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A Methodology for Joint Stiffness Identification of Serial Robots

Claire Dumas, Stéphane Caro, Mehdi Chérif, Sébastien Garnier and Benoı̂t Furet

Abstract— This paper presents a new methodology for joint
stiffness identification of serial robots. This methodology aims
at evaluating all joint stiffness values responsible for both
translational and rotational displacements of the robot end-
effector subject to an external wrench (force and torque). The
links of the robot are supposed to be quite stiffer than the joints
and not known as it is usually the case with industrial serial
robots. The robustness of the identification method and the
sensitivity of the results to measurement errors and number of
experimental tests are also analyzed. The Kuka KR240-2 robot
is used as an illustrative example through the paper.

I. INTRODUCTION

Serial robots are mainly used in industry to realize tasks

requiring a good repeatability, but not necessarily a good

global pose accuracy (position + orientation as defined

in ISO9283 [1]) of the robot end-effector (REE). Never-

theless, they start to be used to realize machining opera-

tions such as trimming, deflashing, degating, sanding and

sawing of composites parts that require high precision and

high stiffness. Therefore, robots need good kinematic and

elastostatic performances to realize such operations. It is

then relevant to pay attention to the robot performances

in order to optimize their use for machining operations.

In this vein, some research works deal with: (i) the tool

path optimization considering both kinematic and dynamic

robot performance [2], [3]; (ii) the determination of optimal

cutting parameters to avoid tool chattering [3], [4]; (iii) the

robot stiffness analysis [5]; (iv) the determination of robots

performance indices [6], [7], [8]. It is apparent that the

robot stiffness is a relevant performance index in robot ma-

chining [9]. Accordingly, this paper deals with the stiffness

modelling of serial robots as well as the identification of

their stiffness parameters.

A model based on the conservative congruence transforma-

tion (CCT), introduced in [10], was used in [11] to identify

the stiffness values of the first three actuated revolute joints

of a 6R robot. This model was used instead of the classical

formula developed in [12], which is only valid for unloaded

manipulators.

Two methods are presented in [13] to obtain the Cartesian

stiffness matrix (CaSM) of a 5R robot. The best results are

obtained with the second method in which both the joint and

link stiffnesses are considered. Indeed, when a load is applied
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claire.dumas@irccyn.ec-nantes.fr

M. Cherif is with Laboratoire de Génie Mécanique et Matériaux de
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to the REE, all deformations are considered including those

due to the links deformations and/or radial joint stiffness

values.

Pham et al. [14] proposed a method for the identification

of joint stiffness with bandpass filtering and based on the

robot’s dynamic model. This method requires a closed-loop

control in addition to real-time actuator currents.

In this paper, a method is introduced for the identification

of the joint stiffness values of any industrial 6-DOF serial

robot. This method aims at evaluating all the joint stiffness

values of any 6R serial robot using the model based on the

conservative congruence transformation [10]. The developed

procedure is easy to use and not time-consuming as it does

not require any closed-loop control, nor actuator currents and

uses few experiments. Besides, the robustness of the method

and the sensitivity of the results to measurement errors and

to the number of experimental tests are analyzed.

The Kuka KR240-2 robot1 [15] is used as an illustrative

example throughout the paper. Section II deals with its

kinematic and stiffness modelling. The new method proposed

for the identification of the joint stiffness values is presented

in Section III. The experimental setup is illustrated in Section

IV. Finally, the robustness of the method is analyzed in

Section V.

II. KINEMATIC AND STIFFNESS MODELLING

This section deals with the robot kinematic and stiffness

models used to develop the proposed methodology for joint

stiffness identification.

A. Parameterization and Kinematic Modelling

The 6× 6 kinematic Jacobian matrix J of the robot is ob-

tained by means of its DHm parameters and the SYMORO+

software [16] developed in IRCCyN. It relates the instanta-

neous joint motions to the instant Cartesian motions of the

REE, namely,

t =

[

ṗ

ṙ

]

= J θ̇ (1)

t is the end-effector twist expressed in the base frame F0

and composed of its translational velocity vector ṗ and its

angular velocity vector ṙ. Moreover,

θ̇ =
[

θ̇1 θ̇2 θ̇3 θ̇4 θ̇5 θ̇6

]T
(2)

θ̇i being the ith actuated revolute joint rate. The kinematic

performances of the robot are analyzed in Section III based

on matrix J.

