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Noise, Bifurcations, and Modeling of Interacting Particle Systems

Luis Mier-y-Teran-Romero, Eric Forgoston and Ira B. Schwartz

Abstract— We consider the stochastic patterns of a system of
communicating, or coupled, self-propelled particles in the pres-
ence of noise and communication time delay. For sufficiently
large environmental noise, there exists a transition between a
translating state and a rotating state with stationary center
of mass. Time delayed communication creates a bifurcation
pattern dependent on the coupling amplitude between particles.
Using a mean field model in the large number limit, we
show how the complete bifurcation unfolds in the presence of
communication delay and coupling amplitude. Relative to the
center of mass, the patterns can then be described as transitions
between translation, rotation about a stationary point, or a
rotating swarm, where the center of mass undergoes a Hopf
bifurcation from steady state to a limit cycle. Examples of some
of the stochastic patterns will be given for large numbers of
particles.

I. INTRODUCTION

The collective motion of interacting multi-particle systems
has been the subject of many recent experimental and model-
ing studies. It is especially astounding that numerous coher-
ent states of great complexity can arise spontaneously in spite
of the absence of a particle acting as a leader. The study of
these swarming systems has proven useful in understanding
the spatio-temporal patterns formed by bacterial colonies,
fish, birds, locusts, ants, pedestrians, etc. [1], [2], [3],[4],
[5], [6]. Moreover, these studies have provided valuable
information that may be exploited in the design of systems
of autonomous, inter-communicating robotic systems [7], [8],
[9].

Investigators have used various mathematical approaches
to study swarm systems. Some studies have preserved the in-
dividual character of each agent in the system, using ordinary
or delay differential equations (ODEs/DDEs) to describe
their trajectories [10], [11], [12], [8]. Other researchers have
proposed continuum models written in terms of averaged
velocity and particle density fields that satisfy partial differ-
ential equations (PDEs) [2], [3], [5], [6]. In addition, authors
have also studied the effects of noise in the swarms and
shown the existence of noise-induced transitions [13], [14].

More recently, authors have begun to study the effects
of communication time-delays between particles. Time-delay
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models are common in many areas of mathematical biology
including population dynamics, neural networks, blood cell
maturation, virus dynamics and genetic networks [15], [16],
[17], [18], [19], [20], [21], [22], [23]. In the context of
swarming particles, it has been shown that the introductionof
a communication time-delay may induce transitions between
different coherent states [14]. The type of transition is
dependent on the coupling strength between particles and
the noise intensity.

Here we make a more detailed study of the bifurcation
structure of the mean field approximation to the delay-
coupled model proposed studied in [14] and investigate how
the bifurcations in the system are modified in the presence
of noise.

II. T HE SWARM MODEL

We consider a two-dimensional swarm withN self-
propelling particles that are mutually attracted in a symmetric
fashion. Additionally, we consider the case in which parti-
cles communicate with each other with a time delay. The
swarm is governed by the following system of ODEs:

ṙi =vi, (1a)

v̇i =
(

1− |vi|2
)

vi −
a

N

N
∑

j=1

i6=j

(ri(t)− rj(t− τ)) + ηi(t),

(1b)

for i = 1, 2 . . . , N . Here ri and vi represent the position
and velocity of thei-th particle, respectively; the strength of
the attraction is measured by the coupling constanta and the
time delay is uniform and given byτ . The self- propulsion
and frictional drag on each particle is given by the term
(

1− |vi|2
)

vi. In the absence of coupling, particles tend to
move on a straight line with unit speed|vi| = 1 as time goes
to infinity. The termηi(t) = (η

(1)
i , η

(2)
i ) is a two-dimensional

vector of stochastic white noise with intensity equal toD and
correlation functions〈η(ℓ)i (t)〉 = 0 and 〈η(ℓ)i (t)η

