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Abstract— In this paper, we present a quantitative,
trajectory-based method for calibrating stochastic motion
models of water-floating robots. Our calibration method is
based on the Correlated Random Walk (CRW) model, and
consists in minimizing the Kolmogorov-Smirnov (KS) distance
between the step length and step angle distributions of real
and simulated trajectories generated by the robots. First, we
validate this method by calibrating a physics-based motion
model of a single 3-cm-sized robot floating at a water/air
interface under fluidic agitation. Second, we extend the focus
of our work to multi-robot systems by performing a sensitivity
analysis of our stochastic motion model in the context of Self-
Assembly (SA). In particular, we compare in simulation the
effect of perturbing the calibrated parameters on the predicted
distributions of self-assembled structures. More generally, we
show that the SA of water-floating robots is very sensitive to
even small variations of the underlying physical parameters,
thus requiring real-time tracking of its dynamics.

I. INTRODUCTION

When it comes to characterizing the trajectory of a robot,
it is often practical to use one of these opposed assumptions:
(i) the robot follows a deterministic trajectory defined by a
given control law, e.g. [1]; or (ii) the robot performs a random
walk with some known average speed that can be mapped to
some diffusion coefficient, e.g. [2]. However, there are many
situations, such as the one presented in this paper, where
the reality lies between these two extremes. In our case,
we study the stochastic motion of 3-cm-sized water-floating
cubic robots, denoted as blocks hereafter, within a tank.
These blocks weight approximately 11.6 g, and are endowed
with a visual marker for tracking purposes, as well as with
four permanent magnets (one on each side) for mutual
aggregation (see Fig. 1b). The blocks are not self-locomoted;
instead, they are stirred by the fluid flow produced by
pumps along the tank perimeter. As a result, they describe
trajectories with well-defined geometric features, yet with a
strong stochastic component.

In this work, we first study the calibration of the motion
model based on a single block’s trajectory, and we then
investigate in simulation the impact of this motion model
in a multi-robot scenario. In particular, we use the very
same motion model in a physics-based simulation of self-
assembling blocks, and we observe the effect of perturbing
the calibrated parameters on assembled structures. In other
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words, we show how important a proper calibration of
the motion model is when modeling Self-Assembly (SA)
processes.

SA is the autonomous organization of pre-existing physical
units into spatial patterns or structures [3]. Fluidic SA
has attracted increasing interest as a competitive alterna-
tive to traditional manufacturing techniques for micro and
nano electro-mechanical systems [4], [5]. Still, it presents a
number of methodological and experimental challenges. For
instance, a broad range of interactions have to be measured
and modeled (e.g., hydrophobic, capillary, electrostatic and
magnetic forces), suitable agitation methods have to be
determined, and an appropriate imaging technique has to
be developed to assess the assembly progress and yield.
Working at a larger scale may alleviate some of these
difficulties, especially those concerning block fabrication
and manipulation, while still allowing to gain consistent
insights on the SA process. Therefore, several platforms at
larger scales are being used to study SA [6]–[12], exploiting
similarities with sub-millimeter scale SA without dealing
with all the difficulties that arise from extreme miniaturiza-
tion. These platforms present different physical dimensions,
degrees of autonomy, and computational capabilites. For
instance, in [12] the blocks are completely passive, which
allows for reduced block sizes in fluidic environments, but
the control of the SA process relies entirely on an active
patterned substrate. In [9] and [11] there is some kind of
electronic control and actuators on board, though energy
is provided through inter-block physical connections and
is therefore not available to the blocks until they latch to
the main aggregate. Miyashita et al. [10] address the block
energy autonomy problem by using an external pantograph
to draw power from the top of the tank; however, the only
control parameter used in this system is the globally applied
power. Klavins’ Programmable Parts [7] could be considered
fully autonomous self-assembling robots, only lacking self-
locomotion and relying on an air table for agitation. Never-
theless, it is not clear if results obtained from this setup can
be extended to fluidic SA at smaller scales, due to the parts’
relatively large size and the agitation method not including
the peculiar fluidic interactions.

