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Abstract— The variable stiffness actuation (VSA) technology
has been recently developed and applied in robotic arms.
Mechanism robustness, high peak torque and velocity, and
stiffness adjustment flexibility are key benefits of VSA joints.
However, the achievable Cartesian stiffness by uncoupled VSA
joints is limited. Therefore we suggest and analyze the use of
an active impedance controller in combination with the passive
joints to further increase the stiffness range. An algorithm to
optimize the passive and active Cartesian stiffness is proposed to
achieve a desired Cartesian stiffness as precise as possible. The
algorithm was implemented and tested on the VSA robot DLR
Hand Arm System. Experimental results and measurements of
the active/passive impedance algorithm are shown.

I. INTRODUCTION

Cartesian impedance control is a common control frame-

work in modern service robotics, applied to torque controlled

multi-DoF robot arms and hands. While the stiffness be-

haviour in e.g. the DLR lightweight robot LWR3 is imple-

mented with an active torque controller, recent developments

of variable stiffness actuated robots [1], [2], [3], [4] like the

DLR Hand Arm System [5] (see Fig. 1) provide passive

joint compliance. The passive joint compliance is tunable

online [6], so that link position and stiffness can be adjusted

independently. The use of variable passive stiffness elements

in robot arms has several advantages. The energy saving ca-

pability of passive springs allows to efficiently execute cyclic

and highly dynamic motions, while the stiffness variability

can be used to match the resonant frequencies of the robot

to tasks. Furthermore, the passive springs act as low pass

force filters and thereby drastically increase the robustness

of the actuators against external load peaks, as they occur for

example in rigid impacts of the robot with its environment.

The human arm provides biarticular muscles and thereby

stiffness coupling between joints. The joint stiffness coupling

in biological systems and its technical realization are still

ongoing research and are not implemented in the DLR Hand

Arm System. To still exploit the advantages of variable

stiffness actuation, the stiffness elements in the DLR Hand

Arm System are mounted separately in each joint, resulting

in a diagonal joint stiffness matrix.

In an earlier work [7] we investigated what Cartesian

stiffness can be achieved by a passive compliant, redundant

robot arm with diagonal joint stiffness. The analysis shows

that an arbitrary Cartesian stiffness matrix with three trans-

lational and three rotational stiffnesses (KC ∈ ℜ6×6) can

hardly be reached by a 7 DoF arm (even using the resulting

nullspace) leading to errors around 25-55 %. However, in

some tasks it may be necessary to exactly attain a specified

Cartesian stiffness. One solution to this issue is analyzed in

the following.

Fig. 1. The DLR Hand Arm System.

In this work we suggest to use the passive stiffness in com-

bination with an active impedance controller [8] [9], which

widely extends the achievable Cartesian stiffness range. The

presented procedure involves two stages. First, the desired

Cartesian stiffness is approximated using the passive joint

impedance as good as possible. The passive joint stiffness

is restricted by lower and upper bounds due to the technical

implementation. The approximation is achieved by formulat-

ing a constrained least squares optimization problem which

can be solved efficiently by an active set algorithm. Second,

the residual stiffness is implemented by an active Cartesian

impedance controller. The necessary positive definite active

stiffness matrix is computed by a matrix nearness problem.

Furthermore a compliance scaling algorithm is presented,

which increases stiffness tracking and ensures bounded con-

troller gains. The developed algorithm was implemented

and evaluated on the multi-DoF variable stiffness robot

DLR Hand Arm System. Finally, experimental results of the

active/passive impedance controller are presented.

II. CARTESIAN COMPLIANCE

A general robotic task can often be intuitively specified in

Cartesian coordinates. The stiffness behaviour is described

by a constant stiffness matrix1 KC = − ∂f
∂x ∈ ℜm×m as the

relation between the Cartesian wrench f and the Cartesian

displacement x. Here, m is the number of Cartesian degrees

1In the following, K∙ and C∙ is used for general stiffness/compliance
matrices. Subscript ’J’ and ’C’ denote joint and Cartesian matrices.
Subscript ’a’ stands for ’active’, ’p’ for ’passive’, ’s’ for ’serial’, and ’d’
for ’desired’ values.
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of freedom (DoF). The n passive and adjustable joint stiff-

nesses provide the matrix KJ = − ∂�
∂q ∈ ℜn×n with the joint

torques � and the joint positions q. The mapping from the

Cartesian stiffness space to the joint stiffness space is given

by T : KJ = T (KC). This transformation can be written as

KJ =
∂�

∂q
=

∂(J(q)TKCΔx)

∂q

= J(q)TKCJ(q)−
∂J(q)T

∂q
KCΔx. (1)

J(q) = ∂f(q)
∂q is the manipulator Jacobian, where f(q) is

the forward kinematics mapping. Δx = xd − x is the

infinitesimal Cartesian position error between the desired and

the actual position. For further considerations in this paper

the stiffness is computed at the equilibrium position. As a

consequence, Δx = 0 and (1) collapses to

KJ = J(q)TKCJ(q). (2)

This relation has only local correctness, as both KJ and J(q)
depend upon the robot configuration.

