
Real-Time Path Planning for a Robot Arm in Changing Environments

Tobias Kunz, Ulrich Reiser, Mike Stilman and Alexander Verl

Abstract— We present a practical strategy for real-time path
planning for articulated robot arms in changing environments
by integrating PRM for Changing Environments with 3D
sensor data. Our implementation on Care-O-Bot 3 identifies
bottlenecks in the algorithm and introduces new methods that
solve the overall task of detecting obstacles and planning a path
around them in under 100 ms.

A fast planner is necessary to enable the robot to react
to quickly changing human environments. We have tested
our implementation in real-world experiments where a human
subject enters the manipulation area, is detected and safely
avoided by the robot. This capability is critical for future
applications in automation and service robotics where humans
will work closely with robots to jointly perform tasks.

I. INTRODUCTION

Existing implementations of robot planners have successfully
accomplished tasks in well-known environments like factory
work cells. We study the more challenging problem of a robot
acting safely and efficiently in unstructured, dynamic and
human environments. Safe interaction with humans is critical
for future robot applications in automation and service where
humans will work closely with robots to jointly perform
tasks. In order to maximize safety, robots must match and
exceed the human capacity to safely respond to changes in
the environment. Since human reaction time is approximately
180 ms [1], the robot should respond at least as fast. This
work presents our implementation of online motion planning
that achieves faster-than-human replanning.

Online planning in dynamic environments is a challenging
problem because all components involved in the perception-
action cycle must be efficient. We require sensors that are
capable of scanning the environment in a fast and reliable
manner, a representation of the sensor data that is fast to
generate and suitable for the planning algorithm used, and
finally a planner that is able to plan a motion in a high-
dimensional space quickly while avoiding obstacles.

We present an approach that is able to detect obstacles
and plan a path around them within 100 ms, nearly twice
the reaction speed of a human being. Our approach is based
on Dynamic Roadmaps (DRM), which were introduced by
Leven and Hutchinson [2]. Like the standard PRM, DRM
uses pre-computation to reduce the continuous state space to
a graph for faster online search. However, while general PRM
approaches focus on fixed environments, DRM incorporates

Tobias Kunz and Mike Stilman are with the Center for Robotics and
Intelligent Machines (RIM) at the Georgia Institute of Technology, Atlanta,
GA 30332, USA. {tobias, golem}@gatech.edu

Tobias Kunz, Ulrich Reiser and Alexander Verl are with Fraunhofer IPA,
Stuttgart, Germany. {reiser, verl}@ipa.fraunhofer.de

This work was funded as part of the research project DESIRE by the
German Federal Ministry of Education and Research (BMBF) under grant
no. 01IME01A.

Fig. 1. Planning around a human obstacle in less than 100 ms.

data gathered to invalidate edges online and quickly respond
to environment variations.

In this paper, we identify bottlenecks in the algorithm
and present the new techniques developed during our imple-
mentation that were critical in achieving real-time results.
We have implemented our algorithm on the Care-O-bot 3
platform using a SwissRanger SR3000 time-of-flight sensor
to detect obstacles. Our experiments show that our system
consistently detects a human obstacle and plans a collision-
free path in less than 100 ms.

The paper is organized as follows: Related work is pre-
sented in section II. The DRM algorithm is described in
section III. In section IV, we describe our implementation,
focussing on improvements over the original algorithm that
are critical to achieving the real-time results. The results of
our experiments on Care-O-bot 3 are presented in section V.

II. RELATED WORK

Work related to robot motion strategies in dynamic envi-
ronments can be divided into reactive control, global plan-
ning and mixed approaches. Reactive control approaches are
mainly based on potential field methods, e.g., [3], that rely
on local information. The missing global information is an
inherent drawback of potential field approaches. The robot

Mike
Typewritten Text
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS'10) Oct. 2010

might get stuck in a local minimum and a globally optimal
solution cannot be guaranteed.

Path planning approaches on the other hand take global
information into account. However, they need to perform a
time consuming search for a collision-free path depending on
the current states of the robot and the environment. In the
last decade, path planning in high-dimensional configuration
spaces has been dramatically expedited through sampling
based techniques, which subordinate optimality to achieve
improved performance [4].