Comparatively little effort has been devoted to modeling
robotic SA [13]. Models with high level of abstraction are
usually non-spatial and assume well-mixed systems; yet,
Napp et al. [14] have shown that, in their Programmable Parts
setup, the robots are more likely to interact with their last in-
teraction partner than with any other. In fact, the implications
of these assumptions are difficult to gauge due to the lack
of appropriate modeling tools for the previously mentioned



robotic platforms. State-of-the-art robotic simulators such as
Webots or Gazebo do not support fluid dynamics natively.
Moreover, to our knowledge little importance has been given
to real-time tracking of block trajectories and their impact on
the dynamics and the outcome of SA processes, which we
intend to show to be non-negligible.

The paper is organized as follows: Section II describes
the experimental setup used to collect the trajectories; Sec-
tion III introduces a motion model of the water-floating
block accounting for simple hydrodynamic effects such as
drag, buoyancy, and, to some extent, fluctuations due to
stirring; Section IV describes the main contribution of the
paper, that is, a novel method to calibrate and validate the
parameters of such models based on the comparison between
the simulated and experimental trajectories of the blocks.
Finally, Section V-A discusses the experimental results of the
calibration procedure; and Section V-B reports the results of
our sensitivity analysis, performed in simulation.

II. EXPERIMENTAL SETUP

The experimental setup consists of a circular water tank of
approximately 30 cm in diameter, with eight inlets connected
to four diaphragm pumps. Four inlets are perpendicular to the
wall, and the other four are as tangential as possible, allowing
to create both radial and circular flows. Additionally, four
outlets are placed at the bottom of the tank, to avoid affecting
the flow at the surface as much as possible. Each pump’s
flow rate can be controlled individually up to a maximal
value of 600 ml/min. This flexible configuration allows
us to investigate a variety of different flow patterns and
associated block trajectories. Indeed, perpendicular inlets
generate very irregular trajectories, and allow for collisions in
the middle of the tank, but they exhibit dead spots near the
walls. Conversely, tangential inlets generate circular flows
that prevent dead spots, but lead to very regular, closed
trajectories that do not favor collisions.

To monitor the evolution of the system in real time, we use
an overhead camera to track the pose of the blocks. A two-
color passive marker located at the top of each block is used
in conjunction with SwisTrack [15], an open-source software
package developed in our laboratory, to track the blocks.
Both their position (x,y) and orientation (θ) are logged in
real time at a rate of approximately 10 Hz.

III. MOTION MODEL

To reproduce the distributed system in simulation, we use
Webots [16], a mobile, physics-based robotics simulation
software. Webots uses the Open Dynamics Engine (ODE)
for simulating rigid body dynamics, but it does not support
fluidic dynamics. However, in order to accurately simulate
our system, we need to capture both the flow generated by
the pumps and the interactions between the robots and the
flow.

Our first approach to solve this problem was to couple
Webots with a Computational Fluid Dynamics (CFD) tool,
for instance the Lattice Boltzmann method. However, this

(a)

(b)

Fig. 1: Experimental setup. (a) Tank with 8 inlets (4 perpendicular and 4
tangential to the wall). (b) Three assembled blocks floating on water.

approach is not only computationally expensive, but also dif-
ficult to implement in order to ensure numerical stability of
the simulation. Also, our system being essentially stochastic
and subject to important asymmetries and manufacturing im-
perfections that may significantly affect the flow, an approach
based on CFD tools does not represent a suitable choice.

As a result, we decided to adopt a completely different
approach. Instead of trying to predict the flow resulting from
a certain pump configuration, we use the blocks’ trajectories
to extract the flow velocity field, and then use it in the
Webots simulations. This approach dramatically decreases
the computational cost as compared to CFD methods, but it
requires that the flow velocity field for each possible pump
configuration be measured beforehand.