(k)
j (t′)〉 =

2Dδ(t− t′)δijδℓk for i, j = 1, 2, . . .N andℓ, k = 1, 2.
The coupling between particles arises from a time-delayed,

spring-like potential. Hence, our equations of motion may
be considered to be the first term in a Taylor expansion of
other more general time-delayed potential functions about
an equilibrium point. The model described by Eqs. (1a)-
(1b) with τ = 0 (i.e. no time delay) possesses a noise-
induced transition whereby a large enough noise intensity
causes a translating swarm of individuals to transition to
a rotating swarm with a stationary center of mass [24],
[14]. Regardless of which state the swarm is in (translating
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Fig. 1. Snapshots of a swarm taken at (a)t = 50, (b) t = 60, (c) t = 62,
(d) t = 64, (e) t = 66, (f) t = 68, (g) t = 70, (h) t = 72, (i) t = 74,
and (j) t = 76, with a = 4, N = 300, andD = 0.08. The swarm was
in a rotational state when the time delay ofτ = 1 was switched on at
t = 40. For a movie, see the relevant mpeg video. Figure reproducedwith
permission from [14].

or rotating), the addition of a communication time delay
leads to another type of transition. This transition occursif
the coupling parametera, is large enough. As an example,
we consider a swarm that has already undergone a noise-
induced transition to a rotational state before switching on
the communication time delay.

Figures 1(a)-1(j) show snapshots of a swarm att = 50,
t = 60, t = 62, t = 64, t = 66, t = 68, t = 70, t = 72,
t = 74, andt = 76 respectively. For these simulations,N =
300, τ = 1, D = 0.08, the noise was switched on att =
10 (causing the swarm to transition to a stationary, rotating
state), and once in this rotating state, the time delay was
switched on att = 40. One can see that with the evolution
of time, the individual particles become aligned with one

another and the swarm becomes more compact. Additionally,
the swarm is no longer stationary, but has begun to oscillate
[Figs. 1(g)-1(j)].

This compact, oscillating aligned swarm state looks similar
to a single “clump” that is described in [25]. However, where
each “clump” of [25] contains only some of the total number
of swarming particles, our swarm contains every particle.
Additionally, while a deterministic model along with global
coupling is used to attain the “clumps” of [25], our oscillating
aligned swarm is attained with the use of noise and a time
delay.

III. M EAN FIELD APPROXIMATION

As we have shown, once the stochastic swarm is in
the stationary, rotating state, the addition of a time delay
induces an instability. We investigate the stability of the
swarm by deriving the mean field equations and performing
a bifurcation analysis.

We carry out a mean field approximation of the swarming
system by switching to particle coordinates relative to the
center of mass and disregarding the noise terms. The center
of mass of the swarming system is given by

R(t) =
1

N

N
∑

i=1

ri(t). (2)

We decompose the position of each particle into

ri = R+ δri, i = 1, 2 . . . , N, (3)

where

N
∑

i=1

δri(t) = 0. (4)

Inserting Eq. (3) into the second order system equivalent to
Eqs. (1a)-(1b) withD = 0 and simplifying one obtains

R̈+ δr̈i =
(

1− |Ṙ|2 − 2Ṙ · δṙi − |δṙi|2
)

(Ṙ+ δṙi)

− a(N − 1)

N

(

R(t)−R(t− τ) + δri(t)

)

− a

N
δri(t− τ), (5)

where we used Eq. (4) in the form

δri(t− τ) = −
N
∑

j=1, i6=j

δrj(t− τ). (6)

Summing Eq. (5) overi and using Eq. (4), one arrives at

R̈ =

(

1− |Ṙ|2 − 1

N

N
∑

i=1

|δṙi|2
)

Ṙ

− 1

N

N
∑

i=1

(

2Ṙ · δṙi + |δṙi|2
)

δṙi

− a
N − 1

N
(R(t)−R(t− τ)) . (7)



Inserting Eq. (7) into Eq. (5) the following equation for
δr̈i is obtained:

δr̈i =





1

N

N
∑

j=1

|δṙj |2 − 2Ṙ · δṙi − |δṙi|2


 Ṙ

+
(

1− |Ṙ|2 − 2Ṙ · δṙi − |δṙi|2
)

δṙi

+
1

N

N
∑

j=1

(

2Ṙ · δṙj + |δṙj |2
)

δṙj − a
N − 1

N
δri

− a

N
δri(t− τ), (8)

for i = 1, 2 . . . , N .
Equations (7) and (8) are fully equivalent to Eqs. (1a)-

(1b) when D = 0, and simply consist of rewriting the
original system using the relationship between the particle
coordinatesri, the center of massR, and the coordinates
relative to the center of massδri. This mapping has trans-
formed the original2N differential equations into2N + 2
differential equations. There is, however, no inconsistency
since in the transformed set of equations only2N of them
are independent, because of the relation seen in Eq. (4).