To calculate the Cartesian stiffness from a given joint

stiffness, the inverse problem of (2) has to be solved

KC = T −1(KJ). This can be done considering compliance

matrices, which are the inverses of the stiffness matrices

CC = K−1
C and CJ = K−1

J . Please note that for inversion

the matrices KC and KJ have to be positive definite (> 0).

It follows for the compliance matrices

CC = J(q)CJJ(q)
T , (3)

and the stiffness matrix results to be

KC = (J(q)K−1
J J(q)T )−1. (4)

See [7] for another computation method of KC .

To achieve an arbitrary desired Cartesian stiffness matrix

KC for a given configuration with the Jacobian J(q), in

general all the elements of the joint stiffness matrix KJ must

be nonzero.

III. PROBLEM STATEMENT

The passive stiffness elements in the DLR Hand Arm

System adjust the stiffnesses in each joint, therefore only

a diagonal joint stiffness matrix can be realized:

KJp = diag(kJp) ∈ ℜn×n (5)

kJp is herein the joint stiffness vector. This is in contrast to

the human which has coupling stiffnesses due to biarticular

muscles. Furthermore, the elements of kJp are restricted to

lower and upper stiffness bounds kMin
Jp and kMax

Jp given by

the configuration and mechanism properties.

The diagonality and boundedness of KJp pose a substan-

tial limitation for implementing a desired Cartesian stiffness

matrix only by the passive joint stiffnesses. There are several

solutions to still achieve (or get close to) an arbitrary desired

Cartesian stiffness matrix KC . One approach is to exploit the

redundancy of the robot arm by using the nullspace motion

for stiffness optimization. This solution is analyzed in [7].

Fig. 2. The design idea to use the interconnection of an active impedance
controller in series with the passive joint stiffness. As the active stiffness
is less limited and may be coupled, it allows to overcome the restriction of
the bounded and diagonal passive joint stiffness.

Here, we suggest and analyze the approach to use an

active impedance controller in series with the passive joint

impedance, in order to realize a desired Cartesian stiffness

matrix KCd. As the active impedance controller is less

limited (e.g. stiffnesses down to 0 N/m can be achieved) and

allows for a coupled stiffness matrix, it may overcome the

limitations of the diagonal and bounded passive joint stiff-

nesses. This follows from writing the serial interconnection

of the active and passive stiffness matrices:

K−1
s = K−1

a +K−1
p (6)

This relation can be expressed by compliance matrices 2

Cs = Ca +Cp. (7)

Obviously, even if Cp is only diagonal, the serial compliance

Cs can be of arbitrary shape due to the active compliance

Ca. However, there are some restrictions on Ca and thereby

Cs, which will be discussed in Section VI-C. The design

idea is sketched in Fig. 2. The desired Cartesian stiffness

KCd shall be achieved by the serial stiffness KCs. Using

(6) and (4) this can be statet as an optimization problem

min
KJp,KJa

∥KCd −Ks(q,KJa,KJp)∥ . (8)

Besides of the stiffness matrices, the Cartesian joint stiff-

ness depends upon the robot configuration. The problem of

finding an appropriate robot configuration poses a nonlinear

optimization problem (as described in [7]) and is not con-

sidered here. Therefore, the link positions are assumed to be

fixed q = qd and drop out of (8).

In the following, the serial combination of the active and

passive joint stiffness to achieve a desired Cartesian stiffness

is analyzed and a design procedure to realize a locally valid

impedance behaviour of a multi DoF VS robot arm is given.

The minimization of the norm (8) is approached in two

steps. Following the conceptional idea to use mainly the

passive compliance properties, first, a passive joint compli-

ance CJp has to be found such that the desired Cartesian

2Most of the computations involving serial interconnection of springs will
be done in the compliance space in the following, as the linearity of the
computations simplifies the analysis.
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compliance CCd is achieved ’as good as possible’ by the

resulting passive Cartesian compliance CCp (see Section IV).

