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ABSTRACT

Reconfigurable modular robots can exhibit different specializations by rearranging

the same set of parts comprising them. Actuating modular robots can be complicated

because of the many degrees of freedom that scale exponentially with the size of the

robot. Effectively controlling these robots directly relates to how well they can be used

to complete meaningful tasks.

This paper discusses an approach for creating provably correct controllers for mod-

ular robots from high-level tasks defined with structured English sentences. While this

has been demonstrated with simple mobile robots, the problem was enriched by con-

sidering the uniqueness of reconfigurable modular robots. These requirements are ex-

pressed through traits in the high-level task specification that store information about

the geometry and motion types of a robot.

Given a high-level problem definition for a modular robot, the approach in this paper

deals with generating all lower levels of control needed to solve it. Information about

different robot characteristics is stored in a library, and two tools for populating this

library have been developed. The first approach is a physics-based simulator and gait

creator for manual generation of motion gaits. The second is a genetic algorithm frame-

work that uses traits to evaluate performance under various metrics. Demonstration is

done through simulation and with the CKBot hardware platform.
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Chapter 1

Introduction
This thesis is comprised one journal-style paper which summarizes the approach for

high-level control of modular robots. This paper, presented in Chapter 2, outlines a

high-level control approach for reconfigurable modular robots as well as a modular robot

simulator and two methods to create motion for different shapes of modular robots. As

it will be discussed, this paper builds on the author’s submission to the 2011 IEEE/RSJ

International Conference on Intelligent Robots and Systems [8].

The content in Chapter 2 is, for the most part, identical to the September 20th, 2011

draft of the final journal paper. The only exception is that the journal submission con-

tains an accompanying video extension to further show experimental results. All refer-

ences to this video have been omitted in the version below. The abstract for this journal

paper is identical to the abstract for this thesis.

1



Chapter 2

Paper I: High-Level Control of Modular

Robots
2.1 Introduction

Instructing robots to safely and correctly perform complicated tasks is a prevalent chal-

lenge in robotics. It is even more challenging to achieve this if with the intent to com-

mand robots in a way that is easy and expressive for humans. Establishing methods for

humans to more naturally communicate with robots is useful since it removes the need

for operators to be robot specialists. This research area of high-level robot control car-

ries the ultimate goal of having humans convey tasks to robots as they would to another

human, with the purpose of solving meaningful and difficult problems.

Modular robots are robots composed from several identical, or similar, building

blocks (or modules) that can be rearranged into different geometries. In this approach

modular robots are categorized for problem solving with qualitative labels known as

traits. For example, a high-level task specification can require a robot to have a “low”

motion profile when navigating in a region with a low clearance or move “fast” when

in a dangerous zone that requires quick traversal. The words “low” and “fast” are traits

that describe the state of a modular robot. In a task specification, traits can be activated

and deactivated based on the location of the robot or as a reaction to the environment.

Depending on which traits are active, a modular robot may automatically reconfigure

and/or change its motion qualities.

Existing high-level control techniques for non-reconfigurable robots were extended

for use with modular robots. A high-level control problem may now contain specifi-

2
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cations on the structure and motion profile of a robot by using qualifying words rather

than through explicit commands or rules. Two approaches to qualitatively populate a

database of modular robots were developed; the population of this database is impor-

tant as it strengthens the search space for automatic reconfiguration of modular robots.

Both of these tools were designed to create motion profiles for predefined geometries of

modular robots, which overcomes the difficulty of analyzing the dynamics of modular

robots. The first approach is a manual interface which requires human input, and the

second is an automatic process which applies Genetic Algorithms [12] that are scored

using these same qualifying traits as user input.

This approach is novel because most prior work with modular robots involves rela-

tively specific goals. Refer to Section 2.2 for details on pertinent modular robotics work

of this nature. There are multiple layers of control for reconfigurable modular robots,

from high-level structured English instructions to automatic configuration and motion

selection to frameworks for generation of low-level control for several robot shapes. In

other words, this paper captures a holistic solution for using modular robots to solve

problems that humans can deem useful and significant.

This paper builds directly on [8] with more theoretical detail and examples. In ad-

dition, a Genetic Algorithm framework (mentioned in Section 2.6.2) was developed to

automate motion generation for modular robots. The paper is structured as follows: Sec-

tion 2.2 outlines some of the relevant previous work. Section 2.3 describes the problem

that is being solved. Section 2.4 provides background regarding the general approach to

generating correct control from high-level specifications and the hardware platform used

in the experiments. Section 2.5 discusses the approach of incorporating traits into the

task description and sections 2.6 and 2.7 demonstrate gait generation techniques. Sec-

tion 2.8 outlines the approach in simulation and with a hardware experiment through a
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sample task specification scenario. The paper concludes with future research directions

in Section 2.9.

