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Abstract— We present a real-time self collision detection
algorithm applicable for industrial and humanoid robots. The
algorithm is based on computing the swept volumes of all
bodies and checking them pairwise for collisions. The algorithm
operates on joint angle intervals. Such, it does not only test a
single or N intermediate configurations but assures safety of a
whole movement. Key idea of the new swept volume compu-
tation is representing volumes as convex hulls extended by a
buffer radius, so called sphere swept convex hulls (SSCH). This
leads to tight and compact bounding volumes. The operation
set available to model the different joints is strictly conservative
and allows for a trade-off between accuracy and computation
time. During a configurable timespan the algorithm updates a
table of pairwise distances and thus can guarantee hard real-
time. It is applied on DLR’s humanoid Justin in a sports robotic
scenario, where also accuracy and computational performance
is evaluated (0.4ms, INTEL T2500@2GHz).

I. INTRODUCTION

Collision avoidance is a crucial task for humanoid and
industrial robots. Preferably this task should be separated
from cognitive modules such as path planning. Even though
planning and executing a safe path is obviously related, a
separate safety module that avoids collisions independently
and is able to override the commands of all other modules
provides essential advantages: all other modules can use
simpler collision models or even apply unsafe collision
avoidance strategies and developers of that modules can
perform practical tests in early development stages without
concerns. This architecture enhances safety and follows the
established practice to concentrate safety concerns in one
place. Following that idea our aim is a self-contained, reac-
tive collision detection module. The module runs cyclically,
taking the robot’s state (joint angles and velocities but no
planned trajectories) as input. It computes whether braking
must be triggered or not because it is safe to wait one more
cycle and then decide again whether to brake.

The task is particularly difficult at high speeds, where
the safety module must handle significant braking distances
geometrically precisely with limited computation time. We
faced such a situation in our project B-Catch, where DLR’s
humanoid robot Justin catches two simultaneously thrown
balls [1][2]. Thus we developed a strictly conservative con-
tinuous collision detection algorithm, presented in this paper,
which handles large braking distances, safeguards the whole
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Fig. 1. Swept volumes of a large robot movement from the start to the stop
configuration shown below; The movement is an illustration, a real braking
trajectory is shorter. We use DLR’s humanoid robot Justin for experiments
and application. The hands are omitted here for better visibility.

braking movement, and executes in real-time (0.4ms). It
first computes the swept volumes of all bodies, i.e., the
volume the body touches within its movement (Fig. 1). Then
all pairs of swept volumes are checked for collision. The
algorithm requires a kinematic model of the robot defining
joint-frames and a geometrical model with the robot’s rigid
bodies represented in one joint-frame. It operates as follows:
1) Compute all joint intervals 2 = [¢°;¢'], such that
when the robot starts braking the next cycle, it will
stop within this interval. The intervals are based on
joint angles, joint angle velocities, latency, and worst-
case deceleration, as well as joint angle uncertainties.
2) Compute swept volumes “//ki of all bodies B; in all
joints J; from the body down to the robot base
by successively including the sweeping effect of
one joint J; after the other. The swept volumes are
represented in coordinates of the corresponding joint-
frame Cj of joint J.

3) For each body pair (B;,B;)
Compute the distance of ”f/,j and %/ in the
first common joint-frame C; on the sequences
of joints from B; and B; down to the robot base.

4) Stop robot if any of the distances from 3) is zero.!

! Alternatively, less or equal a configured safety distance.
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This paper contributes a strictly conservative and geo-
metrically precise collision detection algorithm based on
swept volume computation using an efficient, effective, and
numerically stable representation. It is simple enough for
a safety-related module and runs in strict real-time with a
configurable computation time.

The paper is organized as follows: after related work in
Sec. II, we derive the algorithm in Sec. III and extend it to
real-time in Sec. IV. Thereafter, we present our application
in Sec. V and evaluate accuracy and performance in Sec. VI.