1The Kuka KR240-2 robot used for experimental tests is located in
Université de Bordeaux 1
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B. Stiffness Modelling

In the scope of this paper the robotic-system response to

an applied external load — force and moment, i.e., wrench

— under static equilibrium is analyzed through the CaSM of

the robot. By means of this matrix, it is possible to determine

the linear and angular deflections of the REE when subjected

to an applied wrench. The robot deflection is due to both its

link and joint flexibilities. However, as mentioned in [6],

[11], the latter are mainly responsible for the flexibility of

serial robots. Accordingly, in order to come up with a simple

stiffness model, also called elastostatic model, of the robot,

it is assumed that its links are rigid and its joints are linear

elastic torsional springs. As a matter of fact, the simpler the

elastostatic model of the robot, the easier the identification

of its stiffness parameters. The damping is also supposed to

be negligible for a matter of model simplicity. As explained

in [17], this elastostatic model of the robot can be written as

follows,

ω = KXδd (3)

with

KX = J−T (Kθ − KC)J−1 (4)

ω is the 6 × 1 wrench vector composed of the forces and

torques exerted on the REE and expressed in F0. KX is the

6 × 6 CaSM of the robot. δd is the 6 × 1 vector composed

of the translational and rotational displacements of the REE

expressed in F0. J is the kinematic Jacobian matrix of the

robot defined in (1). Kθ is the diagonal joint stiffness matrix:

Kθ =

















kθ1
0 0 0 0 0

0 kθ2
0 0 0 0

0 0 kθ3
0 0 0

0 0 0 kθ4
0 0

0 0 0 0 kθ5
0

0 0 0 0 0 kθ6

















(5)

kθi
, i = 1, . . . , 6, being the ith joint stiffness value. KC is

the complementary stiffness matrix (CoSM) defined in [10]

and takes the form:

KC =

[

∂JT

∂θ1

ω
∂JT

∂θ2

ω
∂JT

∂θ3

ω
∂JT

∂θ4

ω
∂JT

∂θ5

ω
∂JT

∂θ6

ω

]

(6)

It is apparent that KC is not null and modifies matrix KX

when a wrench is applied to the REE.

III. METHOD FOR THE JOINT STIFFNESS IDENTIFICATION

The method proposed for the joint stiffness identification

is illustrated in Fig. 1. First the zones of the robot workspace

and joint space in which the robot has a good dexterity are

identified. It appears that a good dexterity is required for a

good convergence of the procedure. Then, the areas in which

KC is negligible with respect to Kθ are identified as the

stiffness model of the robot can be simplified in those areas.

Once good robot configurations are obtained, some of them

can be selected in order to perform some tests. For each test,

a wrench (force + moment) is exerted on the REE while its

displacement (translational and rotational) is measured by

means of an external measurement system (Laser tracker).

Identification of the Zic (i = 1, 2, 3) zones of the joint space,

in which the robot has a good dexterity (Subsection III.A)

Identification of the areas of Zic, where KC is negligible

Z ∈ {θ2, θ3, θ4, θ5} / Z = Zic ∩ Zνp
∩ Zνr

(Subsection III.B)

Selection of a robot configuration in Z

with respect to Kθ, i.e.,

Loading of the robot end-effector (forces and moments)

Measurement of the displacements (translations and rotations)
of the end-effector (Section IV)

Evaluation of the joint stiffness values

(Subsection III.C)

No

Yes

Is the number of
required tests reached?

Measurement of the end-effector pose

Fig. 1. Joint stiffness values identification

Finally, the joint stiffness values are evaluated from those

tests.