We then obtain a mean field approximation by neglecting
the fluctuation of the swarm particles,δri’s, from the center
of mass:

R̈ =
(

1− |Ṙ|2
)

Ṙ− a (R(t)−R(t− τ)) , (9)

where we made the approximationaN−1
N ≈ a since we

consider the thermodynamic limit.

IV. B IFURCATIONS IN THE MEAN FIELD EQUATION

The behavior of the system in the mean field approxima-
tion in different regions of parameter space may be better
understood by using bifurcation analysis. Equation (9) may
be written in component form usingR = (X,Y ) and
Ṙ = (U, V ) as

Ẋ = U, (10a)

U̇ = (1− U2 − V 2)U − a(X −X(t− τ)), (10b)

Ẏ = V, (10c)

V̇ = (1− U2 − V 2)V − a(Y − Y (t− τ)). (10d)

For all values ofa andτ , Eqs. (10a)-(10d) have translation-
ally invariant stationary solutions

X = X0, U = 0, Y = Y0, V = 0, (11)

with two free parametersX0 andY0. They also have a three
parameter family of uniformly translating solutions

X = U0t+X0, U = U0, Y = V0t+ Y0, V = V0,
(12)

which requires

U2
0 + V 2

0 = 1− aτ, (13)

and thus exists only foraτ < 1. In the two-parameter space
(a, τ), the hyperbolaaτ = 1 is in fact a pitchfork bifurcation

line on which the uniformly translating states are born from
the stationary state(X0, 0, Y0, 0). The other branch of the
pitchfork is an unphysical solution with negative speed.

Linearizing Eqs. (10a)-(10d) about the stationary state, we
obtain the characteristic equation

(

a(1− e−λτ )− λ+ λ2
)2

= 0. (14)

It suffices to study the zeros of the function

D(λ) = a(1 − e−λτ )− λ+ λ2 = 0, (15)

since the eigenvalues of Eqs. (10a)-(10d) are obtained by
duplicating those of Eq. (15).

We now search for Hopf bifurcations in the two parameter
space(a, τ) by lettingλ = iω in Eq. (15). Substitution leads
to

a− ω2 − iω = ae−iωτ . (16)

Taking the modulus of Eq. (16), we finda at the Hopf point,
aH , is given by

a2H = (aH − ω2)2 + ω2, (17)

or, consideringω 6= 0,

aH =
1 + ω2

2
. (18)

We eliminatea in Eq. (16) by using Eq. (18) and taking
the complex conjugate to obtain an equation forτ at the
Hopf point

1− ω2

1 + ω2
+ i

2ω

1 + ω2
= eiωτ . (19)

We obtainτ by equating the arguments of both sides, being
careful to use the branch oftan θ in (0, π) since the left
hand side of Eq. (19) is on the upper complex plane for
ω > 0. The result is a family of Hopf bifurcation curves
parameterized byω:

aH(ω) =
1 + ω2

2
, (20a)

τHn(ω) =
1

ω

(

arctan

(

2ω

1− ω2

)

+ 2nπ

)

n = 0, 1, . . . . (20b)

These curves are shown in Fig. 2(a). We may eliminate the
parameterω between these two equations and obtain

τHn(a) =
1√

2a− 1

(

arctan

(√
2a− 1

1− a

)

+ 2nπ

)

n = 0, 1, . . . (21)

In spite of their appearance, the Hopf curves in Eqs. (20a)-
(20b) and (21) are in fact continuous atω = 1 anda = 1,
respectively (with the correct branch oftan θ in (0, π)). From
Eq. (20a)-(20b), we see that the Hopf frequency depends only
on the value ofa for all members in the family; it has the
value one ata = 1 and the frequency tends to infinity asa
grows. Interestingly, only the first Hopf curve of the familyin
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Fig. 2. (a) Hopf (blue) and pitchfork (red) bifurcation curves ina and τ
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saddle to node transition (dashed black); the number in eachregion indicates
the number of eigenvalues with a real part greater than zero with the solid
lines as boundaries. (Color online.)