2.2 Related Work

There has recently been much research with modular robots due to their versatility and

adaptability in new scenarios and the low cost of replacing individual modules [35].

The focus of this paper is on chain type modular robots [36]. This type of modular robot

does not reconfigure by dividing into several substructures; that is, all modules remain

attached to one another such that there is always one robot [37]. Other types of modular

robots include lattice type, where modules are arranged in regular structures and can

move relative to their neighbors and mobile type, which use the environment to assist

their motion.

Reconfiguration planning with modular robots has been a common topic of investi-

gation. The work in [17] presents the design of a modular robot and manual configura-

tion and motion interface with a simulator; it deals mostly with self-reconfiguration ex-

periments and motion planning rather than a high-level approach involving transforma-

tion of robots. Other work involving simulation and reconfiguration of modular robots

includes [32], where a gripper made of modular robots is used to navigate an obstacle-

filled environment and to pick up other modules. [26] and [9] present mathematical

motion planning approaches for optimal reconfiguration of modular robots by using

cost metrics. Reconfiguration planning for lattice-type modular robots has been inves-

tigated as in [38]. The approach in this paper treats reconfiguration at a higher level;

rather than planning the actual process of reconfiguring a robot, an algorithm searches

for configurations that meet qualitative user specifications.

Genetic Algorithms [12] are employed in robotics for motion planning (see, for ex-
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ample, [6]). The approach in this paper is related to [25, 24, 16] where Genetic Algo-

rithms are used to optimize modular robot motion using biologically-inspired Central

Pattern Generators (CPG) techniques [13]. The fitness functions in [25, 24] are only

dependent on the total distance traveled by the robot, and those in [16] additionally in-

troduce penalties on deviating from straight lines and using too much motor energy. On

the other hand, this paper describes a way to utilize traits to design fitness functions that

evaluate the motion of a modular robot at a high level.

Recent work in high-level control of mobile robots has sought to automatically gen-

erate controllers from instructions that are more intuitive for humans. Temporal logic (in

work such as [21, 19, 7, 18, 33]) or structured language (as in [20]) are used to define

high-level task specifications. These approaches, in brief, convert a real-life robotics

problem into a hybrid system consisting of multiple layers of abstraction. The upper

layer is the problem consisting of logical propositions, and on the lower layer there is

continuous execution of the robot behavior. Occasionally, this continuous execution re-

sults in instantaneous changes in the binary propositions of the upper layer. Some of

these approaches (for example, [21, 33]) also involve the use of robot sensors to react

to the environment. That is, information gathered from sensors is converted into binary

propositions present in the task specification. Other research explores the probabilistic

analysis of imperfect actions [23] or imperfect information about the environment [15];

however, the work in this paper currently assumes perfect sensing and actions in the

discrete abstraction.

This approach (along with [8]) builds on the work in [21, 20], using the high-level

control framework in [11]. Here a task specification is parsed into structured English

constructed around a subset of Linear Temporal Logic (LTL) ([10]). This grammar al-

lows for conditional statements (e.g. “If you are sensing lowFuel then visit gasStation”),
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safety requirements (e.g. “Always not dangerRegion) and non-projective locative prepo-

sitions such as “between”, “within distance of”, and more. The details of this grammar

are discussed in [20, 22].

2.3 Problem Formulation

A few definitions which describe modular robots at a high level are required. A modular

robot is composed of a specific arrangement of modules known as a configuration. A

modular robot configuration moves through gaits, which are repeatable motions of each

module in the configuration. An individual configuration can have many gaits; for ex-

ample, a straight line of modules can move by crawling like a worm or by folding over

in a slinky-like fashion. A configuration-gait pair g(t) ∈ G of a robot is defined as the

configuration and type of gaits (crawling, rolling, etc.) it adopts at time t. G is the set

of all configuration-gait pairs available for a specific problem. The configuration-gait

pair “Snake.crawl”, for instance, denotes a Snake configuration using a set of crawling

motion gaits. Note that a configuration-gait pair involves a single robot configuration,

but can have multiple gaits. “Snake.crawl” contains 3 crawling gaits for forward loco-

motion, clockwise turning and counterclockwise turning.