II. RELATED WORK

Collision detection in 3D has been studied in different
contexts. A thorough overview of the methods from computer
graphics, esp. 3D computer games, can, e.g., be found in
the textbook [3], a particularly impressive system in [4].
Textbook methods often employ (a hierarchy of) geometrical
primitives to represent or bound objects. Examples are axis
aligned or oriented bounding boxes (AABB/OBB), spheres,
sphere swept line segments (capsules), or sphere swept
rectangles. By contrast, we represent volumes as sphere
swept convex hulls (SSCH) of points, i.e., the convex hull of
a finite set of points extended into all directions by the same
buffer-radius. This representation can bound both angled and
round objects with few points. Compared to the textbook
methods it is more flexible, needs fewer bodies, and thus
avoids the complex handling of a hierarchy as in [5][6][3,
§6][4]. A hierarchy would be particularly complex here since
our swept volumes are recomputed every cycle, not static as
in [5] and the hierarchy would have to be updated. Instead we
propose a distance updating scheme (Sec. IV) that is simpler
and limits computation time to a given budget for real-time
operation.

Unlike the textbook representation as a union of spheres,
[7] and [8] propose to use the convex hull of spheres. This
so-called s-tope is more general than our approach, as it
allows different radii for different spheres. It more effectively
represents conical objects but is much more difficult to
handle. By contrast, in our representation computation of,
e.g., a swept volume is just a simple formula (Sec. III-F).

In the context of collision avoidance for robotic ap-
plications range from pure distance computation [9], to
path-planning of safe trajectories [10][11], and potential
fields [12], where obstacles create a repulsive force. Ap-

Fig. 2. Different ways to check a motion
for collisions: (a) Test start and stop con-
figuration. (b) Test several intermediate
configurations. (c¢) Test swept volume (as
our algorithm does). (d) Determine the
first configuration at which both bodies
(d collide.

proaches handling the robot motion can be discrete or con-
tinuous (cf. Fig. 2). Discrete approaches check for collisions
at some intermediate configurations, potentially missing col-
lisions in between (“tunneling problem”) [3, §2.4.3]. Con-
tinuous collision detection approaches solve the tunneling
problem and check the whole trajectory. Some, like ours,
compute whether a collision occurs, e.g., by checking swept
volumes, some determine the first colliding configuration [4].

Many systems, e.g., [7], [8], [11], and ours, use the
GJK-algorithm [9] as a building block for computing the
distance between two convex polyhedra given as arrays of
points. Several optimizations have been proposed [13] which
however rely on precomputation and do not pay off when the
volumes are computed dynamically.

Swept volumes can be easily computed as voxel-grids
[10]. This is precise and useful, e.g., to determine a ma-
chine’s workspace, but too slow for real-time operation.

Our method? is the 3D generalization of a 2D collision
detection algorithm we presented in [14][15]. There we used
comparable techniques to compute dynamic safety zones that
depend on the current motion of a vehicle. The focus laid
on the safety properties of the algorithm, its implementation,
and the braking model. We applied formal verification to
achieve a certificate of compliance with IEC61508 SIL3 by
the German TUV. As a general result we showed that the
techniques also applied here are appropriate to give safety
guarantees in a conservative and strict mathematical sense.

III. ALGORITHM

We will now introduce the algorithm of swept volume
computation and collision detection. We start introducing the
algorithm using abstract sets and transformations, in partic-
ular the notion of the swept volume of a body in a frame. A
major principle is the Minkowski idea of lifting operations
to sets by taking the set of results for all (combinations of)
inputs. Afterwards we present our concrete representation of
volumes (Sec. III-D) and the set of operations each handling
a single joint (Sec. III-E).

Beforehand some notation: Let B; be a body, C; a reference
frame attached to B;, J; the joint with which B; and C; move,
and g; the corresponding entry of the joint-angle vector.
The letter V denotes a volume, i.e., a subset of coordinate-
vectors C R3 referring to a reference frame C;, and Ti

2A patent is pending at the German patent office (#102009006256.4-32).
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IArm0 < JArm1 < JArm2 < IArm3 < 1Arm4 < lIArm5 < 1Arm6
world < torso0 « torsol < torso2 < torso3 < headO < headl
~

rArm0 < rArml < rArm2 < rArm3 < rArm4 < rArm5 < rArm6

Fig. 3.

Kinematic tree of Justin (20 joints) as an example. A node corresponds to a joint frame C;, an edge C; <— C; corresponds to the joint J;. The

relative pose of two bodies is affected by all joints on the path between the bodies’ joint frames (shown for IArm3 and rArm?2). The least-common-ancestor
(Ica) of both is the node (torso3) on that path closest to the world frame. The Ica plays an important role in our algorithm, because the swept volumes of
two bodies in their Ica-frame are checked for collision. Therefor, a body B;’s swept volume is computed successively from C; down to the world frame.