Sampling-based planners can be distinguished into single-
query and multi-query planners. Single-query planners, such
as RRT (Rapidly Exploring Random Trees) [5] and SBL
(Single-query Bidirectional PRM Planner with Lazy Col-
lision Checking) [6] plan from the start for each query.
While they handle changing environments, exploring the
configuration space and checking possible path segments for
collision still requires a high computational effort. Therefore,
direct application of these methods to real-time replanning
is currently infeasible.

Multi-query planners like the Probabilistic Roadmap
(PRM) Planner assume that several different planning queries
are to be executed within the same static environment. [7]
Therefore, they can spend a large amount of time on prepro-
cessing to create a data structure that speeds up the individual
planning queries. However, due to the assumption of a static
environment these methods are not directly applicable to
changing environments.

Some approaches, e. g. [8], make use of a geometric model
of the environment. However, building a geometric model
from raw sensor data is difficult and time-consuming. Since
collision avoidance is possible using a more basic represen-
tation of the sensor data, such a high level representation
of the environment is not necessary if its only purpose is
collision avoidance.

Elastic bands [9], [10] and elastic strips [11] are mixed
approaches, which combine global and local information.
They assume an initial globally planned path. This path
is adapted to a changing environment using local reactive
control. The approach uses a geometric representation of the
distance from the robot to the closest obstacle to adapt the
path. However, calculating distances from the robot to a point
cloud might be time consuming. We are not aware of an
existing implementation that shows the performance of these
approaches on a real robot using real sensor data. Further-
more, elastic bands and elastic strips are more complex than
our approach and do not provide performance improvements
for initial planning.

Dynamic Roadmaps (DRM) introduced by Leven and
Hutchinson [2] adopt the method of increasing online ef-
ficiency through preprocessing from classical PRM ap-
proaches. They adapt the classical PRM by generating a
preprocessed roadmap that can still be used in changing
environments. This is achieved by invalidating the parts of
the roadmap that are blocked by dynamic obstacles before
every planning round. To enable real-time planning, we need
to be able to quickly determine which parts of the roadmap

are blocked at any given time. To achieve this, DRM relies
on preprocessing again. The workspace is discretized on a
grid and a precomputed mapping between the workspace grid
and the roadmap is used for fast invalidation.

Leven and Hutchinson [2] report a planning time of one
second for a 6-DOF robot arm in simulation using a 2048-
node roadmap. We consider one second to be too slow
to react fast enough to a changing human environment.
More recent papers [12], [13], which adapt the approach
in [2], report planning times comparable to ours. However,
all existing approaches are only run in simulation using a
geometric model of a simple environment. On a real robot
the geometric model needs to be created from raw sensor
data. This takes additional time, which needs to be taken
into account to evaluate the overall real-time capabilitites.

In contrast, we do not assume access to a geometric model
of the environment. Instead, we use a raw point cloud, which
makes collision checking slower. In the following sections
we show improvements to the existing implementations to
enable equally fast or faster planning, although we are using
real sensor data. Unlike [12] and [13], our focus is on
avoiding collision checking as much as possible. Because of
that our implementation is able to plan in less than 100 ms
on a real robot using real sensor data.

III. DYNAMIC ROADMAPS

This section explains the baseline DRM as introduced by
Leven and Hutchinson [2].

DRM uses a precomputed workspace mapping for fast
invalidation of blocked roadmap parts. Each workspace grid
cell stores a list of roadmap nodes and edges that are in
collision with the cell. During the preprocessing stage for
each node and edge of the roadmap all workspace grid cells
that are in collision with a given configuration or set of
configurations are computed and the roadmap node or edge
is stored in the collision list of each respective grid cell. This
discretization may lead to a larger part of the roadmap being
invalidated than actually is in collision with the obstacles.