Concretely, we record the trajectory of a single, floating
cubic block (with side length of 3 cm) during 30 minutes, and
then construct a discrete regular velocity field by discretizing
the trajectory plane into a regular grid, and averaging the
observed velocity vectors at each cell of the grid. Choosing
the number of divisions of the grid is a compromise similar
to choosing the number of bins in a histogram: a too coarse
grid may hide important features of the data, while a too
fine grid could result in very few samples per division, and
therefore less statistical significance. We used a discretization
of about 50 cells in each dimension for our arena (30 cm in
diameter).

Once the velocity field is extracted, a correction is applied
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Fig. 2: Velocity field of the tracked block and calculated flow.

to compensate for the inertia of the block. This correction
is based on a simple dynamical analysis considering the
drag force, which is the only force acting in the horizontal
plane. First, we compute the Reynolds number Re, which
determines the flow regime of our system:

Re =
ρ · V · L

µ
∼ 2000 (1)

where ρ = 103 kg/m3 is the density of water, V ∼ 6.4 cm/s
the experimentally-measured mean velocity of the object
relative to the fluid, L = 3 cm the characteristic block linear
dimension, and µ = 8.90 · 10−4 Ps·s the dynamic viscosity
of water. This value of Re is quite higher than the typical
values (Re < 10) present at smaller scales [17], in which the
linear drag Stokes’ law is usually applied. In our case, this
high Reynolds number indicates that the drag force takes a
quadratic form:

|~Fdrag| =
1

2
· ρ ·A · Cx · |~vblock − ~vflow|2 (2)

where ~vblock is the block’s velocity, ~vflow is the flow’s
velocity, A the block’s cross sectional area to the flow, and
Cx a dimensionless drag coefficient.

The direction of the drag force is opposed to the velocity
of the block relative to the flow, as stated by:

~Fdrag

|~Fdrag|
= − ~vblock − ~vflow
|~vblock − ~vflow|

(3)

Assuming A = 9 cm2 (i.e., the area of one block’s side,
since the block is almost completely immersed) and the drag
coefficient of a cube Cx = 1.05, and taking into account that
the mass of the block can be measured, and its velocity and
acceleration can be obtained from the tracked trajectories,
the only unknowns are the x and y components of the flow
velocity, which result in the following equations:

vflow,i = vblock,i +
m · ai√

1
2 · ρ ·A · Cx ·m

√
a2x + a2y

,

i = x, y (4)

It must be noted in Fig. 2 that the computed flow velocity
has a centripetal component that generates the observed
circular trajectory. If the correction of Equation 4 is not
applied, the block constantly crashes onto the walls, which
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Fig. 3: Torque τ and force Fres on a block in a non-uniform fluid flow.

is not consistent with experimental observations. Note that,
importantly, our simulation is completely independent from
the method used for measuring the flow velocity; in this
particular case, we used the same object for measuring
the flow velocity and in our simulation, but this needs not
to be the case in principle. For example, Particle Image
Velocimetry (PIV) could also be used to determine the flow
velocity field.

Rigid body dynamics is not sufficient to simulate the
motion of the blocks given the flow velocity. To solve this
problem, we developed a physics plugin for Webots; this
plugin applies the Archimedes’ force, which is simply the
weight of the fluid displaced by the block, and the drag
force based on the flow velocity at the location of the block.
However, here the drag is not computed once for the whole
block and added to its center of mass; instead, the drag
force is integrated over each face of the block to account
for rotational effects. To do this, each face is divided into
N planes, and the drag force is computed for each plane
according to Eq. 2 using appropriate values of A and Cx.
On the one hand, the area A becomes the plane’s cross
sectional area to the flow (which depends on the plane’s
orientation relative to the flow). On the other hand, Cx is
now the drag coefficient for each of the small planes. This
coefficient is unknown and becomes a free parameter to be
calibrated, which we denote Cd for the sake of clarity. The
calculated force is not added to the block’s center of mass but
to the center of each plane, which allows for capturing the
vorticity of the flow, e.g., the block will rotate when faced
with a flow whose strength is increasing across one face, as
shown in Fig. 3.

