with the
values of the parameters to be optimized, and of course this
increase or decrease in the cost should be in accordance with
the first criteria for C i.e. the cost should be lower for better
matches between the acquired 3D data and ground truth and
vice versa. The suitability of the cost function to perform a
successful calibration process can be analyzed by computing
the partial derivatives of the cost function with respect to the
parameters to be optimized. In order for the cost function
to be suitable, these partial derivatives should generally be
non-zero and non-constant (more explanation in subsection
IV-C.3).

∂C/∂Mi 6= constant (1)

C. Choice of minimization technique

A basic choice during a calibration process is the for-
mulation of optimization as a constrained or unconstrained
minimization problem. The choice depends on the range in
which the calibration parameters are expected to lie. The
process can be formulated as a constrained problem if the
calibration parameters are sure to lie in a specific range.
Moreover a suitable minimization algorithm can be chosen
from a range of available mathematical algorithms.

D. Data segmentation

Data segmentation consists in extracting, from acquired
data, the data that actually correspond to the calibration
object for which the ground truth is known. Fig. 1 shows the
top view of a region in a room. For the three corner regions in
the figure, it is very hard to segment the data, i.e. to associate
the data point to one or the other wall. The environment
chosen for the calibration process should be designed and
made to allow appropriate segmentation of data.



IV. IMPLEMENTATION
This section presents the implementation of the calibration

technique on a multi-beam lidar system. The device is a
Velodyne HDL-64E S2 [10]. It has 64 lasers embedded in
a spinning head. The lasers are grouped in two blocks, with
32 located in the upper block and the remaining 32 in the
lower block of the lidar spinning head. Lasers in each block
are further divided into two groups of 16 lasers each, one
group located rightwards and the other leftwards.

A. Geometric model
Each of the 64 lasers in the device is characterized by

five parameters that are required to convert the distance
value returned by the laser to 3D point coordinates. These
parameters are (Fig. 2 and Fig. 3):

• Distance Correction Factor Dcorr: value to be added in
the distance returned by corresponding laser Dret to get
the real distance value D.

• Vertical Offset Vo: distance measured orthogonal to the
laser beam, representing the distance of laser beam from
origin in a vertical sense – segment OA in Fig. 3 (top)
where O is the origin of sensor-fixed frame.

• Horizontal Offset Ho: horizontal counterpart of Vo –
segment OB in Fig. 3 (bottom).

• Vertical Correction Angle θ: angle made by the laser
beam with x-y plane, as shown in Fig. 3 (top). E.g. for
a laser beam lying in y-z plane, this would be the angle
made by laser beam around x-axis.

• Rotational Correction Angle α: angle made by the laser
beam with y-z plane (not shown on the figure).

As the lidar head spins, its current rotational angle is
denoted as φ. Each laser has a different value of α so we can
define another angle β such that β = φ - α. In this way β
represents the orientation of laser beam relative to the current
rotational angle of spinning lidar head.

The distance values returned by a single laser (Dret) can
be converted to a 3D point P with Cartesian coordinates
(Px, Py , Pz)T expressed in lidar frame, using the above five
parameters and the current rotational angle of lidar head:

D = Dret + Dcorr (2)

Dxy = D ∗ cos(θ)− Vo ∗ sin(θ) (3)

Px = Dxy ∗ sin(β)−Ho ∗ cos(β) (4)

Py = Dxy ∗ cos(β) + Ho ∗ sin(β) (5)

Pz = D ∗ sin(θ) + Vo ∗ cos(θ) (6)

Among the five calibration parameters Dcorr, α and θ
are the most important. This is because of the fact that
errors induced by a bad estimate of these parameters in the
precision of 3D coordinates of acquired data changes with
the distance of scanned object/surface, whereas the errors
induced by imprecise calibration of Vo and Ho do not depend
on the variation in the distance of scanned object. Therefore
in this paper we concentrate on the calibration of Dcorr,
α and θ – but the same principle can be applied to the
calibration of other two parameters.
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Fig. 2. Velodyne HDL-64E S2 (left) and sensor-fixed frame (right)
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Fig. 3. Lidar unit’s side-view (top) and top-view (bottom)

B. Sensor characterization

The device comes with a set of calibration parameters.
In practice these default calibration parameters are not very
accurate. Fig. 4 shows one example of this inaccurate cali-
bration. The figure shows segmented view of a planar surface
placed at 3m distance from the lidar. Each horizontal line in
the scan shows the data from a single laser. One can see
that the data from all the lasers are not aligned to form a
rectangular planar surface, instead the data from different
lasers are horizontally misaligned. This misalignment seems
to be repeated between every two consecutive lasers which
come from right and left sided blocks on the lidar head. Fig.



Fig. 4. A planar surface, seen from front

TABLE I
NOISE DIFFERENCE BETWEEN TWO LASERS BEAMS

Mean Standard Deviation Maximum Difference
13.68m 0.74cm 3cm
13.68m 0.53cm 2cm

1 shows another effect of inaccurate calibration: ideally, if
the calibration parameters for all lasers were accurate and the
sensor had lower noise, as seen from top the walls should
have looked much thinner and corners much sharper.