Eq. (21) is defined ata = 1/2; it has the valueτH0|a=1/2 =
2. The point (a = 1/2, τ = 2) which lies both on the first
member of the family of Hopf curves and on the pitchfork
branch is in fact a Bogdanov-Takens (BT) point [26], where
ω = 0. None of the other Hopf branches meet the pitchfork
bifurcation line since they tend asymptotically to infinityas
a → 1/2.

We used a numerical continuation method (DDE-
Biftool) [27] to calculate the pitchfork and Hopf branches
in the (a, τ) parameter space; these results are in per-
fect agreement with our analytical calculations (results not
shown). These numerical studies reveal that the number of
eigenvalues with real part greater than zero is as indicatedin
Fig. 2(b). In addition, our numerical continuation analyses
also reveal node to focus transitions of the steady state.
These occur at points where there are two real and equal
eigenvalues, i.e. whereD(λ) = 0 andD′(λ) = 0, for λ real.
From D′(λ) = 0 we obtaine−τλ = 1−2λ

aτ , which we can
insert intoD(λ) = 0 to obtain

λ2 −
(

1− 2

τ

)

λ+ a− 1

τ
= 0, (22)

with solutions λ = 1
2

[

1− 2
τ ±

√

1 + 4
τ2 − 4a

]

. For the
roots to be repeated, we set the discriminant to zero and
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this gives the curve where the node-focus transitions occur:

τ =
1

√

a− 1/4
. (23)

Moreover, from the solutions to Eq. (22) we see that the
repeated eigenvalues have positive real parts ifτ > 2 and
negative real parts ifτ < 2. In Fig. 2(b), we show the
pitchfork and Hopf bifurcation curves overlaid with the node-
focus transition curve given by Eq. (23).

As seen in Fig. 2(b), the pitchfork and Hopf branches,
together with the node-focus transition curves split the area
around the BT point into five different regions. The behavior
of the leading eigenvalues (excluding the one at the origin)as
one probes these five regions is shown in Figs. 3(a)-3(e). At
a point directly to the right of the BT point in(a, τ) space,
the stationary solution has a pair of eigenvalues with positive
real parts and non-zero imaginary parts [Fig. 3(a)]. Moving
counter-clockwise in the(a, τ) plane, the eigenvalue pair
collapses onto the real line after crossing the upper branch
of the node-focus transition [Fig. 3(b)]. Still moving in the
same direction in parameter space, we observe two different
instances of eigenvalues crossing the origin: first, the smaller
of the two purely real and positive eigenvalues does so on
the upper part of the pitchfork bifurcation line [Fig. 3(c)]
and then the remaining purely real and positive eigenvalue
crosses the origin on the lower part of the bifurcation line
[Fig. 3(d)]. Finally, at the node-focus transition line, the two
purely real and negative eigenvalues coincide on the real axis
and acquire non-zero imaginary parts [Fig. 3(e)]. Continuing
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upwards in parameter space, the complex pair crosses the
imaginary axis on the Hopf bifurcation curve, giving birth
to a stable limit cycle.

A. Numerical simulations

Figure 4 shows an excellent comparison of the analytical
result given by Eqs. (20a)-(20b) with a numerical result
which was found using a continuation method [27] for the
mean field model for several choices ofτ . Furthermore, for
τ = 1, the value of couplinga at the bifurcation point
is aH ≈ 3.2. This value ofaH corresponds very well to
the change in behavior of the stochastic swarm (results not
shown).