Since we build the roadmap offline, we are not bounded by
time in assuring that we achieve a good roadmap. The quality
of the roadmap depends on the distance metric used. As we
do not have to calculate the distances online, we can use a
better, more time-consuming metric. Leven and Hutchinson
[2] propose the following two metrics among others. Both
metrics capture the motion of the robot in workspace. They
use a set of reference points on the robot surface and base the
distance on how these reference points move in workspace.

The first metric is solely based on the locations of the
reference points at the two end configurations. It calculates
the distance of each reference point between the two config-
urations and takes the L2 norm of the vector consisting of
all the distances. This direct workspace metric is defined as

dW2 (p, q) =

√∑
a∈A
‖a(p)− a(q)‖2 (1)

where A is the set of all reference points on the robot surface
and a(p) is the location of reference point a in workspace
given the robot is in configuration p.

(a) Direct workspace metric (b) Midpoint workspace metric

Fig. 2. Example for the midpoint improving the metric.

Eq. 1 does not consider the motion of the robot in-between
the two end configurations. It is possible that the two end
configurations are close in workspace but the robot sweeps
a large volume while transitioning between them. Fig. 2
shows this situation for a one-link robot. The robot tran-
sitions between two configurations sweeping the gray area.
Although the swept area is large, the workspace distance
(shown with a red dotted line) used by the direct workspace
metric is small. To counter this problem, the second metric
incorporates a midpoint m = p+q

2 . The motion between the
two end configurations is partially captured by Eq. 2.

dW2m(p, q) =
√
(dW2 (p,m))2 + (dW2 (m, q))2 (2)

This midpoint workspace metric is important for achieving
a high-quality roadmap. This is why we use it in our
implementation for calculating the path cost. However, this
is only a pseudo-metric, because it does not satisfy the tri-
angle inequality, and the inclusion of the midpoint increases
computation time. Therefore, in our implementation we also
use other metrics that build on top of the direct workspace
metric defined in (1) in order to achieve a reasonable trade-
off between quality and time efficiency in every situation.

IV. IMPLEMENTATION

DRM assumes we know which workspace grid cells are
blocked and leaves it to a particular implementation to
choose how to determine them. We use a SwissRanger
SR3000 time-of-flight sensor. The overall system design that
incorporates the sensor and DRM is sketched in Fig. 3. The
system is implemented on Care-O-bot 3 [14] which integrates
a 7-DOF manipulator and a 3D time-of-flight sensor.

Fig. 3. Design schematic: sensor, workspace grid and roadmap

Our implementation is based on the DRM algorithm.
However, the real-time capabilities that we report are specific
to our efficient implementation. The two critical advances
responsible for achieving real-time results are as follows:
• Efficient connection of the start and goal configurations

to the roadmap as described in section IV-B.2
• A* search using an admissible, consistent and fast

heuristic as described in section IV-B.3.
In the remainder of this section we describe the details of
our implementation for each step of the DRM algorithm. We
present the methods used in preprocessing, followed by the
algorithms in online planning.

A. Preprocessing Stage

1) Roadmap Generation: The nodes of the roadmap are
created by sampling the 7-dimensional configuration space of
the robot uniformly. Each node is connected to its k nearest
neighbors provided that the segment is collision-free. The
metric used is the midpoint workspace metric defined in (2).

The collision detection algorithm of the Care-O-bot ma-
nipulation framework [15] is used to check discrete configu-
rations at roadmap nodes and along edges for self-collision.
As this collision checker does not return any information on
the distance to the closest obstacle, we cannot guarantee that
a roadmap edge is collision-free. However, we can trade off
the likelihood of not detecting a collision and the time needed
for collision checking by choosing a upper bound on the
distance ε between two checked configurations. In order for
ε to be a good measure of how likely it is to miss a collision,
we base ε on a metric similar to the direct workspace metric
defined in (1). But instead of taking the L2 norm of the
distance vector, we take the L∞ norm, resulting in

dW∞(p, q) = max
a∈A
‖a(p)− a(q)‖ (3)

This gives us the maximum amount that any reference point
is displaced between two checked configurations. If the robot
is bounded by convex polyhedrons and all their vertices are
chosen as reference points, the metric gives the maximum
displacement of any point on the robot. [4]