A. Optimal robot configurations according to kinematic per-

formance

From (4), it makes sense that the numerical determination

of the joint stiffness values is highly sensitive to the

conditioning number of J. As a consequence, the

conditioning number of J is used as a criterion to

select appropriate robot configurations for the tests. In the

literature, several kinematics performance criteria have been

proposed [18], [19]. Amongst them, the condition number

of the Jacobian matrix is widely used to measure the robot

dexterity [20]. The condition number κF (M) of a m × n
matrix M, with m ≤ n, based on the Frobenius norm is

defined as follows:

κF (M) =
1

m

√

tr(MT M)tr [(MT M)−1] (7)

The condition number of matrix J is meaningless, due

to the fact that all its terms are not homogeneous; they

do not have same units. Therefore, as shown in [21] and

[22], the Jacobian matrix can be normalized by means of

a normalizing length. Let JN be the normalized Jacobian

matrix of the Kuka KR240-2 robot expressed as follows:

JN =

[

1

L
I3×3 03×3

03×3 I3×3

]

J (8)

I3×3 is the 3 × 3 identity matrix, 03×3 is the 3 × 3 zero

matrix and L is the characteristic length of the robot. It is

noteworthy here that the condition number is computed only
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to identify the zones (on θ2 and θ3 ranges) where the robot

has a good dexterity. It appears that the condition number

of JN depends on the characteristic length L, but not the

location of the zones.

As the second and third revolute joints are the most influen-

tial joints on the translation motions of the end-effector and

that the first revolute joint does not affect the robot dexterity,

let θ1 be null and the wrist angles θ4, θ5 and θ6 be set to

45◦ so that the corresponding wrist configuration is far from

singularities. Figure 2(a) depicts the isocontours of the in-

verse condition number of JN based on the Frobenius norm,

i.e., κF (JN )−1, throughout the robot Cartesian workspace.

The higher κF (JN )−1, the better the dexterity. Likewise,

Fig. 2(b) shows the isocontours of κF (JN )−1 throughout

the robot joint space. The oblique black line characterizes the

configurations in which the wrist center is located on the first

joint axis. The horizontal black line in Fig. 2(b) characterizes

the singularities in which the arm is folded. The choice of

appropriate robot configurations for the identification of the

joint stiffness values can be made from Figs. 2(b), namely,

θ2 and θ3 should be chosen in the light areas, named Z1c,

Z2c and Z3c in Table I.

B. Optimal robot configurations according to the influence

of KC on KX

Joint stiffness values are evaluated in [11] by means

of (4) and a nonlinear least square optimization problem.

Nevertheless, this method is not robust as it is very sensitive

to the starting point of the optimization algorithm. This is

why it is relevant to analyze the sensitivity of KX to KC .

From (4), KX depends on both Kθ and KC . It makes sense

that the joint stiffness identification is easier when KC is

negligible with respect to Kθ. As a matter of fact, (4) is
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Fig. 2. Contours of the inverse condition number of JN : (a) in the robot
Cartesian workspace and (b) in the joint space (θ2, θ3)

TABLE I

OPTIMAL ROBOT CONFIGURATIONS DEFINED IN THE JOINT SPACE

Zone θ2 θ3

Z1c 0◦ to 110◦ −245◦ to −170◦

Z2c 0◦ to 25◦ 0◦ to 29◦

Z3c 100◦ to 146◦ 0◦ to 29◦

reduced to the following equation when KC is negligible

with respect to Kθ:

KX ≈ J−T KθJ
−1 (9)

Consequently, the influence of KC on KX is analyzed based

on the robot translational and rotational displacements. For

that matter, two indices were defined in [17] to analyze the

influence of KC on the robot translational and rotational

displacements. Those two indices are denoted νp and νr and

defined as follows:

νp =

∣

∣

∣
δpKC

− δp
KC

∣

∣

∣

max
(

δpKC
, δp

KC

) (10)

and

νr = max{|δrxKC
− δr

xKC
|, |δryKC

− δr
yKC

|,

|δrzKC
− δr

zKC
|} (11)

where δpKC
and δp

KC
are the point-displacement of the

REE obtained with (3) and (4) assuming that matrix KC is

not null and null, respectively. δrxKC
, δryKC

, δrzKC
and

δr
xKC

, δr
yKC

, δr
zKC

are the small rotations of the REE

about x0, y0 and z0 axes obtained with (3) and (4) assuming

that matrix KC is not null and null, respectively.

