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Abstract— GPS has become the de facto standard for obtain-
ing a global position estimate during outdoor autonomous nav-
igation. However, GPS can become degraded due to occlusion
or interference, to the detriment of autonomous performance.
In addition, GPS positions must be aligned with prior data, a
tedious and continual process. This work presents a solution
to these two problems based on learning generic observation
models in the presence of GPS to use in its absence. The models
are non-parametric and compared to traditional approaches
require few assumptions about either the prior data available or
a robot’s onboard sensors. Along with allowing for localization
to prior data under GPS-denied conditions, this learning ap-
proach can be coupled with an EM procedure to automatically
register GPS and prior data positions. Experimental results are
presented based on data from more than 15 km of autonomous
navigation through challenging outdoor terrain.

I. INTRODUCTION

Autonomous navigation by a mobile robot generally con-
sists of traversing to a defined goal. This naturally requires
that the robot have a method of determining its position
relative to said goal. In the realm of navigation through
indoor or structured environments, this has encouraged a
vast body of work in localization and SLAM. However, for
outdoor navigation over long distances the determination of
a robot’s position in a globally consistent frame is generally
left to the Global Positioning System (GPS).

While in general reliable GPS is not infallible: it requires
reasonable line of sight to multiple locations in the sky,
and can suffer significantly degraded performance around
tall buildings or tree canopy. GPS is also susceptible to
jamming (whether intentional or accidental). Finally, while
low quality GPS systems have become sufficiently low cost
to become almost standard in consumer vehicles, high quality
systems remain expensive. In addition to providing the robot
with the relative position of its goal, GPS is also used to
index into any prior environmental data available to a robot
during operation. Particularly for off-road navigation, prior
data such as satellite imagery or other overhead sources have
proven to be quite effective at increasing the safety and
efficiency of autonomous navigation [1].

Achieving these gains requires that the robot be reasonably
well registered to its prior data; that is, that the offset
between a GPS position and the corresponding location in
the prior data be known. While this offset is usually small
(if the prior data was previously georeferenced) errors on the
order of 5 to 10 meters are still common. Such errors are
too large to allow for the most efficient use of prior data.
Additionally, navigation goals are often chosen or specified
with respect to the prior data, increasing the importance of

proper registration. Complicating matters further is the fact
that the offset between prior data and GPS is not constant
due to GPS drift, which can necessitate re-registering to prior
data every few days. Finally, orthorectification errors can
require different alignments to different regions of prior data.

Thus, outdoor autonomous navigation is faced with two
core problems related to the use of GPS: continuing operation
by bounding global position error in the face of degraded
or absent GPS, and aligning GPS to prior data in the face
of suboptimal georeferencing and GPS drift. This paper
addresses these two problems through the use of Monte
Carlo Localization (MCL) [2]. The partial availability of GPS
data is exploited to allow construction of non-parametric
observation models by learning to correlate whatever chan-
nels of prior and onboard sensor data are available. In the
absence of an accurate initial registration, an Expectation
Maximization (EM) based approach allows for the estimation
of the offset between the GPS and prior coordinate frames
and its refinement during autonomous operation. Experimen-
tal results are presented based on recorded data from the
Crusher autonomous vehicle [3], [4] (Figure 1) over 15 km
of autonomous traverse through challenging off-road terrain.

II. RELATED WORK

Localization for mobile robots has historically received
more attention with respect to indoor or well structured
environments. Especially when operating indoors with small
robots, short range sensors, and less expensive hardware it
can not be assumed that a robot will be provided with a clear
measure of its position in a globally consistent frame; instead
such robots are generally tasked with bounding position by
aligning themselves to a prior map of their environment, or
creating one on the fly (SLAM).

In this context, Monte Carlo Localization (MCL) [2] has
become quite popular for determining a robot’s position
based on a prior map of the environment. Application of
MCL in such environments is typically based on range
sensors such as LiDAR or Sonar, as well as a building
map or schematic of the 2D structure of the environment.
MCL works well in such circumstances partially because the
behavior of range sensors under structured conditions is well
studied and understood, and sufficient observation models
can be constructed with relative ease. The endpoint model
[5] (Figure 2) is one popular example, which approximates
the probability of various range readings given the ground
truth range (derived from a prior map) and a set of noise
parameters.



