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Abstract— Building facade detection is an important problem
in computer vision, with applications in mobile robotics and
semantic scene understanding. In particular, mobile platform
localization and guidance in urban environments can be enabled
with an accurate segmentation of the various building facades
in a scene. Toward that end, we present a system for segmenting
and labeling an input image that for each pixel, seeks to
answer the question “Is this pixel part of a building facade,
and if so, which one?” The proposed method determines a
set of candidate planes by sampling and clustering points
from the image with Random Sample Consensus (RANSAC),
using local normal estimates derived from Principal Component
Analysis (PCA) to inform the planar model. The corresponding
disparity map and a discriminative classification provide prior
information for a two-layer Markov Random Field model. This
MRF problem is solved via Graph Cuts to obtain a labeling
of building facade pixels at the mid-level, and a segmentation
of those pixels into particular planes at the high-level. The
results indicate a strong improvement in the accuracy of
the binary building detection problem over the discriminative
classifier alone, and the planar surface estimates provide a good
approximation to the ground truth planes.

I. INTRODUCTION

Accurate scene labeling can enable applications that rely
on the semantic information in an image to make high level
decisions. Our goal of labeling building facades is motivated
by the problem of mobile robot localization in GPS-denied
areas. This problem arises in urban areas, so the approach
currently being developed by our group depends on detection
of buildings within the field of view of the cameras on a
mobile platform. Within this problem, accurate detection and
labeling is critical for the high level localization and guidance
tasks. We restrict our approach to identifying only planar
building facades, and require image input from a stereo
source. Since most buildings have planar facades, and many
mobile robotic platforms are equipped with stereo cameras,
neither of these assumptions is particularly restrictive.

In this paper, we propose a method for building facade
labeling in stereo images that further segments the individual
facades and estimates the parameters of their 3D models.
Our approach proceeds in three main steps: discrimina-
tive modeling, candidate plane detection through PCA and
RANSAC, and energy minimization of MRF potentials. Our
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Fig. 1. Workflow of our candidate plane selection and labeling method.
We iteratively run RANSAC on a set of sampled points from the image,
removing the inliers (green) from the set, to generate a set of candidate
planes. Our planar model incorporates the fit of the PCA local normal
estimate into the error term. The set of candidate planes provides the label
set for the high-level MRF model.

contribution is the use of plane fitting techniques from stereo
imagery to the problem of building facade segmentation in
the context of mobile platform localization. A diagram of
the workflow for candidate plane detection and high-level
labeling is provided in Fig. 1.

Our work leverages stereo information from the beginning.
Our discriminative model is generated from an extension
of the Boosting on Multilevel Aggregates (BMA) method
[1] that includes stereo features [2]. Boosting on Multilevel
Aggregates uses hierarchical aggregate regions coarsened
from the image based on pixel affinities, as well as a variety
of high-level features that can be computed from them, to
learn a model within an AdaBoost [3] two- or multi-class dis-
criminative modeling framework. The multilevel aggregates
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exploit the propensity of these coarsened regions to adhere to
object boundaries, which in addition to the expanded feature
set, offer less polluted statistics than patch-based features,
which may violate those boundaries. Since many mobile
robot platforms are equipped with stereo cameras, and can
thus compute a disparity map for their field of view, our
approach of using statistical features of the disparity map is
a natural extension of the BMA approach given our intended
platform. Since buildings tend to have planar surfaces on
their exteriors, we use the stereo features to exploit the
property that planes can be represented as linear functions
in disparity space and thus have constant spatial gradients
[4]. We use the discriminative classification probability as a
prior for inference of facade labeling.

In order to associate each building pixel with a particular
facade, we must have a set of candidate planes from which to
infer the best fit. We generate these planes by sampling the
image and performing Principal Component Analysis (PCA)
on each local neighborhood to approximate the local surface
normal at the sampled points. We then cluster those points
by iteratively using Random Sample Consensus (RANSAC)
[5] to find subsets which fit the same plane model and
have similar local normal orientations. From these clusters of
points, we are able to estimate the parameters of the primary
planes in the image.

We then incorporate both of these sources of information
into a Bayesian inference framework using a two-layer
Markov Random Field (MRF). We represent the mid-level
MRF as an Ising model, a layer of binary hidden variables
representing the answer to the question “Is this pixel part
of a building facade?” This layer uses the discriminative
classification probability as a prior, and effectively smooths
the discriminative classification into coherent regions. The
high-level representation is a Potts model, where each hidden
variable represents the labeling of the associated pixel with
one of the candidate planes, or with no plane if it is not
part of a building. For each pixel, we consider its image
coordinates and disparity value, and evaluate the fitness of
each candidate plane to that pixel, and incorporate it into
the energy of labeling that pixel as a part of that plane. A
more in-depth discussion of these methods can be found in
Section II-B.