Figures 3(a)-(b) illustrate the isocontours of νp and νr

throughout the robot joint space (θ2, θ3). Several areas

appear, but νp and νr values remain very small as νp ≤ 0.016
and νr ≤ 0.025 deg throughout all the robot joint space.

Nevertheless, let Zνp
and Zνr

be the zones in which the

influence of KC on Kθ is a minimum with regard to νp and

νr, respectively. To come up with good results, the robot

configurations have to be chosen in Zνp
and Zνr

.
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C. Evaluation of the joint stiffness values

From (4) and assuming that KC is negligible with respect

to Kθ thanks to an appropriate robot configuration, (3) can

be rewritten as

ω = J−T KθJ
−1δd (12)

Hence, the 6 × 1 robot end-effector displacement vector δd
takes the form

δd = JKθ
−1JT

ω (13)

From (13), it turns out that

δd =





















∑

6

j=1

(

xjJ1j

∑i=6

i=1
Jijωi

)

. . .

. . .

. . .

. . .
∑

6

j=1

(

xjJ6j

∑i=6

i=1
Jijωi

)





















(14)

xj being the jth joint compliance, i.e, xj = 1/kθj
,

j = 1 , . . . , 6.

Let the joint compliances 6 × 1 vector x be

x =
[

1/kθ1
1/kθ2

1/kθ3
1/kθ4

1/kθ5
1/kθ6

]T

(15)

By isolating the components of vector x in (14), the joint

compliances can be expressed with respect to the robot EE

displacements as follows:

Ax = δd (16)

A can be derived from (4) and expressed as follows:

Aij = Jij

(

6
∑

k=1

JkjFk

)

(17)

Aij is the term of the ith row and the jth column of matrix

A. F1, F2 and F3 are the components of the force and

F4, F5, F6 are the components of the moment exerted on

the REE along x, y and z axes and expressed in F0.

It is noteworthy that a 6 × 1 wrench vector, a 6 × 1
REE displacement vector and a 6 × 6 A matrix are

evaluated for each test. The equations system (16) becomes

overdetermined when several tests are taken into account.

Assuming that n tests are considered, n > 1, matrix A is

not of size 6 × 6 anymore but of size 6n × 6. As matrix A

is not square anymore, the joint compliance vector x can

not be calculated with (16). The joint stiffness values are

obtained thanks to a minimization of the Euclidean norm of

the approximation error of equations system (16). As a result,

x =
(

AT A
)−1

AT δd (18)

Several tests can be considered with this approach in

order to evaluate the joint stiffness values. Accordingly,

if all joints are stressed substantially at least once among

all the tests, their stiffness value will be accurately evaluated.

IV. EXPERIMENTAL SETUP

As shown in Fig. 4 the experimental setup is composed of

the robot, a laser tracker, retroreflectors and a mass connected

to the end-effector by means of a chain and a spring balance.

The latter helps the user evaluate the wrench exerted on the

REE. The repeatability of the KR240-2 robot is equal to

±0, 12 mm and its workspace radius is about 2700 mm [15].

V. JOINT STIFFNESS VALUES

A. Robustness of the method

As the joint stiffness identification requires the measure-

ment of the EE’s displacement, the repeatability of this

deformation has been checked. The mean uncertainty (i.e.

3 times the standard deviation) represents about 1.3% of the

measured deformation, which is acceptable.

In order to analyze the robustness of the method, (16) has

been solved by means of (18). Figure 5 illustrates joint

stiffness values kθ2
, kθ3

, kθ4
, kθ5

and kθ6
obtained with this

method as a function of the number of tests n, n = 1, . . . , 23.