Importantly, the physics plugin also adds a stochastic
force Fstoch to the center of mass of each block in order to
account for non-modeled effects (e.g., physical irregularities,
turbulences). Fstoch is gaussian with zero mean and standard
deviation σF . As a result, the simulation has two parameters
to be calibrated: the dimensionless drag coefficient Cd and
the standard deviation σF of the stochastic force.

IV. CALIBRATION METHOD

The basic principle of our calibration method is to compare
simulated and real trajectories so that the actual behavior of
the blocks is reproduced as faithfully as possible. Sampled



Fig. 4: Step lengths Si and angles Ai for the Correlated Random Walk
(CRW) model.
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Fig. 5: (a) A sample trajectory. (b) Its step length and angle distributions.

trajectories can be viewed as sequences of points in a
two-dimensional space: there is no need to consider the
temporal dimension as we are using a constant sampling
rate. In our setup, real and simulated trajectories do not
have a common frame because there are no reference points
or pre-established paths, just the blocks reacting to the
environment. Therefore, it is not appropriate to compare
trajectories in the Euclidean space because, even though they
are generated by the same agitation mechanism and should
therefore exhibit common traits, the sequence of points will
vary greatly depending on initial conditions and random
collisions with walls. A solution described in [18] is to use
the Correlated Random Walk (CRW) model, which consists
in constructing the trajectory’s bi-dimensional distribution of
the step length and step angle (Fig. 4). A step is defined as the
segment that connects two points of the trajectory, sampled
at time t and t + ∆t, respectively. A sample trajectory and
its corresponding step length and angle distributions can be
seen in Fig. 5.

In order to quantitatively compare real and simulated
trajectories in the bi-dimensional space spanned by step
lengths and step angles, we use the Kolmogorov-Smirnov
(KS) distance, that is, the maximum distance between the
corresponding cumulative distribution functions. The rea-
soning behind this is that the KS statistical test is non-
parametric (i.e, no assumption is made about the underlying
distributions), and it is sensitive to both the shape and the
location of the empirical distribution functions. Therefore,
our calibration method does not only try to match the mean
linear and angular velocity of the real trajectory, but also the
shape of the bi-dimensional distribution as a whole.

When extending the KS test to two dimensions, the
calculation of the cumulative distribution function is not as
straightforward as in the one-dimensional case, as there are
four possible ways to cumulate data following the directions
of the coordinate axes. In our implementation, we followed
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Fig. 6: Plot of 1 − KSdistance between real and simulated trajectories
as a function of the drag coefficient Cd and the standard deviation σF of
the added stochastic force. Missing data in the plot are due to numerical
instabilities for too large values of Cd and Fstoch.

the Fasano and Franceschini variation presented in [19],
which has been shown to reduce the computational com-
plexity from O(n3) in Peacock’s original version to O(n2)
without sacrificing the test’s power to distinguish dataset
differences [20].

Finally, we systematically explore the parameter space
to find the optimal modeling parameters, i.e., those that
minimize the KS distance between the simulated and real
trajectories. Due to the small number of parameters in
our case study, there is no need for more complex opti-
mization techniques. However, more complex optimization
methods can be used in principle, as long as they are noise-
resistant [21].

V. RESULTS

In Section V-A, we report the results of our calibration
method, and we provide both quantitative and qualitative
insights into the influence of physical parameters on the tra-
jectory of a single block under fluidic agitation. In Section V-
B, we investigate in simulation the sensitivity of the SA of
multiple blocks to the same parameters.