We use the Graph Cuts energy minimization method [6]
to compute minimum energy labelings for both levels of our
MRF model.

In principle our approach is modular, in that for each of
the three phases (modeling, candidate plane detection, and
labeling), a different method that produces the same type
of output (probability map, candidate plane set, facade seg-
mentation, respectively) could be substituted. However, the
specific techniques we have developed have been motivated
by the features of this specific problem.

A. Related Work

Building facade detection and segmentation have been and
continue to be well-studied problems. Many recent papers
in the literature have focused on segmentation of building

facades for use in 3D model reconstruction, especially in
the context architectural modeling or geo-spatial mapping
applications such as Google Earth. Korah and Rasmussen
use texture and other a priori knowledge to segment building
facades, among other facade-related tasks [7]. Wendel et al.
use intensity profiles to find repetitive structures in coherent
regions of the image in order to segment and separate
different facades [8]. Hernández and Marcotegui employ
horizontal and vertical color gradients, again leveraging
repetitive structures, to segment individual facades from
blocks of contiguous buildings in an urban environment [9].

Several other methods utilize vanishing points for planar
surface detection. David identifies vanishing points in a
monocular image by grouping line segments with RANSAC
and then determining plane support points by the intersection
of the segments which point toward orthogonal vanishing
point ultimately clustering them to extract the planes of the
facade [10]. Bauer et al. implement a system for building fa-
cade detection using vanishing point analysis in conjunction
with 3D point clouds obtained by corresponding a sweep
of images with known orientations [11]. Lee et al. use
a line clustering-based approach, which incorporates aerial
imagery, vanishing points, and other projective geometry
cues to extract building facade textures from ground-level
images, again toward 3D architectural models reconstruction
[12].

Our work draws on the contributions of Wang et al.,
whose facade detection method using PCA and RANSAC
with LiDAR data inspired our approach with stereo images
[13]. Perhaps the approach most similar in spirit to ours is
that of Gallup et al. [14], who also use an iterative method for
generating candidate plane models using RANSAC, and also
solve the labeling problem using graph cuts [6]. However,
their approach relies on multiview stereo data and leverages
photoconsistency constraints in their MRF model, whereas
we perform segmentation with only single stereo images.
In addition, on a fundamental level their method involves
finding many planes that fit locally, and stitching them
together, whereas we aim to extract our planar models from
the global data set, without an explicit restriction on locality.
We present quantitative results on the accuracy of our planar
modeling as well.

Although many of these results are directed toward 3D
model reconstruction, some other work using unrelated tech-
niques has been focused toward our intended application
of vision-based navigation, namely [10], [15], [16], [17].
Additionally, our work is focused on retrieval of the esti-
mated plane parameters, as implemented in the planar surface
model of [4], and not on 3D model reconstruction.

II. METHODS

A. BMA+Disparity Classifier

Based on the work in [2], we model building facade
features using the Boosting on Multilevel Aggregates (BMA)
[1] method, with the extension to stereo features. In principle,
any classifier could be used for this step, so long as it
could produce a probability map for binary classification in



Fig. 2. Several examples of probability maps to be used as priors for our
MRF. For each example, they are (L to R) the original image, by standard
BMA, and by BMA+Disparity.

identifying building pixels. We choose the BMA+Disparity
method because of its superior performance to standard
AdaBoost, as well as to BMA without the addition of stereo
features (See Fig. 2).

B. Plane Parameters

Throughout this discussion, we assume that we have stereo
images which are rectified, but since we do not aim for
full 3D reconstruction, for the purposes of the following
derivation the camera’s calibration parameters are left as
unknown constants. We can determine the surface normal
parameters up to a constant that describes the camera pa-
rameters, and since that constant will be the same across all
candidate planes, we can use the computed surface normals
to differentiate between planes. Known camera parameters
would enable recovery of the surface normal parameters in
world coordinates.