The challenge of constructing an accurate observation
model is one of the primary barriers to the application of
MCL in more unstructured environments. Indoor sensors
and prior maps are well approximated in 2D, allowing for
the easy prediction of what range measurements a sensor
should report under ideal conditions. In contrast, in outdoor
environments it is more difficult to model and predict what
readings an ideal sensor should produce conditioned on a
specific pose and prior map. This problem is exacerbated
when the prior data was not produced by the same class
of sensors as the robot’s onboard perceptual system (e.g.
onboard range sensors versus prior satellite imagery). For
very large outdoor environments, this is almost always the
case. In addition, the size of such environments precludes
human engineering to add a sufficient number of easily
distinguishable landmarks. Therefore, in general localization
in unstructured outdoor environments requires an observation
model capable of relating heterogenous data.

Recent work has approached this problem by constructing
observation models under specific assumptions about the
environment and a robot’s onboard sensors. For example,
[6] fits edges and curves to range data to construct land-
marks under the assumption of the presence of man-made
structures. Similarly, [7] detects roads onboard the robot and
correlates them to a prior road network definition. There
has also been recent work to localize directly to satellite
data. In [8] overhead imagery is segmented into categories
corresponding to freespace or a tall obstacle, and then uses
a range based observation model similar to those used for
indoor localization. A similar approach is applied in [9]
but with contours in the imagery as a proxy for obstacle
boundaries. In [10], the conversion of both prior and per-
ceptual data into navigation costs is used as the basis of the
observation model, while in [11] prior elevation models are
compared to those generated online. A common property of
these approaches are the specific assumptions about either the
type of prior data available, the robot’s sensors, or the type of
environment; these assumptions preclude easy generalization
across different robotic platforms or operating domains.

One way to improve the generalization of such approaches
is to learn an observation model for the specific environment.
[12], [13] seek to learn an observation model over an entire
range scan (as opposed to an individual range reading) and
exploit the correlations within such a percept. In contrast,
[14] seeks to learn rather than tune the parameters of the
standard endpoint LiDAR model. However, these approaches
have so far remained limited to working with 2D range sen-
sors for operating in indoor or well structured environments.

In contrast, this work seeks a general approach that can
learn an observation model between generic prior data and a
generic perception system. In addition, the approach should
work regardless of the type of outdoor environment (e.g.
urban, rural, off-road) as long as there is some relationship
between the two data sources (i.e. they are based on ob-
servations of the mostly the same structures). Fortunately,
there are some aspects of this specific problem that make
it more tractable. First, it does not require map building or
SLAM; the existence of a prior, sufficiently consistent map

is assumed. Instead, the task is only to bound the error with
respect to global position, and register an external estimate
of global position to the prior data. Second, such a solution
need only augment rather than fully replace GPS for it to
be immediately effective and useful; therefore it can take
advantage of GPS information when available. The next two
sections describe the proposed solution to this challenge.

III. LOCALIZATION TO PRIOR DATA

This section first provides a brief overview of the MCL
algorithm. It is by no means intended to be complete; for a
thorough and detailed description see [2], [5].

Define the pose of a mobile robot at time t as Xt . As
this work is interested in 2D localization and registration, we
consider Xt = (xt, yt, θt). ut is defined as a control input
(the robot’s commanded motion), and Zt as a set of sensor
observations. M represents a (static) prior map, with which
sensor observations can potentially be correlated.