Afterwards in a second step, an active impedance controller

using CCa with (7) is designed such that the compliance

tracking performance is increased (see Section V).

IV. PASSIVE COMPLIANCE OPTIMIZATION

A. Problem formulation

To optimize the passive compliance to achieve the desired

Cartesian compliance3, the problem formulation from (8) is

reduced to only contain the passive joint compliance vector4:

min
cJp

∥CCp(cJp)−CCd∥ (9)

subject to cMin
Jp < cJp < cMax

Jp

A similar formulation was chosen in [7], however joint

stiffness limits were not regarded. Moreover, in this work

we state the problem in the compliance space leading to

somewhat different results.

The optimization norm was chosen to be the weighted

Frobenius norm, due to computational feasibility and sim-

plicity. The weighted Frobenius norm is defined by

∥A∥
G
F = (

∑

i,j

gija
2
ij)

1/2 , (10)

where G is a weighting matrix acting on each of the entries

of the norm matrix A.

B. Algorithm

The optimal cJp is found by searching the extremal of (9)

regarding the constraints. The first step to the solution is to

transform (9) into standard least squares form by rewriting

the Frobenius norm into an Euclidian norm

min
cJp

∥A ⋅ cJp − b∥
G
2 (11)

subject to cMin
Jp < cJp < cMax

Jp .

The matrix A ∈ ℜm2
×n contains the elements of (3)

reshaped as a vector and differentiated w.r.t the joint com-

pliance vector. The vector b ∈ ℜm2

contains the desired

compliance matrix reshaped as a vector. This inequality

constrained least squares problem is solved using an active

set algorithm [10]. The algorithm solves the problem as

an equality constrained least squares problem where active

inequality constraints are treated as equality constraints and

inactive inequality constraints are omitted. The algorithm

works as following:

In each iteration an equality constrained least squares

problem is formulated. Herein, the inequalities from

B0 cJp ≥ d,

3Please note, that the norm (8) expressed by stiffness matrices can be
transformed in a similar norm in the compliance space. However, weighting
factors may differ.

4The passive joint compliances are written in vector form cJp to clarify
the diagonal shape of CJp.

where B0 =
(

I
−I

)

and d =

(

cMin
Jp

cMax
Jp

)

, which are active are

treated as equality constraints forming the working set

B cJp = d.

After solving the problem, two steps are performed:

1) The activeness of each equality constraint is checked

by using the Karush-Kuhn-Tucker conditions, which

can be done by computing the Lagrange multipliers �

defined by

AT (A cjp − b) = BT�.

When all Lagrange multipliers are zero or positive, an

optimal solution subject to the working set is found. In

the case of a negative Lagrange multiplier, the relating

equality constraint is not active and the solution is

not optimal. Consequently the inactive constraint is

removed from the active set and another algorithm

iteration is performed.

2) The inequality constraints are checked. The constraints

which are not fulfilled are treated as equality con-

straints and added to the working set. Then, another

iteration is executed.

The algorithm terminates, if all equality constraints of the

working set are active and all inequality constraints are

fulfilled. This gives the passive joint compliance cBest
Jp min-

imizing (9) and therefore the passive Cartesian compliance

CCp nearest to the desired Cartesian compliance. Please

remark, that the resulting CCp is positive definite as all

cJpij > 0.

C. Computation and application

The active set algorithm is advantageous for real time com-

putations, as the number of computation is upper bounded.

At most 2r least squares optimizations (algorithm iterations)

have to be performed, where r is the number of inequality

constraints. Assuming a 7 DoF robot, even the worst case

of 128 optimization iterations seems tractable with today’s

computation power.

However, in most cases the optimization is finished dra-

matically faster, as often only one algorithm iteration has

to be performed. This is, because of in most computation

steps the active compliance limits remain the same, and

therefore the working set remains the same. Regarding the

optimization rate of 366 Hz and much lower structural eigen-

frequencies of the robot of < 20 Hz which cause the

change of limits, the effectiveness of the algorithm can be

understood.

If only pure passive impedance behaviour is desired,

the relating passive joint stiffness kBest
Jp is computed and

commanded to the robot with a high gain position controller.

As mentioned in [7], the achieved stiffness performance over

the workspace is quite limited. To achieve increased stiffness

performance, an active impedance controller is designed to

further minimize the norm (8), as shown in the next section.
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V. ACTIVE COMPLIANCE OPTIMIZATION

The passive Cartesian compliance achieved by the op-

timization (9) is often not tracking the desired Cartesian

compliance very well, especially when passive stiffness joint

limits are considered. By interconnecting an active controller

in series with the passive impedance, the tracking behaviour

can be improved. This approach is analyzed in the following.