Fig. 4. A parallel motion of both arms (start and stop configuration left) and
the swept volumes of the last links in the 1Arm6, torso3, and rArm6 frame
(right, top to bottom; cf. kinematic tree in Fig. 3). In any reference frame,
if the bodies collide, the swept volumes intersect. Conversely, if for a frame
Cy the swept volumes of B; and B; intersect (e.g. in the torso-frame), both
bodies touch the same point, relative to C, but not necessarily in the same
moment. Potentially this is a false-alarm. However, if k =i (resp. k = j) the
swept volume of B; (resp. B;) is the body itself so an intersection of the
swept volumes implies a collision (not the case here), without false-alarms.

the transformation matrix mapping C;-coordinates to Cj-
coordinates (at a single point in time). As usual, motion is
described by time-varying transformations between frames.
Finally, calligraphy letters (¥',.7,2) distinguish quantities
of a whole motion from quantities of a single point in time.

A. Swept Volume of a Body in a Frame

Obviously, for a given point in time, two moving bodies
B; and B; collide if they have a point in common; this
holds regardless which reference frame is chosen, even if
the reference frame moves. However, when the bodies’ swept
volumes are considered, the reference frame matters: A swept
volume is only defined relative to a reference frame, i.e., it
considers the relative motion between a body and a frame,
e.g., another body (Fig. 4).

Formally, let V/ C R3 be the volume of body B; in frame
C;. Then T ; is applied to Vii by transforming all points.

Vi=Tii Vi={Tii plp eV} (1)

This equation describes a static situation, i.e., at a single
point in time. Bodies collide in all or no frames. Now, let
T be the set of Ty, ; during the considered motion, then
the swept volume of B; in Cy is

KW= UTVi=A{T-p|T € TcipeVi}. @
Te*ykei

If two swept volumes “V,j and ”//kj intersect, the implications
depend on the relation of

«?j<—i - '?jek . '?kei- 3)

If both sides are equal, an intersection implies that the bodies
B; and B; collide by the following implications

KW #0 @)
= 3% € TisTj € Ty 2 TViNT;- V] #0 )
= L€ i, T/ € Ty : T-ViNT VI £0 (6)

= AT € Tjei : T-VINV] £0, as T=T/T, € Tji. (7)

As 7 describes motion as a function of time, (3) becomes
an equality only if C; is fixed relative to C; or Cj, e.g., k=i
or k= j; then only one of the factors in 7T}, ; moves and
the other one is static. So, ideally, to give the tightest bound
possible, the algorithm should compute the swept volume of
one body in the other bodies’ frame and intersect both. We
will however come back to that later.

B. Kinematic Tree

For a robot the motion of bodies is caused by joints which
rotate (or more generally move) adjacent bodies relative to
each other by a joint angle g. All joints together establish the
robot’s kinematic tree (Fig. 3). The kinematic-tree defines
all transformations between frames at some point of time
as a function of the joint-angle vector ¢, and the set of all
transformations during a motion as a function of the set of
joint angles 2 during the motion.

Tii=Tii(q) (®)
Tji ={Tjiq)lg € 2} = Tji(2) ©)

For two adjacent frames C; and C; the transformation Tj;
along the corresponding edge C; < C; in the kinematic tree
is the movement of a single joint J; and depends only on
the joint angle entry g;, i.e., Tj—i(q) = Tj—i(gi). Thus, for
two arbitrary frames C; and Cj, the transformation Tj.; is
given by successively applying all transformations along the
unique path ky =1i,...,k;, = j

1
Ticilg) = [] Towren(@) (10)

1 1

and depends only on the joint angles along this path (Fig. 3).
C. Separation of the Effect of Different Joints

A major principle of our algorithm is a Minkowski-
view on configuration sets. Considering configurations and
volumes this means applying every configuration on every
point of the volume (see (2)). Considering the combination
of joints J; and J; it means combining every configuration



gi € 2; with every configuration ¢; € 2;. So, while the real
set of configurations is a (braking) trajectory 2 = {q(¢)|r},
our algorithm bounds it by a cross product of intervals