MCL estimates a probability distribution over Xt through
the use of a particle filter: a set of samples Xi

t from Xt and
associated weights wi. At each timestep, the particles are
advanced forward in time (the prediction step) by sampling
from the motion model, defined as

P (Xt|Xt−1, ut) (1)

Next, the particles are reweighted (the correction step) based
on the observation model, defined as

P (Zt|Xt,M) (2)

The observation model defines the probability of producing
a specific sensor reading, conditioned on the robot’s position
and the prior map. Through the use of Bayes rule, the
likelihood of each particle’s pose hypothesis conditioned on
the current sensor observation can be computed as

P (X̄t|Zt,M) ∼ P (Zt|Xt,M)P (Xt) (3)

This leads to a simple update rule for each particle’s weight

w̄i = wi ∗ P (Zt|Xi
t ,M) (4)

Occasionally, the particles are resampled (with replace-
ment) with probability proportional to their weights, and the
weights reset. Through this importance sampling procedure,
the particle filter is able to maintain an estimate of P (Xt)
in a non-parametric manner. Figure 4 shows an example of
MCL in action.

With this basic algorithm in place, the core challenge in
applying MCL is the construction of accurate motion and
observation models for a specific domain. The construction
of motion models for mobile robots is a challenging and
well studied problem unto itself. Deriving such models for
outdoor vehicles is well outside the scope of this work;
however as it is a requirement for accurate localization it
deserves a brief mention.

The study of motion models for indoor mobile robots has
focused mostly on various models of odometry. It is well
understood how such models should evolve in the absence
of measurement noise. The key therefore is proper modeling
of such noise and other errors, in order to understand how the



Fig. 1. Left: The Crusher autonomous navigation platform. Right: a 15km autonomous traverse through off-road terrain by Crusher, overlayed on the
satellite imagery used as prior data in these experiments. Green represents the GPS recorded path. Blue and red represent a simulated odometry (low
accuracy) and MCL corrected path, respectively, from a single experiment (see Section V). The brightness of the red path represents the particle filter’s
uncertainty as to its own position estimate; the uncertainty estimates correlate well to the actual offset from the GPS path. The simulated odometry path
finishes over 250m away from the final GPS position, while the MCL path finishes only 3m away. Quickbird imagery courtesy of Digital Globe, inc.

model’s uncertainty should evolve over time. There is far too
much work in this area to properly mention here; however
the approaches of [14] and [15] deserve mention through
their use of an EM approach to learning noise parameters
of odometry models (similar to the approach described in
Section IV).

Motion models for outdoor robotic vehicles are generally
more complex, as such vehicles often operate at speeds
where dynamics can no longer be ignored. However, as a
consequence such vehicles are generally outfitted with more
proprioceptive sensing to aid in estimating local motion:
along with odometry inertial units and gyros are quite com-
mon. This additional sensing generally allows outdoor robots
to travel distances of tens or hundreds of meters while still
maintaining a position estimate that is reasonable for local
navigation. In addition, this higher level of local accuracy,
especially when fused with GPS information, provides an
accurate and bounded position estimate that is quite useful
for learning a motion model through observation of vehicle’s
response to various control inputs. However, this also serves
as a reminder of just how much outdoor robots can come
to depend on GPS or some other source of bounded global
position information.

The remainder of this paper will not consider motion
models in depth, but instead will assume that a reasonable
model can be constructed for the robot in question. For the
Crusher vehicle used in these experiments, see [16] for an
approach to learning the forward motion model.

The remaining challenge to applying MCL to outdoor
localization is the construction of the observation model.
Rather than construct a specific model based on assumptions
about the nature of Zt and M , this work considers generic
prior data and sensor updates. The only requirement for the
prior data is that for any location (x, y) in the environ-
ment, the prior map can provide some description of the
environment; that is Mx,y = fp for some fp ∈ Fp = Rn.
Equivalently, each sensor observation Zt is considered as a
set of individual observation zt at locations (xr, yr) relative
to the current vehicle position; that is zxr,yr

t = fs for some
fs ∈ Fs = Rm. This requirement is sufficiently general to

allow use of many different sensor modalities (e.g. LiDAR,
RADAR, stereo, etc.) Environment dynamics, when properly
modeled and understood, can also be represented in this
fashion (or simply ignored). The only assumption about
the data itself is that when properly aligned there is some
relationship between a corresponding fp and fs. However,
there are no additional constraints (e.g. linearity) on the
actual form of this relationship.