2) Workspace Mapping: To allow for fast invalidation of
blocked roadmap parts, DRM creates a mapping between
the workspace grid and the configuration space roadmap.
The grid consists of hypercube cells with a constant but
configurable edge length, covering the whole workspace of
the arm. To create this mapping, we need to determine for
each grid cell at which nodes and edges of the roadmap the
robot occupies the cell. The mapping is created backwards
by determining all grid cells that are occupied in a particular
configuration. This process is also referred to as voxelization.
To achieve this we chose a suboptimal and slow but very
simple method. We uniformly distribute about 4,500 points
over the volume and the surface of the manipulator and map
them into the workspace grid. Every grid cell that is hit by
at least one of these points is occupied by the robot at a
given configuration. For determining the set of grid cells
that are swept while moving along a roadmap edge, we use
the same method as Leven and Hutchinson [2]. First, the

grid cells corresponding to the midpoint of the path segment
are added to the set. The path segment is then recursively
subdivided into two parts and the process is repeated until
no new occupied cells are added to the set.

B. Planning Stage

1) Invalidating Blocked Parts of the Roadmap: The first
step in executing online planning is the determination of
blocked parts of the roadmap. Since we have precomputed a
mapping from the workspace grid to the roadmap, we only
need to determine the blocked workspace cells. Obstacles
are detected using the SwissRanger SR3000 distance sensor
which provides a point cloud in the coordinate frame of
the sensor. Each point is transformed into the robot base
coordinate frame and then discretized. If it hits a grid cell,
all roadmap nodes and edges that are in collision with the
grid cell are invalidated for the current planning round. This
invalidation can be performed efficiently since the algorithm
iterates through two lists of pointers to nodes and edges,
marking invalid entries. After a grid cell has been hit once,
it is marked as blocked. Hence, future hits perform no further
computation marking previously invalidated roadmap edges.

2) Connecting Start and Goal Configurations to the
Roadmap: In order to plan a path from the start to the
goal configuration, we need to connect both the start and
goal configurations to the roadmap. The connections must
be collision-free. This is the only time we have to perform
collision checks during online planning.

Connecting the start and goal configurations to the
roadmap requires the detection of k nearest neighbors for
each configuration. We use a cover-tree data structure [16],
which permits fast nearest neighbor searches in arbitrary met-
ric spaces. Although we emphasized the midpoint workspace
metric defined in (2) for all other distance calculations, this
step requires the metric presented in (4).

While the midpoint metric is more informed, it has signifi-
cant overhead because it computes forward kinematics for all
three reference points: start, middle and end. Furthermore, it
does not satisfy the triangle inequality, which data structures
for fast nearest neighbor searches like the cover-tree rely
on. While any workspace metric must compute the forward
kinematics for the terminal states (start and end), we choose
one that does not require the midpoint. This is very important
since the midpoint between a terminal state and every state
in the graph will change depending on the location of the
terminal state. Hence, using the midpoint metric here would
require the online planner to compute forward kinematics for
twice as many states as there are nodes in the graph.

Instead of the midpoint metric, we use a combination of
the direct workspace metric shown in (1) and a weighted L1

metric in configuration space. The direct workspace metric
still requires the calculation of the locations of reference
points for the terminal configurations. However, to speed
up the metric, we can precompute the reference points for
all roadmap nodes during the preprocessing stage and store
them with the nodes. Thus, the metric only requires two

computations of forward kinematics online.

dcombined(p, q) = 0.9 · dW2 (p, q) + 0.1 · dw1(p, q) (4)

dw1(p, q) =

n∑
i=1

wi|pi − qi|

The k nearest neighbors are considered as candidates for
connection and the generated edges are provided as input to
the shortest path algorithm. In the spirit of SBL [6] and
unlike [2], collision checking of these edges is delayed.
However, unlike SBL, we don’t delay collision checking until
a candidate path has been found but only until an unchecked
edge becomes part of the closed set (i.e. when the second
node of the edge is expanded) during graph search. This is
to make sure the search does not have to backtrack after an
edge has been found to be in collision.