A plane in 3D space can be represented by the equation:

ax+ by + cz = d (1)

and for non-zero depth, z, this can be rewritten as:
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We can map this expression to image coordinates by the
identities u = f · xz and v = f · yz , where f is the focal length
of the camera. We can also incorporate the relationship of
the stereo disparity value at camera coordinate (u, v) to the
depth, z, using the identity D(u, v) = fB

z , where D is the
disparity and B is the baseline of the stereo camera. Our
plane equation becomes:
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Although n = (a, b, c)T is the surface normal in world
coordinates, for our purposes we can seek to determine the

following modified plane parameters n′ = (a′, b′, c′), where:
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such that

n′ ·
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v
1

 = a′u+ b′v + c′ = D(u, v) (6)

This new set of plane parameters relates the image coordi-
nates and their corresponding disparity values by incorporat-
ing the constant but unknown camera parameters.

C. Candidate Plane Detection

We perform the second phase of our approach by itera-
tively using RANSAC to extract a set of points which fit a
plane model in addition to having a local normal estimate
which is consistent with the model. The extracted plane
models become the set of candidate planes for our high-level
MRF labeling.

1) Local Normal Estimation: Based on our assumption of
rectilinear building facades, we can use Principal Component
Analysis to determine a local normal to a point in disparity
space as in [18]. We first construct the covariance matrix of
the neighborhood around the point in question. To do this,
we consider any points, in a 5× 5 window centered on our
point p = (v, u,−D(u, v)), that have a valid disparity value.
Here, u and v represent row and column indices, respectively.
Note that stereo cameras that compute the disparity map
with onboard processing in real-time often do not produce
dense disparity maps. The pixels that are not matched in
the left and right images or are at a distance beyond the
usable range of the camera will be labeled with the maximum
value for that disparity image, representing that the camera
failed to compute the disparity at that pixel. Consequently,
the neighborhood we use for PCA may be sparse. Other
neighborhood sizes could be used, but we found that a
5×5 window provided good estimates while remaining local.
We compute the centroid, p̄ = 1

N

∑N
i=1 pi, of the points

{pi}i=1...N in the neighborhood with valid disparity, and
calculate the 3× 3 covariance matrix with:

W =
1

N

N∑
i=1

(pi − p̄)⊗ (pi − p̄) (7)

where ⊗ is the outer product. We then compute the eigen-
values of W , and the eigenvectors corresponding to the
largest two eigenvalues indicate the directions of the primary
directions on the local planar estimate. The eigenvector
corresponding to the smallest eigenvalue thus indicates the
direction of the local surface normal, n(u,v).

2) RANSAC Plane Fitting: We take a sample, S, of points
from the image, which all have valid disparity values, and
compute the local planar surface normal estimates by the
aforementioned method. We then seek to fit a model to some
subset of S of the form:

αv + βu+ ε(−D(u, v)) + θ = 0 (8)



where ñ = 1
ε (α, β, θ) is the surface normal from Eq. (6).

Since RANSAC finds the largest consensus set, Pin, that
it can among S, we will fit the most well-supported plane
first [5]. We then remove the inliers, S′ = S \ Pin, and
repeat this process iteratively, finding progressively less well-
supported planes, until a fixed percentage of the original
S has been clustered into one of the extracted planes. In
our experiments, we used a sample of 2000 points from
the image, and concluded the plane extraction once 80%
of the points had been clustered, or when RANSAC failed
to find a consensus set among the remaining points. We
also use a RANSAC noise standard deviation of ση = 5,
representing the amount of Gaussian noise that is assumed
on the positions of the inlier points.

Although we use RANSAC to fit a standard plane model,
we use a modified error term in order to incorporate the
information in the local normal estimates. Here, since our
local normal estimate required the use of a three dimen-
sional coordinate system (u, v,−D(u, v)), and produces a
normal of that form, we must use a slightly different normal
formulation of nm = (α, β, ε). The standard measure of
error for a plane model is the distance of a point from
the plane: Em =| αv + βu + ε(−D(u, v)) + θ |, assuming
nm = (α, β, ε) is a unit vector. We compute another measure
of error, Enorm, the dot product of the model plane normal
nm and the local normal estimate n(u,v), which is the cosine
of the dihedral angle between the two planes defined by those
normals. If we take its magnitude, this metric varies from 0
to 1, with 1 representing normals which are perfectly aligned,
and 0 representing a dihedral angle of 90◦. Since the range
of E depends on the properties of the image (resolution,
disparity range), we combine these two metrics as follows:

E = Em(2− Enorm) = Em(2− | 〈nm,n(u,v)〉 |) (9)

such that the dihedral angle scales the error term from Em to
2Em, depending on the consistency of the model and local
normals.