Initially, consider the case where n = m = 1; that is
the prior and sensor updates each consist of a single feature
at each location in their respective frames. The observation
model can now be defined as

P (zxr,yr

t = fs|Mxw,yw = fp, Xt) (5)
xw = xt + xr cos θt − yr sin θt

yw = yt + xr sin θt + yr cos θt

Simply stated, the observation model expresses the prob-
ability of a local sensor observation fs, given that under
the current pose hypothesis Xt the local observation would
correspond to fp in the prior map. Factoring out Xt separates
uncertainty related to the robots position and uncertainty
related to the individual measurements.

P (zxw,yw

t = fs|Mxw,yw = fp)P (Xt) (6)

This equation clearly states what is required to construct a
generic observation model: it must be capable of predicting
with what probability the robot will observe fs when the
corresponding prior observation is fp.

This leads to the core of the proposed approach: under
the assumption that GPS position, when available, represents
near ground truth, the relationship between fs and fp can be
directly observed and used to build a model of P (zt|M)
through experience. That is, every sensor and prior observa-
tion pair (fs, fp) can be recorded, and a model relating these
two quantities constructed. Then, in the future absence of
GPS, this model can be used for localization purposes. While
there may not always be a direct relationship between how
terrain appears to a ground sensor and in a prior map, recent
work [17] has shown that in practice these observations will
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Fig. 2. Left: The endpoint model for a range sensor from [5]. Center, Right: Several rows from the two models shown in Figure 3. Similar to the
endpoint model, the learned models show a clear region of maximum likelihood, along with varying noise characteristics observed empirically.

be sufficiently coupled to learn an effective model relating
them. Therefore, consider a simple algorithm for training an
observation model in the presence of GPS

• As the robot traverses, align local sensor readings fs

with prior measurements fp according to GPS.
• Discretize fs and fp at some resolution over the feature

spaces Fs and Fp into f̄s and f̄p. For every possible
f̄s, f̄p pair, maintain a count Cs̄,p̄ of how many times
that pair is observed

• When needed, compute P (zt|M) as

P (zxr,yr

t = fs|Mxw,yw = fp) =
Cs̄,p̄∑
s′ Cs′,p̄

(7)

that is, normalize across all observed instances of f̄p.

When a robot is receiving high quality GPS information,
it can continue to record observation pairs and construct
a model for future use. When GPS drops out or becomes
degraded, MCL can begin from the last known GPS position,
using the learned observation model to correct the motion
model. Examples of learned observation models are shown
in Figures 2 and 3 .

One final caveat is the issue of regularizing the observation
model. It is a well known problem [13] that if an observation
model is too peaked over certain sensor readings, MCL
can perform poorly and lose track of the correct position.
A common approach is to smooth or regularize the model
by mixing it with a uniform probability over all possible
observations. In this specific case, it is explicitly necessary
to account for the possibility of observation pairs that were
not seen during training.

The algorithm as described assumes both sensor and
prior observations consist of a single real number. However,
this algorithm can easily be extended to multidimensional
readings in two ways. The first approach would be to try and
model a full joint distribution over all dimensions; instead of
maintaining frequency counts over 2 dimensional bins, m+n
dimensional bins would be necessary. Such an approach
would very quickly fail to generalize as the dimensionality
increases. Therefore, a more robust approach involves a naive
Bayes assumption about the independence of the various
dimensions of the feature spaces

P ((fs1 , . . . , fsm
)|(fp1 , . . . , fpn

)) ∼

P (fs1 |fp1) ∗ . . . ∗ P (fsm
|fp1) ∗

...
. . .

...
∗ P (fs1 |fpn

) ∗ . . . ∗ P (fsm
|fpn

) (8)

This approach would require m×n separate models, although
each model would be easier to train. In practice, it is
expected that expert intuition and experience, as well as
empirical evaluation, could identify the most useful subset
of correspondences. In our own experiments, we have found
that even a single dimension of observations is sufficient to
perform accurate localization (see Section V).

IV. REGISTRATION TO PRIOR DATA

The algorithm for learning an observation model as just
described made two fundamental assumptions about GPS
positions provided during training: that there was no error,
and that the GPS was already properly registered to the prior
information. This section relaxes both of these assumptions
and provides an algorithm that can register GPS to prior data,
even in the absence of any existing observation model.