3) Graph Search: After the blocked parts of the roadmap
have been invalidated and the start and goal configurations
have been connected to the roadmap, the actual search for
the shortest collision-free path is conducted. Unlike [2] we
use the A* algorithm [17]. The heuristic used is the distance
to the goal with the following metric, which is the direct
workspace metric multiplied by a constant factor.

dW2c (p, q) =

√
1

2
dW2 (p, q) =

√
1

2

∑
a∈A
‖a(p)− a(q)‖2 (5)

This heuristic is admissible and consistent
(h(x) ≤ c(x, y) + h(y)) because the metric satisfies
the triangle inequality and is a lower bound on the midpoint
workspace metric, which is used for the cost function. The
following inequality proves the fact that the metric used for
the heuristic is a lower bound on the midpoint workspace
metric.

dW2m(p, q) =

√∑
a∈A
‖a(p)−a(m)‖2 +

∑
a∈A
‖a(m)−a(q)‖2

≥

√√√√∑
a∈A

∥∥∥∥a(p)− a(p)+a(q)2

∥∥∥∥2+∑
a∈A

∥∥∥∥a(p)+a(q)2
−a(q)

∥∥∥∥2

=

√
1

2

∑
a∈A
‖a(p)−a(q)‖2 = dW2c (p, q) (6)

In order for the A* search to yield a speed-up compared to
an uninformed search, the heuristic needs to be calculated
quickly. In our case this was only possible because of
the precalculation of the reference points described in the
previous section.

V. EXPERIMENTAL RESULTS

In this section we present results from experiments run on
the Care-O-bot 3 plattfrom. Our experiments show that our
implementation of DRM is able to plan a path around sensor-
detected obstacles in less than 100 ms. We show that the
details of our implementation are crucial in achieving the
real-time requirements.

The algorithm has several parameters that can be tuned.
Table I shows these parameters and the values we used for
the experiments unless otherwise stated.

0

5

10

15

20

25

0 4096 8192 12288 16384 20480 24576

Ti
m

e
in

ho
ur

s

Number of roadmap nodes

voxelizing edges
voxelizing nodes
creating edges - collision checking
creating edges - kNN
creating nodes

Fig. 4. Preprocessing time

Symbol Value Description

n 16384 Number of roadmap nodes
k 20 The number of nearest neighbors that are consid-

ered for creating an edge to.
εroadmap 0.01 m Maximum distance between two collision-

checked configurations on a path segment while
creating the roadmap.

εrealtime 0.05 m Same as above. But while connecting the start
and goal configurations during the planning stage,
we use a larger ε because time is more valuable.

lgrid 0.05 m Edge length of a cubic workspace grid cell.

TABLE I
CONFIGURABLE PARAMETERS AND THEIR DEFAULT VALUES.

A. Preprocessing Stage

Timing results for the preprocessing stage were retrieved on
a 3 GHz Intel Pentium 4.

As Fig. 4 shows, the preprocessing takes several hours
and depends on the size of the roadmap. Time needed to
generate and voxelize nodes is negligible compared to the
other subtasks. Searching for the k nearest neighbors of each
of the n nodes takes by far the most time. This is because
we use a brute-force search calculating n2 distances. We did
not use a more sophisticated algorithm for nearest neighbor
search, e.g. a cover-tree, because it cannot guarantee an exact
result for the pseudometric used here and time is not very
critical during the preprocessing stage.

With 16,384 nodes our roadmap contained about 188,000
edges. I. e. in average each node has 23 neighbors. The
resulting size of the generated roadmap including the
workspace mapping depends on the number of nodes and
on the grid resolution. Our default roadmap with 16,384
nodes and a grid resolution of 0.05 m results in a file size
of about 250 MB when written to disk. The roadmap size in
main memory is a little bit less than that. For the same grid
resolution, but 24,576 nodes, the file size was 325 MB. For
the default number of nodes but twice the workspace grid
resolution, i.e. 0.025 m, the file size increased to 1.8 GB.

B. Planning Stage

Timing results for the planning stage were retrieved on a
2 GHz Intel Pentium M.