A. Problem formulation

The active Cartesian impedance controller is given by

uimp = −KC (x− xd)−DC ẋ, (12)

see [11]. At this point, the question how to choose DC is

not treated. Stating the problem of finding an optimal active

Cartesian stiffness again as an optimization problem derived

from (8) gives

min
CCa

∥CCd −CCs(CCa)∥ (13)

subject to CCa > 0.

The active compliance matrix CCa is chosen to be positive

definite, as otherwise the impedance controller (12) is not any

more passive. Please remark that in theory even a negative

definite CCa may result in a positive definite serial compli-

ance (7) and thereby the interconnection is passive, however

non-ideal properties like controller time delays, measurement

signal discretization and further effects are not considered

and therefore may lead to instability. Furthermore, the main

reason for choosing CCa > 0 is that the calculations

performed are only valid locally for infinitesimal deflections

while in practice of course arbitrary deflections may occur

leading to q ∕= qd and CCp ∕= CBest
Cp . The resulting serial

stiffness Cs may not be any more positive definite and may

lead to instability.

With (7) and (10) the norm in (13) can be rewritten by

∥CCd −CCs∥F = ∥X−CCa∥F ,

where we replaced CCd − CCp by X. Therefore the min-

imization problem is reduced to the problem of finding a

positive definite matrix CCa closest to a desired matrix

X. This is described as a ’matrix nearness problem’ in the

literature.

B. Optimization via a matrix nearness problem

The matrix nearness problem of finding a positive definite

matrix involving the Frobenius norm is described in [12].

The key element of the proof and the presented algorithm is

to decompose the symmetric part of the goal matrix X into

its eigenvalues and to choose only the positive values. The

optimal active Cartesian compliance is computed as follows.

First, an eigenvalue transformation of the goal matrix X
is computed:

X = VΛVT

VTV = I; Λ = diag(�)

q

1

2

Fig. 3. A sketch of the robot configuration, which was used to conduct
the experiments. Due to the position of the TCP in front of the Arm, the
shoulder joint S1 needs to produce a high torque, resulting in a high stiffness
in the x-direction. Furthermore, the elbow with its parallel kinematics is
generating high stiffnesses in the y-direction for this pose.

V is the matrix containing the eigenvectors and Λ is the

diagonal eigenvalue matrix. Secondly, the active Cartesian

compliance matrix CCa is transformed into this eigenspace:

CQ = VCCaV
T

Following the proof in [12] to find the positive semi-definite

matrix CCa nearest to X, the diagonal entries cQii of CQ

have to be chosen such that

cBest
Qij =

{

�i, �i > 0
0+, �i ≤ 0.

The value 0+ represents a value bigger than 0, as in contrast

to the proof in [12], we need positive definiteness. The

optimal active Cartesian stiffness CCa results to be

CBest
Ca = VTCBest

Q V. (14)

The optimal active compliance is transformed into stiffness

space and directly used in (12).

The next section shows the use and experiments of the

gained optimal active compliance CBest
Ca in combination

with the optimal passive compliance CBest
Cp from Section IV

implemented on the DLR Hand Arm System.

VI. EXPERIMENTS

A. Experimental approach and procedure

The presented algorithms were implemented and tested

on the DLR Hand Arm System [5]. The first four degrees of

freedom (shoulder joints one and two, the upper arm rotation

joint, and the elbow joint) were used to adjust the Cartesian

position ∈ ℜ3. Rotational stiffnesses were omitted in these

first experiments. All the measurements were done with the

robot in a configuration as shown in Fig. 3.

The passive joint stiffnesses in the DLR Hand Arm System

are nonlinear, tunable, and dependent upon joint deflection.