2:=Qdsa;] > {a®)lr}, (1)
l

chosen to contain the considered braking motion. This intro-
duces considerable bounding error (Fig. 5), but is conserva-
tive and essential for the algorithm as it allows to decouple
joints and to apply their sweeping effect successively. For-
mally, now (3) becomes an equality, whenever Cj is on the
path C; —C; in the kinematic tree, because then the paths
C; —Cy and G — C; affect different joints and are independent
in 2 by (11). Hence, for two bodies B; and B; we can choose
any frame on the connecting path to compute and intersect
swept volumes in, without introducing additional bounding
error beyond (11). For our algorithm we chose the Ica-frame
(see Fig. 3) to intersect the swept volumes of two bodies,
because then, the swept volumes for each body B; can be
successively computed from the bodies’ frame C; down to the
world frame (Fig. 3). With (k; =1,...,k, = world) denoting
the path from C; down to the world frame this is done by

Vi = Tt (L) iy J=1om—1. (12)

The importance of intersecting swept volumes in the Ica-
frame not in the world frame is shown in the supplementary
video: A fast hip (torso0) rotation produces large swept
volumes 7/\3,‘35‘516 and ”//‘;érrlgw for the hands. Still they do not
collide because the hip rotation affects both hands the same

1Arm6 rArmo6 :
way, so Y xo5” and #0002 do not intersect.

D. Sphere Swept Convex Hull Representation

We represent all volumes in terms of sphere swept convex
hulls (SSCH) of a finite set of points P={[p,];_,} defined as

¥ (r;P) =convP+{beR? | [b| <r}, (13)

where conv P is the convex hull of a point-set P. So each
volume is the Minkowski-sum of a convex polyhedron given
by a set of points, and a ball of radius r. Both, robot bodies
and swept volumes are represented this way.

From a modeling point of view this representation is very
flexible. It bounds both edged and round bodies tightly with
few points. E.g., the 26 bodies of Justin’s collision model
(20 joints) only contain 80 points and 26 radii. A single
bodie’s representation uses only 3.1 points on average, less
than 4 for a tetrahedron, the simplest polyhedral volume.
Nevertheless, the collision model is tight and conservative
(cf. Fig. 6 and video)®. Non-convex bodies have to be split
into convex subparts which are treated as separate bodies,
otherwise the algorithm safeguards their convex hull.

Furthermore, the representation is numerically good-
natured as it does not use connectivity information, e.g., tri-
angle meshes. This avoids typical problems of computational
geometry involving degenerate triangles. Here, computation
is simply computing the radius and the generating points.

3The joints torsol<—torso2 and torso2<torso3 are coupled leading to 19
independent DOF. The hand volume bounds different hand configurations.

L =

q1

Fig. 5. Bounding the considered configurations (q;(t),q2(7)), e.g., a
braking trajectory, by a cross-product of intervals. This approximation is
over-conservative, as, e.g., the lower/right and upper/left corner of the
rectangle are safeguarded by the algorithm but never reached by the robot.

Fig. 6. DLR’s mobile humanoid Justin and its collision model.

The GJK algorithm can easily be adopted to SSCHs.
Originally it computes a lower bound of the distance between
two convex hulls, given as a finite set of points B, P;.

GJK(P,-;R,-) < d (convP;,conv Pj),

with d(X,Y) =min{|x—y| | xeX,yeY} (14)

For details of this computation see the original paper [9].
A lower bound on the distance of SSCHs is given by the
distance of the convex hulls itself minus both extension radii

GJK,(ri;PirjiPj) :== GIK(P;Pj) —ri—r;  (15)
<d(V(mp),V(r::p)),  (16)

because Minkowski addition of O-centered balls with radius
ri and r; in (13) reduces the distance by r; and r;.

E. Operations in the SSCH Representation

Each operation " — Jj;(Z2;)- ¥ in (12) maps the effect
of one joint J; for a set of configurations .2; while switching
the frame from C; to C;. We will now propose concrete
formulas that implement these operations for different kinds
of joints by taking a volume V(r:[pJ_,) as input and
computing a volume V (: [pjli_,) D Fji(2i) -V (r:lpi,) as
output. Further, we present alternative operations to trade-off
between accuracy and computation time.

Beforehand, we need some properties of the representation
V (r:[pJi_,) allowing to implement operations on volumes by
operations on their generating points.

V(ﬁ: V<r22 [171]';:1)) = V(’1+r2§ [Pl];':1> (17)
T(q)-V(=lpt,) =V (=@ ) (18)

This means, extending a volume by radius r; and r, one after
another is equivalent to extending by radius r +r; and a rigid
body transformation is applied to a volume by transforming
all generating points.