A. Calibration

In our systematic exploration, we vary the drag coeffi-
cient Cd between 0 and 2 with increments of 0.05, and the
standard deviation of the stochastic force Fstoch from 0 mN
to 2 mN with increments of 0.05 mN. For each set of parame-
ters, we simulate a trajectory of 30 minutes, and compute the
KS distance between the resulting simulated trajectories and
a real, pre-recorded trajectory using all pumps at full power,
with two pumps directly connected to opposite perpendicular
inlets and two other connected to both one perpendicular and
one tangential inlet each. All trajectories are sampled at the
same rate (10 Hz) in order to be able to directly compare step
lengths and angles. Fig. 6 shows a plot of 1 − KSdistance

for improved visualization of the optimum.
The KS distance is minimized for a drag coefficient Cd =

0.45, and a standard deviation of the stochastic force σF =
0.55 mN. One can observe a ridge along the drag coefficient
axis, which indicates that the faithfulness of the simulation
rapidly decreases when leaving the [0.3 0.5] range for the
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Fig. 7: Step length and angle distributions for different drag coefficients. (a)
Real trajectory. (b) Cd = 0.1. (c) Cd = 0.45. (d) Cd = 0.8.

drag coefficient. Values for the stochastic force and the drag
coefficient that are too large lead to numerical instabilities.

The qualitative effects of different values for the drag
coefficient are shown in Fig. 7. If the drag coefficient is
too low, the block does not follow the flow: the mean step
length becomes shorter, and the mean angle is around zero,
as opposed to the negative step angles of the real trajectory
that show the prevailing turning direction of the circular flow.
Conversely, very high values of the drag coefficient cause the
block to be dragged to the center of the tank, and eventually
to rotate almost in place, thereby resulting in very short
step lengths and negative step angles due to the rotation.
Regarding the stochastic force (Fig. 8), low values of the
standard deviation lead to very regular trajectories, and the
resulting distribution shows very little variance. However, if
the stochastic force is too high, the trajectories become very
irregular and similar to those observed in Brownian motion,
while the step length and angle distribution becomes sparse.

B. Sensitivity Analysis of Self-Assembly Simulations

Up to now, we only discussed the impact of the simula-
tion’s physical parameters on the trajectory of a single block
in the tank. In this section, we investigate in simulation the
sensitivity of the multi-block SA process to these parameters.
Each block is endowed with four latching mechanisms (one
on each side), which allow the blocks to automatically
align and irreversibly attach to each other upon collision,
simulating the effects of a magnetic connection.

We compare the outcome of simulated SA experiments
with varying values of the drag coefficient Cd and the
standard deviation σF of the stochastic force. For each set
of parameters, we perform 1000 simulation runs (5 minutes
of simulated time each), and classify the resulting self-
assembled structures into geometrical classes. For the sake of
simplicity, we use only four blocks in this study, which leads
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Fig. 8: Step length and angle distributions for different standard deviations
of the stochastic force. (a) Real trajectory. (b) σF = 0 mN. (c) σF =
0.55 mN. (d) σF = 1 mN.

to 10 different classes1 depicted at the bottom of Fig. 11.
In the particular case of the optimal parameters found in
Section V-A, we perform 10 realizations of 1000 runs to
obtain the corresponding distribution, which we will use as
reference, and its standard deviation values (Fig. 9).

We then compare the resulting distributions of self-
assembled geometries using the l1-norm:

dist. =

10∑
i=1

|xai − xbi | (5)

where xai , and xbi represent the proportion of geometries
of class i for the set of parameters a and b, respectively.
Fig. 11 depicts the distance (as defined in Eq. 5) between the
reference distribution (see Fig. 9) and distributions yielded
by parameters ranging between 0 and 1.5 for Cd and 0 mN
and 1.5 mN for σF .