The joint torques are given by

� = f(',�), (15)

where ' is the link deflection and � is the stiffness preset pa-

rameter. The system allows to tune its passive joint stiffnesses

via � in the range of ∼ 50 − 500 Nm/rad. Passive deflection
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Point of time t1 t2 t3

KCd (N/m)
(

100 0 0

0 100 0

0 0 300

) (

100 0 0

0 100 0

0 0 300

) (

100 0 0

0 100 0

0 0 300

)

KCp (N/m)

(

922 −1695 1

−1695 8398 −8

1 −8 299

) (

925 −1705 −12

−1705 8110 65

−12 65 489

) (

879 592 −1

592 11092 25

−1 25 324

)

KCa (N/m)
(

116 5 0

5 97 1

0 1 4545

) (

116 5 0

5 97 1

0 1 4545

) (

116 5 0

5 97 1

0 1 4545

)

KCs (N/m)

(

96 1 −0

1 95 0

−0 0 280

)

(

96 0 0

0 95 1

0 1 441

) (

102 5 0

5 96 0

0 0 303

)

kJp (Nm/rad)

(

394
∗

123

113

161
∗

)

(

395

207

172

151

) (

541

122

124

250

)

TABLE I

STIFFNESSES OF THE TIME INSTANTS GIVEN IN FIG. 4

t1 t2 t3
−0.2

0

0.2

0.4

0.6

0.8

t

x
θ

Kx = 100 Ky = 100 Kz = 300

 

 

x
θ

y
θ

z
θ

x
q

y
q

z
q

Fig. 4. Measurement plots of the TCP position xq and motor TCP position
x� . The TCP is deflected in the x- and z-direction. For the case of a low
passive stiffness and a high active stiffness (z-direction, time point t2), the
passive stiffness element deflects a lot. For the case vice versa (x-direction,
time point t3), the passive stiffness element deflects very little.

can increase the joint stiffness up to ∼ 800 Nm/rad. The

experiments were generated using the presented algorithms

in the following procedure:

1) A desired Cartesian position is commanded and the

desired Cartesian stiffness matrix KCd is specified.

2) The minimum passive joint stiffness vector kMin
Jp is

computed. This is done by equating (15) and the robot

gravity term g(q,�) and numerically solving for '.

The derivative of (15)

K(',�) =
∂f(',�)

∂'
, (16)

where � = �Min, gives KMin
Jp .

3) The optimal passive Cartesian stiffness KBest
Cp is com-

puted using the passive stiffness optimization from

Section IV. The optimal stiffness variation parameters

�Best to achieve the desired kBest
Jp are determined by

a similar algorithm as presented in the last step, but

d

a

a p

q

�

d

p

Fig. 5. On the left a one link VS joint is sketched. A force F acting at the
TCP deflects the link and the motor coordinate. The active stiffness Ka is
acting between the motor and the desired position while the passive stiffness
Kp is mounted between the motor and the link. On the right, the deflection

behaviour can be seen for a planar robot. The motor TCP position x� is in
between the desired TCP position xd and the TCP xq .

solving (16) for �.

4) The active stiffness optimization from Section V re-

sults in the optimal active Cartesian stiffness KBest
Ca .

The optimization algorithms are computed with a rate of

366Hz on a real time operating system (QNX). The user

chooses a desired Cartesian stiffness and triggers the parame-

terization of the controllers. Then the joint stiffness variation

parameter �Best is commanded to the stiffness motors and

held constant by a PD-position controller. Also the active

Cartesian stiffness matrix KBest
Ca is commanded to the active

Cartesian impedance controller (12) and held constant. The

robot stiffness behaviour can now be analyzed by deflecting

the robot from its equilibrium pose.

B. Results

Figure 4 shows measurements of the TCP position xq

and the motor based TCP position x� (the motor positions

instead of the link positions are used to calculate the forward

kinematics, see Fig. 5). The relating stiffness values for

interesting points are given in Table I. The desired Cartesian

stiffness KCd remains constant throughout the trajectory.

KCp shows the locally valid Cartesian stiffness matrix as it

is generated by the passive stiffness joints. At the beginning

(t1), the optimization from Section IV was triggered and the

necessary values �Best were set, therefore KCp = KBest
Cp =

KCd should be achieved. However, looking at the diagonal

entries, the desired value is only reached satisfactory by the

z-coordinate (KCpzz = 299 N/m). The x- and y-coordinates
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are not very close to the desired KCd values. This is because

of the minimal passive joint stiffness bounds prohibit to

reach the low Cartesian stiffnesses: The robot configuration

requires high joint torques in the first axis to support the

robot and from (16) also high joint stiffnesses result (see

Table I, kJp entries marked with a ’∗’ are reaching the lower

bound values). In order to compensate for the high passive

Cartesian stiffness entries in KCp, the active compliance

optimization computes low stiffnesses values for the x- and

y-component (KCaxx = 116 N/m, KCayy = 97 N/m) and high

stiffness for the z-component. Finally, the active and passive

stiffnesses sum up to a serial stiffness KCs which is very

close to the desired one.