GPS, like any other positioning system, provides only an
uncertain estimate. With perhaps the exception of systems
using differential corrections (which requires additional in-
frastructure) this uncertainty will generally be on the order
of several meters. The use of augmentation systems such
as WAAS and the filtering of GPS and inertial sensors can
reduce this uncertainty, but in general it will still be greater
than the resolution of local sensor information. Therefore, it
must be accounted for when learning an observation model.

Fortunately, this uncertainty can be easily incorporated.
If at time t, the GPS position estimate is a distribution
P (Xt|GPS), (6) becomes

P (zxw,yw

t = fs|Mxw,yw = fp)P (Xt|GPS) (9)

Each potential Xt implies a different pairing of fs and
fp, and a different Cs̄,p̄ whose count should be incre-
mented. Rather than simply increment Cs̄,p̄ for the fs, fp

implied by the maximum likelihood estimate of Xt, for each
possible Xt, the corresponding Cs̄,p̄ can be incremented
by P (Xt|GPS) to reflect that there is uncertainty in the
correlation of fs and fp. While P (Xt|GPS) may be nonzero
(or rather greater than some small ε) for an infinite number
of estimates of Xt, in practice there are only a fixed number
of possible alignments, due to discretization of local sensor
and prior measurements.
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Fig. 3. Two of the 6 Learned Observation Models. Brighter pixels indicate
higher probability of an observation. In both examples, the model captures
the non-linear correlations between the prior and onboard observations.

This same basic approach can also be used to train a
model in the presence of registration errors. Registration
errors between GPS and prior positions are inevitable due
to a number of factors, such as errors in georeferencing
or orthorectification and the use of different projections. In
addition, due to GPS drift over time this error is not constant,
and even if corrected once can grow slowly over several days.

Assume that the registration error is unknown but upper
bounded by some Rmax. This is a reasonable assumption, as
even a single landmark correspondence or tie point can limit
error to within one or two dozen meters. Without additional
information, and given a maximum likelihood GPS position,
a new distribution P (Xt|GPS,Rmax) can be constructed,
that combines not only the GPS uncertainty, but a uniform
distribution over the registration error between 0 and Rmax.

P (zxw,yw

t = fs|Mxw,yw = fp)P (Xt|GPS,Rmax) (10)

This new distribution can then be used when incrementing
the various Cs̄,p̄ during training of an observation model,
to reflect both sources of uncertainty in the sensor to prior
correspondences.

The observation model learned in such a manner will
have been trained both on correct and incorrect sensor to
prior correspondences. However over time the incorrect cor-
respondences are likely to occur with essentially a uniform
frequency (due to the uniform distribution over registration
errors). In contrast, assuming any spatial dependence whatso-
ever amongst both sensor and prior features, correct (or near
correct) correspondences should occur with slightly higher
frequency. The result is that the resulting model will still
have signal, if highly regularized.

This model can then be used to register to prior
data through the use of MCL. P (Xt) is initialized to
P (Xt|GPS,Rmax). Instead of sampling from the normal
motion model, relative updates in GPS position are used to
project the filter forward in time (with just enough noise
to account for sampling error). The correction step is then
applied as before, using the highly regularized observation
model. Since the prediction step will be adding little to no
additional noise, over time the filter will converge. The dif-

ference between the filter and GPS global position estimates
represents a hypothesis as to the current registration error.

If Rmax is small (on the order of a few meters), then the
observation model learned in this manner is likely sufficient
to also localize in the presence of noise in the forward model
(due to none or poor GPS information). However, if Rmax

is quite large, then such a highly regularized model will
likely be unable to overcome such uncertainty. Furthermore,
it probably is not capable of producing a sufficiently certain
registration estimate to assume that all registration error
has been accounted for. However, even in such cases, the
registration estimate will be more accurate than Rmax, and
the actual uncertainty will be reflected in the final distribution
over P (Xt). Thus, the same process could repeated, but
starting with a smaller value for Rmax, and lead to another
improvement in registration.