D. MRF Model

We model our problem in an energy minimization frame-
work as a pair of coupled Markov Random Fields. Our mid-
level representation seeks to infer the correct configuration
of labels for the question “Is this pixel part of a building
facade?” Based on this labeling, the high-level representation
seeks to associate those pixels which have been positively
assigned as building facade pixels to a particular candidate
plane. Figure 3 shows a graphical representation of this MRF
model. Our motivation for this design stems from the fact
that these are related but distinct questions, and they are
informed by different approaches to modeling buildings. The
mid-level MRF represents an appearance-based model, while
the high-level MRF represents a generative model for the
planar facades.

1) Mid-level Representation: We want our energy func-
tion for the mid-level model to capture the confidence
(probability) of our discriminative classification, and we want
there to be a penalty whenever a pixel with a high confidence

Fig. 3. Our two-layer MRF model.

is mislabeled, but a smaller penalty for pixels with lower
confidence in their a priori classification. We will use an Ising
model to represent our mid-level MRF, where our labels xs
for s ∈ λ, our image lattice, come from the set {−1, 1}.
We define a new variable bs to represent a mapping of the
Xs ∈ {−1, 1} label to the set {0, 1} by the transformation
bs = Xs+1

2 . For a particular configuration of labels l, we
define our mid-level energy function as:

E(l) =
∑
s∈λ

[(1− bs)p(s) + bs(1− p(s))]−γ
∑
s∼t

xsxt (10)

where p(s) is the discriminative classification probability at s
and γ is a constant weighting the unary and binary terms. The
bs quantity in the unary term essentially switches between a
penalty of p(s) if the label at s is set to −1, and a penalty
of 1 − p(s) if the label at s is set to 1. Thus for p(s) = 1,
labeling xs = −1 will incur an energy penalty of 1, but
labeling xs = 1 will incur no penalty. Similarly for p(s) = 0,
labeling xs = −1 will incur no penalty, but labeling it 1 will
incur a penalty of 1. A probability of 0.5 will incur an equal
penalty with either labeling. Our smoothness term is from
the standard Ising model. In our experiments, we used a γ
value of 10.

2) High-level Representation: In designing our energy
function for the high-level MRF, we want to penalize points
which are labeled as being on a plane, but which do not
fit the corresponding plane equation well. Our label set
for labels ys, s ∈ λ, is {0, . . . ,m}, with m equal to the
number of candidate planes identified in the plane detection
step. It corresponds to the set of candidate planes indexed
from 1 to m, as well as the label 0, which corresponds to
“not on a plane”. We define a set of equations Ep(s) for
p ∈ {0, . . . ,m} such that

Ep(s) =| a′pu+ b′pv + c′p −D(s) | (11)

where the surface normal n′p = (a′p, b
′
p, c
′
p) corresponds to

the plane with label p, and D(s) is the disparity value at
s. We normalize this energy function by dividing by the
maximum disparity value, in order to scale the maximum
energy penalty down to be on the order of 1. For consistency



in our notation, we define E0(s) to be the energy penalty
for a label of 0 at s, corresponding to the “not on a plane”
classification. We set E0(s) = bs, such that a labeling of −1
in the mid-level representation results in bs = 0, so there
is no penalty for labeling s as “not on a plane”. Similarly,
when xs = 1, bs = 1, so there is a penalty of 1 to label any
of the non-planar pixels as a plane.

To construct our overall energy function for the high-level
MRF, we incorporate the exponential of the set of planar
energy functions Ep with a delta function, so the energy cost
is only for the plane corresponding to the label ys. Since we
cannot compute Ep without a valid disparity value, we use an
indicator variable χD ∈ {0, 1} to switch to a constant energy
penalty for all planes and the no-plane option, in order to rely
strictly on the smoothness term for that pixel’s label. For the
smoothness term, we use a Potts model, weighted like the
mid-level representation, with a constant γ′ = 1. Thus the
high-level energy function we are seeking to minimize is:

E(l) =
∑
s∈λ

m∑
p=0

δys=p · exp (χDEp(s))+γ′
∑
s∼t

δys=yt (12)

E. Energy Minimization

To perform the energy minimization, we use the graph
cuts expansion algorithm, specifically the implementation
presented in [6]. We perform the minimization in two stages.
Although the two labeling problems are coupled, the results,
at least in terms of their appearance, were more accurate
when performed in this way. We first minimize the energy
of the mid-level MRF to obtain an approximation to the
optimal labeling of planar surface pixels. This step uses prior
knowledge from the discriminative classification. Next, we
use the mid-level labeling as well as the detected candidate
planes as a prior for the high-level MRF, and we use graph
cuts again to compute an approximation to that optimal
labeling.