The behaviour of the impedance Controller for deflections

from the desired position can be seen in the measurements

at the time instants t2 and t3. At t2 the TCP is deflected

in the z-direction. As the passive stiffness tracking in this

direction is very good, most of the deflection is provided

by the passive stiffness elements (large motion of zq in Fig.

4), while the high active stiffness prevents the motors from

moving (almost no motion of z�). The deflection leads to

an increase of the passive joint stiffness (KCpzz = 489 N/m)

because of the progressive shape of (16), which in turn results

in an increase of KCszz , as the stiffness values are only valid

locally (see also Section VII).

A similar behaviour can be seen at t3 where a deflection

in the x-direction is executed. As the passive joint stiffness

in this direction is very high (KCpxx = 879 N/m), the TCP

deflection is mainly provided by the motor deflection and

thereby by the active impedance controller (KCaxx = 116
N/m). The apparently random change of the y-coordinate

stems from a nullspace motion executed by the elbow joint.

Figures (6) and (7) show two more measurements of

experiments of the active/passive impedance controller in

action. In Fig. (6) the stiffness in the x-y plane was set

high, while in the z-direction a very low stiffness was

chosen. Figure (7) shows in contrast a low stiffness in the

x-y plane and a high stiffness in the z-direction. In both

setups, a commanded high stiffnesses results in a very stiff

active impedance controller. A TCP deflection in these stiff

directions results in a relatively large deflection of the passive

stiffness elements, while the motors move only little. The low

stiffness instead is mainly provided by the active impedance

controller (the passive impedance is lower bounded), what

appears in the plots as a large motion executed by the motors.

C. Passive Stiffness Scaling

The sequential procedure of first designing the passive

stiffness without considering boundary values of the active

compliance leads to small offsets in the serial stiffness. This

is because of zero compliance is physically not possible,

as the active impedance controller has upper boundaries

for maximum stiffness. These offsets can be seen in the

measurements of Table I for the z-component: KCdzz = 300
N/m achieved closely by the passive KBest

Cpzz = 299 N/m. The

maximum active stiffness KCazz = 4545 N/m leads to a serial

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t

x
θ

Kx = 600 Ky = 600 Kz = 15

 

 

x
θ

y
θ

z
θ

x
q

y
q

z
q

Fig. 6. Measurements of the combined impedance controller for specifying
the x-y plane to show high stiffness behaviour. The robot can be easily
deflected in the z-direction, as here a very low stiffness is commanded.

stiffness a little off of the desired stiffness KCszz = 280 N/m.

While this may not be relevant for real applications, two

theoretical solutions are given here:

By transforming (7), where Cs = Cd, by a generalized

eigenvalue decomposition into the eigenspace of Cd and Cp,

all matrices but Ca have diagonal shape

[V,Λ] = eig(Cp,Cd) :

CdQ = I = VT Cd V

CpQ = diag(cpQ) = VT Cp V

CaQ = VT Ca V.

To find a matrix Ca which is positive definite (compare Sec-

tion V), it is necessary that the diagonal elements CaQii > 0
and as a consequence

CpQii < CdQii. (17)

However, the passive compliance optimization step from (9)

does not guarantee (17) to be true. To achieve the desired

property, the passive compliance matrix CBest
p is scaled

down:

CScaled
p =

1

max(CpQii)
Cp (18)

Where max(CpQii) denotes the biggest element of the diag-

onal matrix CpQ.

Another possibility to ensure property (17) is to consider

the minimum possible compliance term already in the passive

compliance optimization (9).

VII. DISCUSSION AND OUTLOOK

The experimental results show the effectiveness of the

presented algorithm. The limitations of the implementation

of the Cartesian stiffness with a variable stiffness robot with
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Fig. 7. Measurements of the combined impedance controller for high
stiffness behaviour in the z-direction. The x- and y-direction show low
stiffness, which is generated mostly by the active impedance controller, as
the lowest passive stiffness in the direction is relatively high (e.g. KCpxx >
10 ⋅KCdxx).

diagonal joint stiffness can be reduced by using an additional

impedance controller. The combination of the active and

passive impedance behaviour greatly extends the adjustable

stiffness range of the robot.

Several topics will be addressed in further research. The

solution to include the minimum possible compliance in the

passive stiffness optimization will be further evaluated. Fur-

thermore, the algorithm will be adopted to allow to specify a

Cartesian stiffness under the influence of an external torque.

Last but not least, we seek to remove the restriction of local

correctness of the algorithm.
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