This leads to the final algorithm for registering GPS
information to the prior data. The iterative approach is
based on the well known Expectation Maximization(EM)
[18] algorithm, and is quite similar to the approaches of
[15], [14] for learning parameters of motion and observation
models. There are also similarities with mutual information
based approaches used in medical image registration [19].
A key difference is that the proposed registration approach
explicitly learns a non-parametric observation model, and
thus is both more generic and not as sensitive to initial
parameter values. In fact, the only parameter it requires
initially is Rmax, which can be a very loose upper bound.

The full registration algorithm proceeds as follows.
• E-Step: Starting with an initial Rmax, learn an obser-

vation model according to (10) and (7)
• M-Step: Based on the learned observation model,

perform MCL for some period of time using rel-
ative GPS updates in place of the forward model.
The difference between the maximum likelihood posi-
tions of P (Xt|Z0, ..., Zt) and P (Xt|GPS) represents
the current registration offset, and the uncertainty of
P (Xt|Z0, ..., Zt) can be used to produce a new upper
bound R′max.

• Iterate:Replace Rmax with R′max, update GPS posi-
tions based on the estimated registration offset, and then
repeat the above process until convergence.

As long as the current observation model is able to account
for the small amount of noise added from the GPS based for-
ward model, R′max will be less than Rmax and this process
will converge to a final registration estimate. Additionally,
the above iteration can be performed as the robot continues
to drive, or repeatedly over the same sequence of sensor data.
With the latter approach, a sequence of only a few minutes
can be sufficient to register the robot.

Rather than use the distribution over possible registrations
after an M-step at the next E-step, the proposed algorithm
condenses this information into a single registration hypoth-
esis and a corresponding R′max. This choice of a hard EM
approach over a more traditional (soft) approach was made
for two reasons. The first is computational, as it dramatically
speeds up the computation of the observation model during
the E-Step. The second is practical, as empirically the



Fig. 4. Timelapse of MCL in action, shown against prior NDVI. After
leaving a large open area with few features to localize from, the filter has
an error of 11.5m from ground truth, and a σ of 10m. 2 minutes later, after
traversing into a small forest the filter has reduced its error to 3m and σ to
2.75m. This sequence corresponds to km 2.9 to 3.4 in Figure 5.

distribution after each M-Step over registrations was found
to be well approximated by a uniform distribution.

V. EXPERIMENTAL RESULTS

Experiments were performed in simulation based on data
logs from the Crusher autonomous vehicle [3], [4] (Figure
1). Crusher’s onboard sensing consists 3D LiDAR scanners
and multispectral cameras, to provide both geometric and ap-
pearance data. For these experiments, two specific processed
sensor features were used: The height of obstacles from
the ground plane, and the Normalized Difference Vegetation
Index (NDVI) of each location. NDVI values are related to
the amount of chlorophyll present in a structure, and thus
are useful for the detection of vegetation in many fields,
including robotic perception [20]. Features were produced at
20cm resolution out to a range of 20m.

Datalogs were provided for a 15km autonomous run
through difficult unstructured terrain, shown in Figure 1.
Prior data for the environment consisted of 2.4m resolution
multispectral satellite imagery (R,G,B,NIR) which was up-
sampled and smoothed to 60 cm. The terrain features visible
in the prior data consist of hills, trails, open ground, tall
grass, bushes, ditches, and tree canopy. From the upsampled
data, 3 prior features were computed: NDVI, normalized
green, and the image intensity (i.e. the value component of
HSV). Figure 6 shows an example of the 3 prior features
and 2 sensor features from the same terrain location.