More evidence of the Hopf bifurcation is seen in the inset
of Fig. 4. The inset shows the stochastic trajectory of the
center of mass of the swarm fromt = 45 to t = 90
for the example shown in Fig. 1. Once the time delay is
switched on att = 40 (with the swarm located at the
center of the inset figure), the swarm begins to oscillate.
The swarm moves along an elliptical path [the position of
its center of mass is denoted at several times that correspond
to Figs. 1(b), 1(d), 1(f), 1(h), and 1(j)], until it eventually
converges to the circular limit cycle.

Figures 5(a) and 5(b) show a time series simulation of a
swarm withN = 75 particles. Figure 5(a) shows the position
components, while Fig. 5(b) shows the velocity components.,
One can see that the swarm follows a circular-like path over
time. A perturbation that is applied att = 20 shows that for
the chosen parameters, the pattern is stable in the presence
of noise.

The presence of noise introduces interesting switching
behavior that make the initial conditions of the swarm critical
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Fig. 6. Long time behavior of the mean particle alignment (defined in the
text) for different values of noise intensity (D = σ2/2) and two different
initial conditions. In panel (a), all particles start off from the origin with
equal velocity vectors; in panel (b), all particles start from rest, distributed
uniformly over the unit square. For these simulations,N = 150, a = 2

andτ = 2. The time-delay is turned on att = 50, and the simulations run
until t = 300.

in determining the long time behavior of the system. To
demonstrate this, we have performed a series of simula-
tions for different noise intensities and two different initial
conditions: (i) all particles start at the origin with unitx
andy speeds [Fig. 6(a)] and (ii) all particles are distributed
uniformly over the unit square and start from rest [Fig. 6(b)].
The simulations are run untilt = 300 using a coupling
constanta = 2 and a time-delayτ = 2 which is turned
on at t = 50. Our simulations reveal that in the long time
limit and for small values of noise, the swarm converges
to either a compact state that rotates as a whole [case (i)]
or to a ring state with particles going both clockwise and
counterclockwise [case (ii)]. The asymptotic behavior of
the system is readily visualized by calculating the mean
alignment of the swarm particles. We quantify this mean
alignment of the swarm by calculating the cosine between
the directions of thei-th particle and the center of mass,
cos θi = (ṙi · Ṙ)/(|ṙi||Ṙ|), and then averaging over all
particles and over the last 100 time units of simulation.
Figure 6(a) shows that in case (i) the particles converge
to the compact, aligned state for low and moderate noise
intensities. However, this state is broken up at high noise
levels (σ ≈ 0.8). In contrast, Fig. 6(b) shows that in case
(ii) the particles converge to a ring for small values of noise
(σ . 0.25), evidenced by the low values of the mean particle
alignment in Fig. 6(b), but converge to the aligned case
for higher values of noise (σ & 0.25). Observing the full
simulation runs in detail (not shown) reveals a switching



behavior: for case (ii) with a noise levelσ & 0.25, the
particles first converge to a noisy ring and then switch to
the rotating state due to the effect of noise. The simulations
suggest that the transition to the rotating state occurs once
the velocities of the particles cross an alignment threshold.
The system, in fact, displays hysteresis: one can force the
swarm to transition from the ring state withσ = 0.2 to the
rotating state by raising the noise toσ = 0.25; however,
it seems that the inverse transition, i.e. making the swarm
transition back to the ring state by lowering the noise level,
is extremely unlikely.

V. CONCLUSIONS

To summarize, we studied the dynamics of a self-
propelling swarm in the presence of noise and a constant
communication time delay and prove that the delay induces
a transition that depends upon the size of the interaction
coupling coefficient. Although our analytical and numerical
results were obtained using a model with linear, attractive
interactions, the analysis may be applied to models with more
general forms of social interaction.

We further uncovered a complete analytical description of
the bifurcation point which control the instabilities arising
from noise induced transitions. The analysis allows us to
completely classify, using mean field approximations, where
the swarm exhibits a stable translation, stationary centerof
mass, or rotation.

In general, our results provide insight into the stability of
complex systems comprised of individuals interacting with
one another with a finite time delay in a noisy environment.
Furthermore, the results may prove to be useful in controlling
man-made vehicles where actuation and communication are
delayed, as well as in understanding swarm alignment in
biological systems.
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