III. EXPERIMENTAL RESULTS

We have performed two experimental studies using our
method on a new benchmark dataset1. We are not aware of
another publicly available, human-annotated, stereo building
dataset. Our full data set consists of 142 grayscale images
from the left camera of a stereo imager2, each with a corre-
sponding 16-bit disparity map. All images have 500 × 312
resolution and human-annotated ground truth. We used 100
randomly selected images for training our discriminative
classifier. Of the remaining 42 images, 21 were used for
testing; 21 images were excluded from the test set because
they are negative examples or the facades were too distant
for the stereo camera to generate useful disparity values.

A. Single Plane Segmentation

Our testing data set contains 13 images which feature only
one plane in the scene. In order to validate our methods, we

1Available at http://www.cse.buffalo.edu/˜jcorso/r/gbs
2Tyzx DeepSea V2 camera with 14 cm baseline and 62◦ horizontal field

of view.

TABLE I
SINGLE PLANE MODELING ACCURACY

Image # Mid F-score High F-score Angle (◦)
1 0.8905 0.9738 0.390
2 0.9242 0.9129 2.505
3 0.8859 0.8749 0.472
4 0.9117 0.9094 1.209
5 0.9607 0.7770 3.133
6 0.9168 0.9339 1.172
7 0.9371 0.7933 2.522
8 0.8180 0.9711 0.272
9 0.9836 0.9833 0.866
10 0.9074 0.8200 1.362
11 0.8410 0.9169 1.064
12 0.6298 0.4707 9.076
13 0.7440 0.3135 7.681

Avg: 0.8731 0.8193 2.440

first tested the accuracy of our approach for both labeling
and parameter estimation on this restricted data set. For each
image, we hand-labeled a ground truth segmentation, and
used only that region of the image to determine a ground
truth plane with RANSAC. Next, we applied our method for
inferring the segmentation labels and plane parameters and
compared the results with our ground truth by computing
the F-score for each mid- and high-level labeling, and
the dihedral angle between the ground truth and primary
estimated plane from the high-level labeling. In the case of
the mid-level labeling, the f-score represents the accuracy of
labeling building pixels from background, and for the high-
level it represents the accuracy of labeling the correct plane
within the foreground. It should be noted that in most cases,
several candidate planes were generated and then labeled by
the MRF, but for our planar comparisons, we must select
only one to compare with the ground-truth. This portion of
our method is not yet automated, and we manually selected
the best candidate plane from the set of applied labels. In
most cases, this choice coincided with the label with the
largest segmentation area, and was also generally the most
vertical of the candidate planes. But in a few cases, notably
image sets 12 and 13, the choice was somewhat ambiguous
based on area or the magnitude of the u component of the
normal. Future work will be devoted to refining this portion
of our method for disambiguating labels in the absence of
ground-truth. Our results are summarized in Fig. 4 and Table
I.

Our results on the single-plane images indicate that our
proposed method is robust and highly accurate. The average
f-scores for both the mid-level and high-level labeling tasks
are both above 80%, and the average dihedral angle is 2.44◦.
Additionally, all of the planes were accurate to within 10◦

of their ground truth orientations. It should be noted that
although this image set was restricted to those with single
facades, all of the images are of natural scenes which include
occlusions and differences in illumination, the buildings were
captured at different angles, and the buildings themselves
have different sizes, textures, and architectural features.
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Fig. 4. Segmentations and planar facade estimates on single-facade images.
For each example, they are (L to R) the original image, ground truth
segmentation, high-level MRF labeling.