The general fact that the union of convex hulls is contained
in the convex hull of the union

convX UconvY C conv(X UY) (19)
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Fig. 7. Bounds of a circular arc by an SSCH with 1, 2, and 3 points.

establishes a unification rule for volumes

UV(r;;P[) - V(mlaxr[;UP[) (20)

T(2)- ( [pi]i= 1) U V(’T ) [Pl 1) 21
qe2

cV(ruL, 72@4my), (22

which shows the key safety property: the convex hull of the
motion .7 (2)-{p;} of the generating points (extended by r)
bounds the swept volume 7 (2)-V (r: [p,];_, ) for that motion.

To simplify the presentation, we assume that each joint J;
defines an auxiliary frame Cy, such that C; and Cy coincide
except for the joint-angle dependent motion, e.g., a pure
rotation or translation, and Cy is fixed relative to the previous
joint frame C; defining the joints relative pose. Tj._y in (12)
is then handled by (18). For 9y ;(2;) we will now derive
concrete formulas based on (22). This means bounding the
motion 7 (2)-{p;} of a single generating point by an SSCH.

FE. Revolute Joints

Revolute joints provide single axis rotation. The center of
that rotation is the origin of both C; and Cy and let a be the
axis in C; and Cy. The configuration of a revolute joint is
an angle o bounded by 2; = oy, @] according to (11). We
assume |@; — 0| < 7. Hence, every point of the input volume
moves on a circular arc within angle o and ¢ around axis a.
The arc (Fig. 7a) covered by one generating point p; within
p) =Ty i(oo)p; and p} =Ty ;(a1)p; is contained in a disc,
or actually in a ball, which is given by V (sin|¢|pi[: (s0+p}))
with ¢ = @. This bound uses one radius and one point.
Having this bound for every generating point p; according
to (22) the overall effect of the joint is

T i(2:) -V (rilpliy) CV (rosinlolmax |pl: (5 (f+pD,) (23)
Practically, operations compute a radius and a list of points:
Cirey (ao, 01, (rlpi,)) = (r-sinfolmax |pil: (5 (4], ),

with ¢ = %% (24)

A tighter bound of a circular arc is obtained by using
two points (Fig. 7b), formally V (flpil: p0+fp,*.p}+1p*) with
f= % nd pl/ =Ty_i(0tg+ @) p;. While this operation
is more precise it doubles the number of points in the result:

Cirey (0, a1, (r:lpi,)) = (r+fmaX\m| W0+fp, o110y

with ¢ = @130 p—1me0st 2 (4 0)p (25)

This happens for every joint along a kinematic chain where
Circ; is used. Thus, choosing between Circy and Circ;, during
configuration of the kinematic tree is a major aspect that
allows to trade-off between precision and computation time.
Nevertheless, all of the operations are purely conservative.

The choice of operations influences the modeling of mo-
tion due to the joints and not the modeling of the bodies
themselves. In general Circ; is better for upper joints and
Circ, for lower joints, because the latter have a larger lever
and inertia resulting in a longer braking distance which must
be bounded more tightly. For Justin we use Circ, up to (incl.)
1/rArm2, i.e., the third arm joint and Circ; above that. This
creates 928 points in 114 swept volumes for the 26 bodies.

A circular arc can also be bounded by a triangle (Fig. 7c)
or even more generally by a (S+2)-gon by

(r (P01 1500 ) (26)
Ty i(cto+(25+1)Aa)p; and Aor= 25

CirCS+2 (aO alv( '[pl];l 1)) -
with A} =

cos Aoc

This operation uses no radius. It can arbitrarily precisely
bound the convex hull of the swept volume. We used it in
[14] for computing safety zones of a vehicle, where the factor
in the number of points does not multiply over several joints.