0

20

40

60

80

100

120

140

0 4096 8192 12288 16384 20480 24576

Ti
m

e
in

m
ill

is
ec

on
ds

Number of roadmap nodes

testing goal segments
testing start segments
graph search
kNN
invalidating blocked roadmap parts
aquiring sensor data

Fig. 5. Planning time

0

10

20

30

40

50

60

70

80

90

100

0 4096 8192 12288 16384 20480 24576

Ti
m

e
in

m
ill

is
ec

on
ds

Number of roadmap nodes

Dijkstra
A*

Fig. 6. Comparison of search times using A* and Dijkstra’s algorithm

Fig. 5 shows the time required for one online planning step
subdivided by subtasks. The figure shows the main result
of our paper: The total planning time needed is less than
100 ms, almost independent of the number of roadmap nodes.
The kNN and graph searches take more time with growing
roadmap size. Testing path segments, in contrast, takes less
time with growing roadmap size. This is because a larger
roadmap means the configuration space is more densely
covered by the roadmap. Thus, the k nearest neighbors of
the start and goal configurations are closer to the start and
goal configurations and fewer collision checks are necessary
to test those path segments. Acquiring the sensor data over
the network currently takes about 20 ms, which is quite long
and could probably be optimized.

One reason for the fact that our algorithm scales well with
roadmap size is the use of A* for the graph search. Fig. 6
compares the runtime of A* with an uninformed search using
Dijkstra’s algorithm, which might have been used in [2]. As
we will see in the next paragraph, A* also helps avoiding
collision checks.

Testing goal segments takes less time than testing start
segments because of our delayed collision checking of these
segments. Because we use a heuristic-guided A* search, not
all of the edges connecting the start configuration become

Fig. 7. Planning without obstacles.

part of the closed set. Thus, not all of these edges need
to be checked for collision. In the experiments shown in
Fig. 5 between 10 and 16 out of the 20 start edges are
checked for collision. Out of the edges connecting the goal
configuration, even fewer need to be checked for collision
because the search terminates after having found the first
collision-free of these edges. In the experiments shown in
Fig. 5 always only one edge is checked for collision. This
shows an improvement over the original approach in [2].

C. Resulting Motion

Fig. 1 and 7 show the paths produced by the planner on
the real robot for two different scenarios. In both cases the
robot is moving in between the same two configurations. In
Fig. 7 there is no obstacle blocking the motion. In Fig. 1 a
human is blocking the direct path. The robot quickly finds
a path around the obstacle. Because we restrict the motion
of the robot to a pregenerated roadmap, we might not find
a solution in a cluttered environment although one exists.
However, our experiment pictured in Fig. 1 shows that this
is not a problem in practice. The robot is able to find a
solution although the free space is narrow.

VI. CONCLUSION

In this work we presented an integrated solution for real-time
planning in changing environments using 3D sensor data.
Our path planner was based on the DRM algorithm [2] and
was implemented on the mobile robot platform Care-O-bot
3 [14]. Our specific implementation was critical to achieving
the real-time results. We presented a heuristic that allowed
for optimal A* search. We enabled a fast connection of the
start and goal configurations to the roadmap by delaying
collision checking and by a fast search of the k nearest
neighbors by using an appropriate metric.

Our experiments show that our integrated solution is able
to calculate a collision-free path for the 7-DOF manipulator
of Care-O-bot 3 within less than 100 milliseconds. This
includes the whole perception-action cycle from acquiring
3D sensor data and maintaining an obstacle model to the

shortest collision-free path search. Thus, we are able to react
quickly to a changing human environment.

Although an efficient implementation was critical to
achieving the real-time results, there are many ways to fur-
ther improve our implementation. For example, a hierarchical
workspace grid with different cell sizes on different levels
would lead to a smaller workspace mapping, a faster invalida-
tion of blocked roadmap parts and would allow a more fine-
grained workspace discretization. Also, the determination
of which workspace cells are occupied by the robot in a
given configuration may be improved by using an algorithm
that directly voxelizes polyhedra, e. g. [18]. This would
speed-up collision checking of the start and goal segments
and the generation of the workspace mapping during the
preprocessing stage.