TABLE II
MULTIPLE PLANE MODELING ACCURACY

Image # Mid F-score High F-score Angle (◦)
1 0.9886 0.9264 15.299

2.113

2 0.9621 0.8751 0.513

27.611

3 0.9452 0.6876 56.510

1.309

4 0.9238 0.9249 0.340

2.035

83.228

5 0.9131 0.8953 0.686

1.173

6 0.9492 0.9118 16.115

0.860

76.594

7 0.9735 0.9595 1.436

0.383

8 0.8864 0.9302 3.011

1.975
Avg: 0.9427 0.8889 16.177

B. Multiple Plane Segmentation

We now proceed to analysis of more sophisticated scenes
that include multiple facades at different orientations. We
selected the 8 images from our testing set that contained at
least 2 facades in the scene. Similarly to the single-plane
experiments, we hand-labeled a ground truth segmentation,
and for each ground-truth facade, used only that region of
the image to determine a ground truth plane with RANSAC.
When the MRF segmentation produced more than one plane
label over a ground-truth plane region, we again manually
chose the best of those candidates for our comparison of
angular accuracy to the ground truth. Once again, the best
candidate plane often coincided with the largest label area
and most vertical plane, but not consistently. For example,
in image set 1 of Fig. 5, the segmentation of the left facade
is divided among white, light gray, and dark gray labels,
but we we compute the dihedral angle only for the dark
gray candidate plane because it was the most accurate to the
ground-truth for that region. Our results are summarized in
Fig. 5 and Table II.

As with the single-plane experiments, the accuracy of
labeling the primary facades in the image is generally very
good, and in most cases does not require any manual
disambiguation for the angular accuracy. However, for some
of the minor facades in the image (either small, distant,
or obliquely angled) the error in either the labeling or the
plane estimation, or both, was large. In particular, image
sets 4 and 6 in Fig. 5 show the difficulty in achieving
good estimates for distant planes, as they have large errors
in the plane estimation, and both plane estimation and
labeling, respectively. It should be noted, however, that the
plane estimation errors in these cases are primarily in the



rotation about the v-axis, leading to plane estimates which
are reasonably accurate in their rotation about the u-axis,
but are far from being vertical. Since we are working under
the assumption that most buildings have upright facades, it
may be possible in the future to apply a constraint to correct
these estimates.

C. Analysis

Averaged over all 21 images in our testing set, the mid-
level labeling achieved an accuracy of 0.8996, and the high-
level labeling achieved an accuracy of 0.8458. The average
dihedral angle among all of the 31 ground-truth planes in
the 21 images was 10.416◦.

The accuracy of our methods on natural scenes is cor-
related with the quality of the disparity maps, as well as
the location of the facades within the usable range of the
stereo camera. For example, the camera used to capture our
dataset can only resolve features up to 45 cm at a distance
of 15m. Thus, even moderately distant facades are likely to
be significantly more prone to large errors in their estimates;
they will be both small in the frame and less likely to find an
accurate consensus set in RANSAC due to the uncertainty
in their disparity values. Similarly, for a facade with many
invalid disparity values, it may not be sampled adequately,
and the points it does have may erroneously be included
as part of an inlier set that does not actually lie on the
facade. Limitations of this nature will depend on the specific
stereo imager used, but in general, a more accurate and dense
disparity map will enable the discovery of a more accurate
candidate plane set.

One of the drawbacks of our method is that for validation,
we manually disambiguate inconsistent labels for our accu-
racy measures. For localization and navigation purposes, this
may not be an issue, as a mobile platform may have have
odometry information that can track the planes in the scene
and help distinguish between these labels. In the absence
of ground-truth information, the mobile platform could also
consider the power set of candidate plane labels to find if
one set corresponds well with its other semantic information
about the surrounding area. However, we intend to investigate
this area further in order to develop a more automated way
of determining the best plane estimate for each facade in
the absence of ground-truth information. Incorporating other
semantic information such as vanishing points may help to
improve the quality of both the candidate planes and their
segmentations.

IV. CONCLUSION

We present a system for building facade segmentation
from stereo images with parameter estimation of the identi-
fied planar surfaces. Our results show high accuracy in both
detection of buildings (∼ 90%) and their facades (∼ 85%),
and in estimation of their plane parameters (∼ 10◦). The
performance we have demonstrated indicates a promising
step toward mobile robot localization and guidance via
semantic scene understanding. Our intended future work in

that direction includes refinement and improvement of our
methods and eventual deployment on a mobile platform
as part of a semantic guidance system. A first step will
be to perform greater performance anaysis through cross
validation with our full data set and the application of our
method to further data sets that we intend to gather. We also
plan to incorporate more semantic information (e.g. through
vanishing point analysis or detection of other objects in the
scene) into our framework to improve accuracy.
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Fig. 5. Segmentations and planar facade estimates on multi-facade images. For each example, they are (L to R) the original image, ground truth
segmentation, high-level MRF labeling, and 3D plane projection. In the plane projection plots, the perspective of the original image is looking down on
the 3D volume from the positive D-axis. The ground-truth planes are in blue, and the estimated planes are in green (view in color).