G. Other Joints

Prismatic joints provide single axis sliding. Let a be the
sliding direction in C; and Cy. The configuration interval
9; = |dp,d,] bounds the translation of the input volume
along a. Every generating point moves along a line from
pY =T(do)p; to p} = T(d)p;. This line can be bounded
by one point in the middle and a radius of half its length
44 2|d1 dol: £(0+p}))), or by its two endpoints and no radius
(V (0: p§ pl)) [3, §9.5.7]. Again, the latter bound doubles the
number of points:

Trans; (do,di, (r:[pl_,)) = (r+3ldi—dol: [3 (p0+p))1,)  (27)
Trans2 (d07 dl» (r; [p/];l:])) = (r; [p?.,pll];l:l) (28)

Cylindrical joints can be composed of two joints. Ball
joints could be built of three revolute joints but then sin-
gularities would occur. Thus, an extension of the circular
arc approximation in Fig. 7 to patches of spheres should
be prefered. Mobile platforms can be modeled as a rotation
around the instantaneous center of rotation as in our previous
2D work [14]. Thinking of a joint more abstractly as a
description of a relative movement of connected bodies,
bodies moving on a Bezier curve are remarkable. As a Bezier
curve is fully contained in the convex hull of its control
points, an operation computing the control points of all of the
volumes generating points would be a proper swept volume
computation even for this more complex joint behaviour.

IV. REAL-TIME ALGORITHM

The algorithm introduced so far is not strictly real-time,
because the GJK algorithm takes an unknown number of
iterations. By contrast, the swept volume computation needs
a considerable but constant time. The algorithm in this
section makes the distance computation also real-time.



A. Updating Pairwise Distance Bounds

The idea is to maintain a lower bound D; ; of the distance
for every pair of bodies (B;,B;). In every cycle these bounds
are updated according to the change in the swept volumes.
Formally, this has quadratic computation time but in fact is
very fast. Afterwards a configurable time budget is spent on
improving bounds by GJK, iterations. This is possible, as
GJK, needs an unknown number of iterations to converge
but every iteration computes an increasingly tighter lower
bound*. The following sub-algorithm replaces step 3 in
Section I:

3a) Compute changes Af( for swept volumes “I/ki (cf. (30)).
3b) Update bounds D; ; for distance of ”I/k" and ”Vk] (cf.
(31)). Here and below £ is the Ica-frame of i and j.
3c) While time available and D; ; = 0 for some i, j
Update D; ; by GJK, iteration on 7/ki and ”i/k’ .
3d) While time available
Update D;; by one GJK, iteration on ¥ and
¥ with (i, j) going round-robin.

First, the algorithm reduces computation time as many
body pairs are distant and need only be recalculated infre-
quently. For instance, imagine two bodies B; and B; moving
around with lem/cycle at 1m distance but without actually
coming closer. Then the distance bound D; ; reduces by 2cm
each cycle and a GJK, iteration is needed every 50 cycles.
Second, the algorithm is adaptive: It tries as long as possible
to verify that D; ; > 0Vi, j and the motion is safe. If it does
not succeed braking is triggered, which may be a false-alarm.
If the robot moves slower the algorithm has more cycles to
verify D; ; > 0 and may approve the motion.

Step 3d) makes sense in a real-time system, where it
does not help if the computation time is sometimes lower.
So the algorithm uses its remaining computation budget to
“prepare for the future” by improving distance bounds. This
postpones the need for a future GJK, iteration and helps
avoiding unnecessary braking.

In practice, we implemented “time available” by counting
floating point operations (FLOPS) in GJK, and configuring
a budget for that. One could also use actual time, however
causing mildly nondeterministic behavior.

B. Change of Swept Volumes and Their Distances

The change A}; of a swept volume since the last cycle is
the maximum distance any point of that volume has changed,
i.e., every point of the new swept volume % C V (v: [5l"_,)
must be within < A; of the previous swept volume %' C

V(r; [171]7:1):
V() CV (i) +{b ] 16 < ALY,
achieved by A}; = max(mlax \pi—pll+7 —r, 0)

(29)
(30)
Using that, a lower bound for the distance of a body pair is

D} ; > max(D; ; — A} — A],0), 31)
with k the Ica-frame of i and j.

“The lower bound can actually decrease after a GJK, iteration. But then
the previous one is still valid and kept.

V. INTEGRATION
A. Visualization

The proposed algorithm operates on volumes represented
by a simple point array without connectivity information
such as triangles. This avoids the well known problems
with degenerate triangles. Nevertheless, for visualization
V(r:lpJi_,) must be converted into a triangle-mesh. One
possibility is to run a convex hull algorithm on [p]}_,
and convert each vertex resp. edge to an r-sphere resp. r-
cylinder. However, this is rather complicated. Instead, we
take a spherical grid of unit vectors n; and compute the
support point in direction ng. These support points

Xy = rng+ argmax p-ng (32)

pe{lp i}

form a regular polyhedron approximating V(r; [p,];’:l). It is
not conservative but used for visualization and for computing
the volume of V (r:[pJi_,) needed below.