REFERENCES

[1] J. M. T. Brebner and A. T. Welford, “Introduction: An historical
background sketch,” in Reaction Times, A. T. Welford, Ed. Academic
Press, 1980, pp. 1–23.

[2] P. Leven and S. Hutchinson, “A Framework for Real-time Path
Planning in Changing Environments,” The International Journal of
Robotics Research, vol. 21, no. 12, pp. 999–1030, 2002.

[3] O. Khatib, “Real-Time Obstacle Avoidance for Manipulators and
Mobile Robots,” The International Journal of Robotics Research,
vol. 5, no. 1, pp. 90–98, 1986.

[4] S. M. LaValle, Planning Algorithms. Cambridge, U.K.: Cambridge
University Press, 2006, available at http://planning.cs.uiuc.edu/.

[5] S. LaValle and J. Kuffner, “Rapidly-exploring random trees: Progress
and prospects,” in Algorithmic and computational robotics: new di-
rections: the fourth Workshop on the Algorithmic Foundations of
Robotics. AK Peters, Ltd., 2001, p. 293.

[6] G. Sanchez and J.-C. Latombe, “A single-query bi-directional proba-
bilistic roadmap planner with lazy collision checking,” in Int. Symp.
Robotics Research, 2001, pp. 403–417.

[7] L. Kavraki and J. Latombe, “Probabilistic roadmaps for robot path
planning,” Practical Motion Planning in Robotics: Current Ap-
proaches and Future Directions, vol. 53, 1998.

[8] Y. Yang and O. Brock, “Elastic roadmaps: Globally task-consistent
motion for autonomous mobile manipulation in dynamic environ-
ments,” in Proc. of Robotics: Science and Systems, August 2006.

[9] S. Quinlan and O. Khatib, “Elastic bands: connecting path planning
and control,” Proceedings of the 1993 IEEE International Conference
on Robotics and Automation, pp. 802–807 vol.2, May 1993.

[10] S. Quinlan, “Real-time modification of collision-free paths,” Ph.D.
dissertation, Stanford University, Stanford, CA, USA, 1995.

[11] O. Brock and O. Khatib, “Elastic Strips: A Framework for Motion
Generation in Human Environments,” The International Journal of
Robotics Research, vol. 21, no. 12, pp. 1031–1052, 2002.

[12] M. Kallman and M. Mataric, “Motion planning using dynamic
roadmaps,” in 2004 IEEE International Conference on Robotics and
Automation, vol. 5, 26 2004.

[13] H. Liu, X. Deng, H. Zha, and D. Ding, “A path planner in changing
environments by using w-c nodes mapping coupled with lazy edges
evaluation,” in Int. Conf. on Intelligent Robots and Systems, 2006.

[14] U. Reiser, C. Connette, J. Fischer, J. Kubacki, A. Bubeck, F. Weis-
shardt, T. Jacobs, C. Parlitz, M. Hägele, and A. Verl, “Care-o-bot 3 -
creating a product vision for service robot applications by integrating
design and technology.” in IROS. IEEE, 2009.

[15] U. Reiser, R. Volz, and F. Geibel, “ManIPA: a flexible manipulation
framework for collision avoidance and robot control.” 39th Interna-
tional Symposium on Robotics, pp. 407–411, Oct. 2008.

[16] A. Beygelzimer, S. Kakade, and J. Langford, “Cover trees for nearest
neighbor,” in ICML ’06: Proc. of the 23rd international conference on
Machine learning. New York, NY, USA: ACM, 2006.

[17] P. Hart, N. Nilsson, and B. Raphael, “A formal basis for the heuristic
determination of minimum cost paths,” IEEE Transactions on Systems
Science and Cybernetics, vol. 4, no. 2, pp. 100–107, July 1968.

[18] A. Kaufman and E. Shimony, “3d scan-conversion algorithms for
voxel-based graphics,” in SI3D ’86: Proceedings of the 1986 workshop
on Interactive 3D graphics.