Let us note that the n sets of tests are chosen randomly

amongst the 23 available ones and a test can not appear

two times in a given set. We can notice that the larger

the size of the set of tests, the better the convergence of

joint stiffness values and the more reliable the results. It is

Link 3

Link 2

FARO

Laser Tracker

Mass

Spring balance

Fig. 4. Experimental Setup

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

kθ2
kθ3

kθ4
kθ5

kθ6

10
8

10
7

10
6

10
5

10
4

(N
m

/
ra

d
)

Number of tests

Fig. 5. Joint stiffness values as a function of the number of tests used for
their evaluation.
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apparent that the variations in the obtained joint stiffness

values is reasonably small, i.e., the method for the joint

stiffness values identification is robust, as long as the number

of tests considered for their evaluation is higher than six. Let

us note that this conclusion was found in [17], but was only

validated by means of numerical simulations.

B. Sensitivity of the results to measurement errors

To analyze the sensitivity of the results to measurement

errors, all parameters defining the 23 tests have been modi-

fied by considering errors in the initial parameters. Due to the

experimental setup, several sources of errors can be detected:

• The Faro Tracker Laser uncertainties, which are about

±0.03mm, in the distance between the retroreflector

and the source.

• The error in the spring balance, which is ±0.1kg
• The error in joint coders, which is ±0.01 deg

The errors in all the parameters are supposed to follow a

normal law. As a consequence, Table II gives the nom-

inal stiffness value of each joint as well as their error.

For instance, the stiffness value of the second joint is

equal to 6.6 106 Nm/rad while its evaluated error is about

±1 105 Nm/rad, i.e., 8% of the nominal stiffness value.

In Figures 6 and 7 the tests are organized with respect

to the zones Z1c, Z2c and Z3c defined in Table I. Moreover,

the line segments around the circles depict the error in the

calculated REE displacement due to measurement errors. The

longer the segment, the higher the error in the calculated

REE displacement. It appears that errors in the calculated

REE displacement are quite smaller than the displacement

itself, namely, the joint stiffness identification is robust with

respect to measurement errors.

Over the 25 tests, the average difference between the

theoretical and measured displacements is about 0.1 mm,

and the maximum gap is equal to 0.6 mm. The method can

predict about 80% of the displacement of the EE.

In order to explain the un-corrected 20% of the displacement

of the EE, the link stiffnesses have been assessed. As links

2 and 3 are the largest ones, their flexibility should be the

main source of errors in addition to the joint compliances.

Consequently, their deformations under several loadings have

been measured and compared to the EE displacement. Re-

sults show that deformations of link 3 are responsible for a

TABLE II

JOINT STIFFNESS VALUES WITH THE ERROR IN THEIR EVALUATION DUE

TO ALL SOURCES OF ERRORS

Joint Stiffness values Error (Nm/rad) and
number (Nm/rad) percentage of the mean value

kθ1
3.8 106

can not be determined

kθ2
6.6 106 ±1 105 (8%)

kθ3
3.9 106 ±3.7 105 (9%)

kθ4
5.6 105 ±1 104 (2%)

kθ5
6.6 105 ±1.4 104 (2%)

kθ6
4.7 105 ±2.2 104 (5%)
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Fig. 6. Theoretical and measured REE translational displacements for all
the tests (mm): (a) Validation with the tests used for the joint stiffness
identification; (b) Validation with the other tests
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x, y and z axis of F0 (deg): (a) Validation with the tests used for the joint
stiffness identification; (b) Validation with the other tests

maximum of 4.8 % of the EE displacement (when the link

is horizontal and the load on the EE is at the maximum). As

link 2 is far form the EE, the influence of its deformations

on the latter is more important: maximum 21 %. So a

maximum of 25 % of the EE displacement, depending on

the robot configuration and applied load, can be due to
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link flexibilities. Therefore, it is a limit of the identification

method proposed in this paper.

Figure 7 illustrates the calculated and measured rotations

of the REE about x, y and z axes and expressed in F0.