B. Model Construction

It is time-consuming and error-prone to define a complex
model such as the one for the humanoid Justin (Fig. 6)
manually. Instead it was generated semi-automatically from
an existing CAD model. We have manually divided the robot
into bodies and decided how many points to use for each
body. The points p; and the radius r of each body V (r: [p:_,)
are then automatically fitted to contain all points [p;];*, from
the CAD model in the lowest possible volume. As the fitted
volume is convex, this automatically includes the convex hull
of [pf]}=,. So it suffices to simply extract all vertices from
the CAD model as [p;];*, and ignore edges and facets.

The optimization is a non-linear programming problem
with the volume (computed from (32)) as cost function,
constrained by

r>d ({pi}V(0einl,)) Vi
o zmjaxd {pi}V(olpt,)) -

(33)
(34)

First, we obtain an initial guess by randomly choosing points
from the input model and computing the radius by (34). This
is repeated (1000x) and the smallest volume chosen. The
randomization helps finding the global minimum.

We then follow a typical step-wise-linearization approach.
In each iteration both the cost function and the constraints are
linearized by taking numerical derivatives with a given step
size. Then a linear-programming sub-algorithm (1p_solve
library [16]) determines the linearized optimum within the
step size region. This optimum is however not used directly
but as direction for a non-linear line search (Brent’s method).
In the line-search the p; are chosen according to the search
direction while r is determined from (34) to fulfill all
constraints. The change obtained by the line-search is then
used as step-size in the next iteration.

The crucial point in this optimization is that each lin-
earized iteration considers all constraints (33) simultane-
ously. Initially, we had tried an unconstraint optimization
of the p; with r solved by (34) as in the line search. This



approach converged poorly, because then only the current
maximum constraint in (34) is visible to the optimizer.

VI. PERFORMANCE EVALUATION AND EXPERIMENTS

In the first experiment Justin moves its hands towards
each other until the safety module triggers braking (see
supplementary video). Then the commanded configuration
for the position controller is fixed, so the robot brakes and
returns to this configuration. For a single joint’s state (g,¢)”
we determined an interval that safely bounds the reachable
angle (step 1) by assuming a) a worst-case acceleration
max = 20rad/ s2 during a latency #; = 10ms consisting of
cycle time (10ms) and communication time (negligible) and
b) braking of the joint thereafter with at least ag = 20rad/s>.

[4°,¢"] = [min(¢q,q ,q"),max(q,q .¢")]  (35)
- .4 I

¢ =g+ Ty I (36)
2 2(13

0" = G+ amarty. (37)

The results of this experiment (Fig. 8) demonstrate the
safety of the approach and show occuring overestimations.
Overestimation is not only caused by our algorithm but also
by the safety margins in (35). A second experiment done
in simulation using the same parameters (Fig. 9) further
investigates that overestimation and shows properties of
the real-time algorithm. The seven braking maneuvers that
occured are listed in Table I. Computation time, in particular
for the real-time algorithm is reported in Fig. 10.

The overestimation due to the latency #; in (35) warrants
discussion as it is present even at standstill (0.5cm in Fig. 8)
and problematic for fine-manipulation. It is caused by a
potential acceleration before the braking can be triggered at
time #7. This makes (35) rather conservative. If this needs to
be avoided, the joint angle intervals could be made tighter
by considering the actual robot dynamics, e.g., the current
command, instead of a worst case acceleration.

Finally, the video shows that by using the Ilca-frame
the algorithm avoids false-positive collision alerts. However,
some motion constraints are not exploited and may cause
false-positives, e.g., when one hand follows the other but
moved by the wrist joints and not by some common joint.

VII. CONCLUSIONS AND FUTURE WORK

We proposed a real-time continuous self collision detec-
tion algorithm based on swept volume computation in an
application with a fast moving humanoid robot. It avoids
collisions properly and achieves bounded computation times
of 0.4ms (INTEL T2500@2GHz). Key to efficiency is a
flexible but compact volume representation, the sphere swept
convex hulls (SSCH). In particular, the feature of adding
a buffer radius in all directions has also been exploited in
modeling the robots kinematics to trade-off accuracy and
computation time. The main contribution is a method to
bound the braking motion strictly conservatively: First, by a
cross-product of intervals in joint-angle space and second, by
successively applying operators for each joint that compute
the effect of one joint-angle interval onto a bodies swept

volume. Thus, it combines safety and usability properties
in a way that fulfilled all requirements on a self-contained
collision avoidance module for fast robot motions.