Another factor affecting the accuracy of scan data is the
internal (electronic) noise of the sensor. This internal noise
also defines the lower bound on noise level with a very
precise calibration. Fig. 5 (top) shows a histogram for 37
consecutive scans of the same point from a single laser with
almost 0◦ view angle. We can see that the depth measurement
changes slightly between the readings. The figure also shows
the mean (red) and 2 x standard deviation bounds (green).
The standard deviation in this case is about 0.75 cm and the
maximum difference between any two measurements is 2.6
cm. We can see that the measurements always lie within 2 x
standard deviation bound. Fig. 5 (bottom) shows a similar
histogram for a point scanned with a view angle of 6◦.
Here the standard deviation was recorded to be 1.4 cm and
the maximum difference between any two readings was 6.2
cm. Moreover some data points lie outside the 2 x standard
deviation bound. One reason for this decrease in the accuracy
of scan data is the increase in view angle.

The internal noise also varies from laser to laser within
the device. Table I shows the difference between the data
from two lasers viewing a point, with approximately same
scan distance and angle.

C. Calibration process

1) Calibration Environment: Keeping in view the envi-
ronment selection issues discussed in section III, a 4.40m
wide planar wall is used as the calibration environment. The
wall is scanned by placing the lidar at multiple distances:
distances range from 4 to 14m with 2m steps. This has been
done twice, once by approximately aligning the wall to the
x − axis of lidar’s fixed frame and then by aligning it to
lidar’s y − axis. Therefore a total of 12 scans of the wall
were used in the calibration process. The alignment of the
wall to the lidar x and y axes is not necessary and was just
approximate. The distribution of scan data over a range of
distances is very important. Sufficiently distributed data is
necessary to ensure the estimation of calibration parameters

Fig. 5. Histogram for 37 consecutive scans of a point with 0◦ (top) and
6◦ (bottom) view angles, mean(red) and 2 x standard deviation(green)
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Fig. 6. Three scans with wall aligned to y-axis of lidar’s fixed frame

to be independent of any bias on a specific distance. Fig. 6
shows three of the 12 scans of the wall superimposed in a
single plot.

2) Cost function: If it is possible to accurately align the
planar surface to be scanned, the cost function C can be
defined as the variance of 3D data along the plane normal:
when the wall is scanned with the lidar’s y axis aligned to
the wall, the cost is the average squared difference between
the mean distance xmean and each distance x:

Cy = Σ(Px,i − Px,mean)2/n (7)

where Cy represents the cost of a scan when the wall was
aligned to y− axis of lidar’s fixed frame, and n is the total
number of points in the current scan. Similarly Cx i.e. cost
of a given scan when the wall was aligned to x − axis of
lidar’s fixed frame is given by:

Cx = Σ(Py,i − Py,mean)2/n (8)

In practice it is hard to accurately align the plane with the
x or y of the lidar frame. Therefore during our optimization



process, at each iteration a PCA based plane fitting is
performed to estimate the parameters of the plane that best
define the 3D points in the scan. The cost function C is
therefore chosen to be the sum of squared perpendicular-
distances of all points in the plane divided by the total
number of points forming the plane.

C = Σ(Di,Perp)2/n (9)

where n is the total number of points in current scan of the
plane (wall).

Section IV-D compare the results obtained with and with-
out this plane fitting process.

3) Suitability analysis and optimization: As mentioned in
section III, the suitability of the cost function for optimiza-
tion depends on the cost function sensitivity to the variation
of the parameters to be estimated. As our chosen cost
function depends on the distances of x, y and z coordinates
of 3D data, the suitability of chosen cost function can be
ensured by finding the partial derivatives of Px, Py and Pz

with respect to each of the three calibration parameters to be
optimized, i.e. Dcorr, α and θ.

Using equations 4, 5 and 6, the partial derivatives with
respect to Dcorr are given as:

∂Px/∂Dcorr = cos θ sinβ (10)

∂Py/∂Dcorr = cos θ cos β (11)

∂Pz/∂Dcorr = sin θ (12)

From ∂Px/∂Dcorr it is clear that the conditions that make
the partial derivative equal to zero are θ = 90◦ and β = 0◦.
This makes intuitive sense as θ = 90◦ means that the laser is
pointing upwards and in such a situation it is impossible to
scan a plane (wall) which is parallel to the laser. Similarly,
as β defines the current orientation of a laser beam, β = 0◦

means that the laser is parallel to y−axis of lidar frame and
therefore any variation in Dcorr would not affect Px for the
point being viewed as β remains 0◦. In our case as the lidar
is constantly rotating, the value of β is constantly changing,
and moreover the values for θ for all lasers in the lidar are
much smaller than 90◦.