Experiments in using learned observation models for GPS-
denied localization made use of the entire 15 km run. The
first 15 minutes of the run (approximately 3 km) were
used to train an observation model. Then, GPS dropout
was simulated, and MCL was used to maintain Crusher’s
position for the remaining 60 minutes and 12 km of the
run (The starting location is evident in Figure 1). Instead
of using Crusher’s raw local position information as the
forward model input, a simulated local pose system was
used. This was done to allow comparison of the models
under different levels of local pose accuracy. Two simulated
local pose systems were used: a high accuracy system with
approximately 1 ◦hr heading drift and low slip, and a low
accuracy system with 5 ◦hr drift and high slip. For each
system, an observation model was trained for each sensor
to prior feature combination described above. Figures 2 and
3 show examples from 2 of these models. In total, this
resulted in 12 sets of experiments, each run 5 times (the same
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Fig. 5. Results for the GPS-denied localization experiment. Top: simulating
a high end odometry system and using 25 particles to localize. Bottom:
simulating a low end odometry system and using 1000 particles to localize.
Position error is shown with and without odometry to provide scale.
Odometry position and orientation error grows unbounded over time. In
contrast, the particle filter using each of 6 different learned observation
models is able to bound its error. Additionally, when temporarily unable
to converge due to a feature sparse region of the environment, the filter
maintains an accurate measure of its uncertainty, and recovers in the future.



Fig. 6. The 2 Sensor and 3 Prior Features used in Crusher experiments. From left to right: object height, NDVI (onboard), NDVI (prior), Green, Value.
All features are properly registered. The dashed circle in the prior images represents the robot’s 20m perception range. Terrain features present include
tree canopy, tall grass, and dirt trails.

simulated odometry was used in each group of experiments
over different feature pairs).

Figure 5 shows the position and heading error of each
system with respect to the ground truth GPS position (data
that was not availabile to the filter during simulation). In the
case of the high accuracy local pose solution, the odometry
slowly drifts over time. By the end of the 12 km of GPS-
denied travel, the odometry is off by nearly 100m. In
contrast, all 6 of the different feature pairs were sufficient
for robust localization: despite some early struggles, even the
worst system stays within 10m of the correct position 99%
of the time. This is more impressive considering that only
25 particles were used in these experiments (to demonstrate
the robustness of the system).

In the case of the low accuracy pose solution, the odometry
drifts much faster, and is off by nearly 300m after 12km.
Despite this increased error, all of the various feature pairs
and their corresponding learned observation models are suf-
ficient to keep the vehicle localized (see Table I for summary
statistics). Although at times errors can accrue of tens of me-
ters, the filters always maintain a proper model of their own
uncertainty, and therefore are able to robustly recover once
presented with sufficient information to localize. Maintaining
such an uncertain distribution does require more particles
(1000 was used for this set of experiments).

Figure 4 provides an example scenario of these experi-
ments. Crusher has just traveled through a 5 minute stretch of
completely open terrain, with almost no discernible features
in the prior data (the bottom right section of the path in
Figure 1). As a result, there is high uncertainty regarding the
correct position. However, once distinguishing features are
encountered, MCL is able to use the learned model to reduce
both the filter’s error and uncertainty. A similar situation
occurs starting at km 9, where the environment is temporarily
confusing and the filter actually starts modeling a bimodal
distribution (the bottom left section of Figure 1); over time
one of the hypothesis is contradicted by local sensor data and
the filter recovers. Important in both instances is the filter’s
own measure of its uncertainty (the brightness of the red path
in Figure 1), which grows in confusing or feature-poor areas
and then shrinks in feature-rich areas. This recovery from
large errors also shows that this approach would be suitable
for solving more global localization problems (although such
problems are not commonly addressed in outdoor robotics).

It should be noted that although these experiments were
offline, they were performed on real data with numerous
practical issues. For example, the prior data was 4 years old

System Avg Error(m,◦) % < 5,10,20 m % < 1, 2 ◦
Odometry 119.0, 2.86 0.05, 0.09, 0.15 0.13, 0.29
NDVI - NDVI 4.47, 0.78 0.76, 0.93, 0.98 0.77, 0.99
NDVI - GRN 6.30, 0.83 0.59, 0.87, 0.96 0.71, 0.99
NDVI - VAL 6.01, 0.89 0.52, 0.91, 0.98 0.63, 0.99
HGHT - NDVI 7.47, 0.98 0.49, 0.79, 0.93 0.62, 0.95
HGHT - GRN 8.46, 0.94 0.46, 0.74, 0.91 0.61,0.99
HGHT - VAL 9.72, 1.09 0.26, 0.65, 0.89 0.43, 0.97