The circle denotes the calculated, i.e., theoretical, rotation of

the REE while the cross denotes its measured rotation. Over

the 25 tests used to check the model, the average difference

between the theoretical and measured rotations is about 0.005
deg around x and y, and about 0.01 deg around z. This gap

is due to the fact that the sixth actuated joint was not as

stressed as the fourth and fifth ones.

VI. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

This paper dealt with a new methodology for joint stiffness

identification of serial robots. First the kinematic model is

obtained in order to determine the optimal robot configu-

rations according to the condition number of its kinematic

Jacobian matrix. Then, its stiffness modelling was presented

by means of its Cartesian stiffness matrix KX and its

Complementary stiffness matrix KC . To simplify the identi-

fication of the joint stiffness values, the robot configuration

tests are optimized in order to minimize the influence of the

Complementary stiffness matrix. This approach is original

and avoids any least square minimization that turned out to

be often used but highly dependent on the starting point.

The experimental setup and the experimental procedure were

also presented. The Kuka KR240-2 robot was used as an

illustrative example throughout the paper. The proposed

methodology provides a good approximation of the real joint

stiffness values of serial robots. It turned out to be robust,

namely, few sensitive to measurement errors. The advantages

of the method are its robustness, its few time consumption,

its adaptability to any serial robot, and its ease of use.

B. Future works

Firstly, it is noteworthy that in the presented method

the links and transmissions of the robot were supposed

to be quite stiffer than the joints and not known as it is

usually the case for industrial robots. Future works deal with

the improvement of the proposed methodology in order to

identify the link stiffnesses in addition of the joint stiffnesses

of industrial robots. Secondly, at the moment, if the wrench

applied on the REE is known, it is possible with the proposed

methodology to predict about 80% of the EE displacement.

All tasks that require both high precision and high stiffness,

such as trimming, deflashing, degating, sanding and saw-

ing of composite parts, can be improved by the proposed

methodology. It is for example possible to optimize the task

placement in the reachable workspace with regards to stiff-

ness performance of the robot. Finally, future works also aim

at determining the elastodynamic model and performance of

the robot in order to predict its behaviour during high speed

machining operations. Moreover, the dynamic parameters of

the robot will be identified in addition to geometric and

stiffness parameters.
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correspondantes. ISO 9283.

[2] Kim, T. and Sarma, S-E. (2002). “Toolpath Generation along directions
of Maximum Kinematic Performance; a first cut at Machine-Optimal
Paths,” Computer-Aided Design, 34, pp. 453-468.

[3] Matsuako, S.-I.,Shimizu, K.,Yamazaki, N. and Oki, Y. (1999). “High-
Speed End Milling of an Articulated Robot and its Characteristics,”
Elsevier, Journal of Materials Processing Technology, 95, pp. 83–89.

[4] Pan, Z., Zhang, H., Zhu, Z. and Wang, J. (2006). “Chatter Analysis
of Robotic Machining Process,” Journal of Materials Processing
Technology, 173, pp. 301-309.

[5] Nagata, F.,Hase, T.,Haga, Z.,Omota, M. and Watanabe, K. (2007).
“CAD/CAM-based Position/Force Controller for a Mold Polishing
Robot,” Elsevier, Mechatronics, 17, pp. 207–216.

[6] Zhang, H., Hang, H., Wang, J., Zhang, G., Gan, Z., Pan, Z., Cui, H.
and Zhu, Z. (2005). “Machining with Flexible Manipulator: Toward
Improving Robotic Machining Performance,” Proceedings of the
2005 IEEE/ASME International Conference on Advanced Intelligent
Mechatronics, Monterey, California, USA, 24-28 July.

[7] Nawratil, G. (2007). “New Performance Indices for 6R Robots,”
Mechanism and Machine Theory, 42, pp. 1499-1511.

[8] Kucuk, S. and Bingul, Z. (2006). “Comparative Study of Perfor-
mance Indices for Fundamental Robot Manipulators,” Robotics and
Autonomous Systems, 54, pp. 567-573.

[9] Lecerf-Dumas, C. and Furet, B. (2009). “La Robotique au service
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