Similarly, the conditions that make ∂Py/∂Dcorr equal to
zero are θ = 90◦ and β = 90◦. As with the previous
case, the condition β = 90◦ is not a problem because
the lidar is constantly rotating as we acquire the data. The
condition that makes ∂Pz/∂Dcorr equal to zero is θ = 0◦.
This would mean that for lasers with zero pitch angle,
the z coordinates of data points will not play any role in
the optimization process. This does not pose any problem
because the optimization process is based on 3D data and not
only on the z coordinates of data. Moreover for the system at
hand, the pitch angle for any laser beam is not exactly zero.
This analysis leads us to the conclusion that our chosen cost
function is suitable to be used for the estimation of Dcorr

using optimization.
The partial derivatives with respect to θ are given by:

∂Px/∂θ = −D sinβ sin θ − Vo sinβ cos θ (13)

TABLE II
STANDARD DEVIATIONS (IN METERS) IN DEPTH OF PLANAR DATA

Default Calibration Recalibration
4m 0.0234 0.0215
6m 0.0326 0.0291
8m 0.0170 0.0116
10m 0.0168 0.0105
12m 0.0186 0.0119
14m 0.0187 0.0128

∂Py/∂θ = −D cos β sin θ − Vo cos β cos θ (14)

∂Pz/∂θ = −D cos θ − Vo sin θ (15)

The conditions which make ∂Px/∂θ and ∂Py/∂θ equal
to zero are β = 0◦ and β = 90◦ respectively. As with the
case for Dcorr, for the constantly rotating lidar, these partial
derivatives remain non-zero for the type of 3D datasets we
are using. Therefore our chosen cost function is suitable to
be used for the estimation of θ using optimization. Similarly
it can be shown that our cost function is also suitable for the
optimization of the third calibration parameter α.

The optimization process was implemented using Matlab
function fmincon [11]. The computational cost of optimiza-
tion process is not of a great concern because the process
is done offline and has to be done only once to calibrate
the device. Our optimization process took a few hours to
complete on a normal laptop machine.

D. Results

The optimization was performed starting from the default
calibration data provided by the manufacturer. One way
to quantitatively assess the improvement in the optimized
calibration parameters is to compare the standard deviations
in the depth of planar data for default and optimized calibra-
tion parameters. Table II shows the improvements of these
standard deviations in depth for a subset of planar data used
for optimization.

Fig. 7 presents an example of improved scan results using
re-estimated calibration parameters. At top, the figure shows
the scan of the rear of a vehicle computed using default
calibration data and at bottom it shows the same scan using
optimized calibration parameters.

It is important to validate the optimized calibration param-
eters for data which is not used in the optimization process.
Table III shows the improvement in standard deviations for
depth of planar data when the wall is scanned from the
distances of 16 and 18m, and these sets were not used in
the optimization process. In the last column, the table shows
the improvement in standard deviations in depths when the
optimization is not done using plane fitting, but by trying to
properly align the wall with x and y axes of lidar frame as
mentioned in section IV-C.2. We can see that the calibration
has improved but not as much as in the case of using plane
fitting. This is because of the fact that it is very hard to
precisely align the scanned plane, and thus the alignment
assumption is not valid in a strict sense.



Fig. 7. Comparing default (top) and optimized (bottom) calibration
parameters, scans of rear of a vehicle

TABLE III
STANDARD DEVIATIONS (IN METERS) FOR DATA NOT USED IN

OPTIMIZATION

Default Calibration Recalibration Recalibration
(without plane fitting)

16m 0.0210 0.0132 0.0148
18m 0.0221 0.0142 0.0171

If the data used for optimization is not sufficiently dis-
tributed in terms of distance, the resulting estimation of
calibration parameters can be highly biased on the distance
at which the data used for optimization was taken. Table IV
shows the change in standard deviations in depths of planar
data when only the dataset taken by placing the lidar at 10m
from the wall is used for the optimization process. For data at
10m, we have achieved a good improvement in the estimation
of calibration parameters, But the important point here is that
standard deviations for data at 4m actually become worse as
a result of biased optimization process.

As pointed out in [5] and [6], often a proportional distance
correction factor also exists for lidar devices similar to
the one we used. For our device (Velodyne HDL-64E S2)
however, neither the manufacturer mentioned the existence
of such a factor nor was it found to exist during extensive
experimentation with the device.

V. SUMMARY

Laser scanners are becoming more and more useful in the
field of robotics. With recent innovations like the multi-beam
lidars providing rich and fast 3D scans of the environment,

TABLE IV
BIASED ESTIMATION OF CALIBRATION PARAMETERS

Default Calibration Recalibration
4m 0.0312 0.0378
6m 0.0325 0.0301
8m 0.0200 0.0106
10m 0.0192 0.0064
12m 0.0190 0.0090
14m 0.0217 0.0117

these sensors have a great potential for being employed on
mobile robots and changing the ways these robots sense and
act in their environments. As for any other sensor, precise
calibration is very important for these sensors to be useful.
We have presented a technique for precise calibration of a
rotating multi-beam lidar, and the principle can be extended
to similar sensors. The paper has presented how optimization
can be employed to perform precise calibration starting
from a coarse set of calibration parameters. We now aim
to work on the calibration of sensor frame with respect to
the robot body frame, and possibly simultaneous calibration
of multiple sensors i.e. lidars and cameras.
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