Fig. 11 clearly shows that the structures resulting from
simulated SA are sensitive to variations of both the drag
coefficient and the random force. First, one can observe
important qualitative variations of the obtained distributions
throughout the parameter space. The magnitude of these
variations is much larger than the fluctuations observed
in different realizations of the reference distribution (see
Fig. 9). Second, a more quantitative analysis shows that
the most important divergences occur for small values of
either parameters. Interestingly, the smallest distance is not
achieved in the region closest to the reference distribution;
instead, very large stochastic forces lead to distributions that
are most similar to the reference distribution. This finding is
very important, as it shows that very small variations of the

1Four blocks with four binding sites produce 12 different geometrical
classes, but two pairs of classes (labelled 3 and 5 in Fig. 11) correspond to
the same chiral structure, which we do not distinguish in this work.
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Fig. 9: The average distribution of self-assembled geometries for Cd = 0.45
and σF = 0.55 mN (i.e., the optimal parameters reported in Section V-
A) averaged over 10 realizations of 1000 runs. The error bars denote the
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realizations is 0.065.

physical parameters can lead to very important changes in
the outcome of the simulation. It also further underlies the
importance of a proper parameter calibration. Conversely, we
understand that one cannot rely only on the final outcome
of a SA experiment to assess the physical properties of the
system. While this issue is not crucial at the centimeter-scale,
where real-time and accurate tracking of each building block
is feasible, it poses important challenges for studying SA at
the microscale, where such detailed analysis of the system’s
dynamics is very difficult.

A Principal Component Analysis (PCA) can help to visu-
alize the variation in the dataset shown in Fig. 11. Fig. 10
depicts both the dataset and the original variables (i.e., the
10 geometrical classes) projected on the 2-dimensional plane
spanned by the two principal components. Interestingly, one
can directly observe that principal component 1 is aligned
with the physically disconnected geometries (classes 1, 2, 8,
9, and 10), which are favored by very small values of Cd

and σF . Indeed, while disconnected geometries are never
observed in most scenarios (namely, when the mobility of
the blocks with respect to each other is sufficiently high),
they can become very prominent in others (e.g., see the
distribution for Cd = 0.43 and σF = 0.54 in Fig. 11). On
the other hand, the large elongated cluster aligned with the
second component corresponds to the scenarios that yield
a unique aggregate; interestingly, there is no region of the
space that contains most of the points. This observation
further confirms that SA is very sensitive to variations of
the physical parameters of the model.

VI. CONCLUSION

We introduced a novel method for calibrating models of
stochastic SA of floating blocks based on the Correlated
Random Walk (CRW) model. In particular, we optimized two
physical parameters of our physics-based simulation (i.e, the
drag coefficient Cd and the standard deviation σF of the
stochastic force) by minimizing the Kolmogorov-Smirnov
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Fig. 10: Biplot of the dataset (red dots) shown in Fig. 11 projected on the
2-dimensional plane spanned by the two principal components. Projections
of the original geometrical classes are depicted by blue lines.

(KS) distance between real and simulated trajectories des-
cribed by the blocks.

In spite of its simplicity, our physical simulation allows
for the accurate reproduction, after calibration, of real tra-
jectories of centimeter-sized floating blocks under fluidic
agitation. However, the simulation has the main limitation
that it relies on a static flow velocity field. It might therefore
not be suitable if the agitation pattern is changed over time
to enhance stirring, or if the effect of the blocks on the fluid
flow cannot be neglected.

We believe that the novelty of our approach lies in the
application of trajectory analysis to the study of SA, particu-
larly as a way to study the effect of physical parameters and
stirring patterns on the resulting self-assembled structures.
For instance, it would be interesting to analyze how the tank’s
size and different pump configurations favour or restrict
the formation of certain geometrical classes. Importantly,
the inherent sensitivity of such structures hereby evidenced
strongly motivates the need for real-time tracking of SA
processes.

This work is part of our ongoing effort to develop a
methodological framework for modeling and controlling SA
at all scales. While this work assumed the feasibility of
tracking individual blocks in a reliable and accurate manner,
we envision extending our approach to scenarios where the
system is only partially observable, both in time and in space.
Another important thread for future research concerns the
extension of our calibration method to 3D systems.
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