TABLE I
SUMMARY STATISTICS FOR THE LOW ACCURACY ODOMETRY SYSTEMS

IN FIGURE 5. ALONG WITH MEAN ERROR, THE PERCENTAGE OF TIME

BELOW FIXED THRESHOLDS IS PROVIDED.

when the run was performed and sensor data recorded, and
there were numerous inconsistencies where the environment
had changed. There is significant noise in the features, espe-
cially in the onboard NDVI when Crusher drives directly at
the setting sun for several minutes. Perhaps most importantly,
Crusher was navigating using the prior data as in [1], [4],
and therefore was actively avoiding the complex areas that
are useful for localization in favor of open areas that are
most difficult. Additionally, 2.4m satellite data is relatively
low resolution, as 40cm data is now commercial available
and aerial resolutions are even higher.

The above experiments assumed that the GPS position
had already been properly registered. This was accomplished
through the use of nearly 300 hand chosen tie points between
the prior and sensor data. In actual operation of autonomous
vehicles, such a tedious process would only provide an initial
registration; over time additional work would be necessary
to account for GPS drift. Therefore, automatic registration
would be of enormous operational value.

The registration algorithm from Section IV was tested
by repeatedly registering in the presence of an artificially
induced bias. A 5 minute section of sensor data was used;
each EM iteration played back the same data. GPS positions
were used directly in place of the simulated local pose system
of the previous experiments; however there was still WAAS
error of approximately 1m to contend with. Four sets of
experiments were performed. The best and worst feature
pairs from the localization experiments were used (NDVI-
NDVI and Height-Value), with registration errors between
5-10m (Rmax = 10), and between 10-20m (Rmax = 20).

Figure 7 shows a single example of the registration pro-
cess: begining with a significant amount of initial error, the
registration is quickly corrected; as a result the vehicle’s
path properly aligns with the prior data. The results for all
experiments are shown in Figure 8. For all experiments, the
registration offset quickly converges to the correct position.



Fig. 7. The path of the robot in a single registration experiment, after
0,1,2 and 5 EM iterations (yelllow, red, green, and blue respectively). More
than 18 m of initial error is eventually reduced to less than 1 m by the
registration algorithm.

Regardless of the initial error, the final registration averages
40-50cm of error, which is within the underlying prior
data resolution. The final distributions all reject the null
hypothesis of µ ≥ 1m for p = 0.05. Across different feature
pairs, there is no statistically significant difference in the
mean registration error, although there is in the variance for
p = 0.1. This indicates that even the worst feature pair has
high performance on average, although it may be slightly
more susceptible to local minima.

VI. CONCLUSION

This work presents a solution to the dual problems of
localizing and registering to generic prior data for an outdoor
mobile robot. A procedure is presented to learn an observa-
tion model relating heterogenous sets of prior and onboard
sensor information that can be used in standard localization
algorithms such as MCL. An EM-based algorithm is also
presented that can automatically detect and correct for large
errors in the registration of GPS and prior locations, as
long as the error can be initially bounded. Combined, these
two approaches can improve the robustness and efficiency
of autonomous navigation in outdoor environments. Future
work will focus on the online and real time application of
these approaches to automatic registration and GPS denied
localization for autonomous navigation. In addition, the
suitability of these techniques will be further investigated for
use with low cost and low accuracy GPS systems. Finally,
the possibility of training such approaches in the complete
absence of any GPS information will be explored.

This work was conducted through collaborative participa-
tion in the Robotics Consortium sponsored by the U.S. Army
Research Laboratory under the Collaborative Technology
Alliance Program, Cooperative Agreement W911NF-10-2-
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tive Agreement DAAD19-01-2-0012. The data used in this
work was provided from the DARPA sponsored Unmanned
Ground Combat Vehicle - PerceptOR Integration project
(contract MDA972-01-9-0005). The views and conclusions
contained in this document are those of the authors and
should not be interpreted as representing the official policies,
either expressed or implied, of the U.S. Government.
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