In [14] we have already applied comparable techniques
to 2D collision detection for vehicles. In the near future
we are going to integrate both solutions which will yield
a seamlessly integrated 2D/3D collision detection module.
Further there is some potential for computational costs
reduction which we currently explore: The change A in a
swept volume could be bounded from the change in the joint-
angle intervals, so the swept volume needs only be computed
for a GJK, update.
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Fig. 8. Experiment of moving Justin’s hands towards each other with (a) 0.22, (b) 0.65, and (c) 1.1m/s until the safety module brakes. above: distance
in cm of Justin’s hands (upper red line) and distance of their swept volumes (lower green line). The final distance is the same distance at which braking
started (1.2, 4.1, resp. 11.0cm), because the robot returns to this configuration. The minimal distance during braking shows how much the safety module
overestimates (0.5, 1.6, resp. 6.2cm at real braking distances of 0.7, 2.5, and 5.8cm). It contains overestimation of the swept volume and distance computation
as well as safety margins in the interval computation (35), resp. in its parameters. The final difference of the two curves is caused by the latency #; leading

to ¢' > ¢° in (35) even for ¢ = 0. This safety distance (0.5cm) can be problematic for fine manipulation. below: colliding swept volumes at the time
braking is triggered. The hands are omitted here for better visibility.
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Fig. 9. Distance computation results in cm while repeatedly moving and stopping Justin in simulation (¢ up to 0.757 rad/s, time steps 10ms). First,
compare the actual distance (top, red) with the swept volume distance (3rd, green, Sec. III). Their difference is the braking distance bounded by our
algorithm. When the swept volume distance is zero (vertical line) braking is triggered, the red line showing the bounded braking distance in that moment.
By comparing the actual distance here to the actual distance when stopped (next vertical line), the actual braking distance and the overestimation can be
seen. A huge amount of the overestimation is caused by the latency #; (avg. 1.7cm), not by the swept volume computation, as can be seen by the 2nd
(cyan) line where #; = 0. This effect is inherent to (35), but is increased by our swept volume computation as its overestimation grows with the length
of the movement. Second, compare the plain algorithm (3rd, green) with the real-time algorithm (bottom, blue, Sec. IV, 55000 FLOPS). The values vary
from cycle to cycle as the real-time algorithm only cares whether a distance is positive or zero. Typically a step down is a distance update by (31), a step
up is an GJK, iteration. Still the real-time algorithm succeeds in verifying safety, whenever the motion is safe, i.e., the swept volume distance (green) > 0.

bounded braking distance [cm] 58 75 58 75 46 63 4.6

actual braking distance [cm] 3.0 4.1 29 4.1 1.9 22 1.9

over-estimation [cm] 28 34 29 34 27 41 27

over-estimation factor 19 18 20 1.8 24 29 24

braking distance ¢7, =0 [cm] 43 55 43 55 34 49 34

speed of approach (distance derivative) [cm/s] 40 65 40 65 34 49 34
TABLE I

THE SEVEN BRAKING MANEUVERS FROM FIG. 9, AVG. OVERESTIMATION 3.1CM.
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Fig. 10. Left: effort in FLOPS of the computations in Fig. 9; top to bottom: distance computation by plain (green) and real-time algorithm (blue),
swept volume computation (cyan). The real-time algorithms effort (0.4ms on INTEL T2500@2GHz) is much more regular than the plain algorithm’s
(0.6ms to 1.3ms) and without a peak at the beginning. Right: first 100 cycles of Fig. 9, additionally with a computation budget of 30000 FLOPS (bottom,
magenta). Plain and real-time algorithm behave different at the beginning. The plain algorithm initializes all distances by GJK, iterations causing a peak in
computation time. Both real-time variants spread this effort over, keeping the distance output at O (robot stopped) for the first 3 resp. 14 cycles. While with
55000 FLOPS the real-time algorithm behaves well, 30000 FLOPS are not enough to approve the robots motion, as the 30000 FLOPS variant (magenta)
returns zero distance several times when the actual distance is positive. This would trigger unnecessary braking.