In order to describe the properties of different configuration-gait pairs, a set T of

traits is defined. Each trait Ti ∈ T is an English word (or phrase) which describes the

geometry or motion profile of a modular robot. For example, a modular robot that is

narrow in shape and is only able to move forward or backward in a straight line may be

assigned the traits “narrow” and “1D motion” to describe it. Traits are used as logical

propositions in a task specification; the configuration-gait pair g(t) of a robot depends

on which traits are active at any given time t.

A modular robot moves in an environment P such that its trajectory in continuous
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time is p(t) ∈ P,∀t > 0. The robot may be equipped with sensors (for example, cam-

eras or sonar) and actuators (for example, speakers or lights). Specifications involving

location and sensing of the environment, actuators and traits are then synthesized into

provably correct control of modular robots. The robot and its environment are described

using binary prepositions in the structured English grammar described in [20, 22]. The

grammar consists of the following items:

• Set of sensors X corresponding to information the robot can obtain about the

environment through sensors.

• Set of actions A that the robot can perform. The set of active actions at a given

time t is defined as a(t) ∈ 2A where 2A denotes the power set of A.

• Set of regions R corresponding to regions of interest in the specified environment.

• Set of traits T that describe properties of a modular robot. Traits are distinguished

by adding a prefix “T ” to each trait. As discussed in Section 2.5, a mapping

Γ : T → 2G is defined such that Γ(Ti) is the set of all possible configuration-gait

pairs that satisfies a trait Ti ∈ T .

The problem addressed in this paper is the following:
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Problem 1 [High-level Control of Modular Robots] Given a modular robot operating

in a known workspace P and a high-level task specification S expressed in structured

English using the sets X ,A,R,T , construct (if possible) a controller so that the robot’s

resulting trajectories p(t), actions a(t) and configuration-gait pairs g(t), satisfy the sys-

tem specification S in any admissible1 environment, from any allowable initial state.

Example 1. The following example shows how a simple problem can be formulated

using this construction. Refer to the line numbers in the task specification S shown

in Fig. 2.1. Consider a simple environment consisting of two regions Indoors and

Outdoors. The robot is additionally equipped with a danger sensor and a Shrink actuator.

The traits used for this example are legged and narrow. The abstraction of the problem

is shown below.

• X = {danger}

• A = {Shrink}

• R = {Outdoors, Indoors}

• T = {T legged,T narrow}

A modular robot begins Outdoors (line 1) with the assumption that every initial

state of the environment is false(line 2). It will infinitely often cycle between visiting

Outdoors and Indoors (lines 3-4), ensuring to be in a “legged” configuration-gait pair

when Indoors (line 5). In addition, the robot is equipped with a sensor that can sense

danger in the environment and will Shrink when this is sensed. When the robot is

shrinking, it must be in a “narrow” configuration-gait pair (line 6).

1As discussed in [21], the specifications may include assumptions about the behav-
ior of the environment, for example “lowFuel cannot happen in dangerRegion”. An
admissible environment is one that satisfied all the assumptions.
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The trait mappings Γ and configuration-gait pair set G for this problem are:

• Γ(legged) = {Tripod.crawl,Biped.splits}

• Γ(narrow) = {Loop.roll,Snake.crawl}

• G = Γ(legged)∪Γ(narrow)

1: Robot starts in Outdoors

2: Env starts with false

3: Visit Outdoors

4: Visit Indoors

5: Do T_legged if and only if you are in Indoors

6: Do Shrink and T_narrow and only if you are

sensing danger

Figure 2.1: Example Task Specification in structured English.

2.4 Background

2.4.1 Modular Robots - CKBot

The Connector Kinetic roBot (CKBot) developed by Yim et al. [27] is used to demon-

strate this work. CKBot modules are single degree-of-freedom cubes actuated by rota-

tional servo motors that each contain 7 infrared receiver-transmitter pairs on 4 of their

6 faces for connecting to other modules. There are 40 ways to connect any two CKBot

modules, which provides extensive customizability for creating larger configurations.

Additionally, a 3D physics-based CKBot simulator [8] is used in order to easily create

configurations without being limited by the availability and functionality of hardware.
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Figure 2.2 shows the hardware with two different power and communication attach-

ments.

Figure 2.2: An Ethernet-powered “Tee” configuration of CKBot modules with Vicon

markers (left) and simulated 25-module “Hexapod” configuration (Right).

Prior work with CKBot has mostly covered dynamics or kinematics of specific robot

configurations. For example, CKBot has been demonstrated to execute dynamic rolling

gaits of loops of modules [31] or legged motion aided with compliant legs [30]. Other

research has involved CKBot modules connected to form high degree-of-freedom robot

arms [5], with modified continuous-rotation servo modules with wheels for locomotion

of robots. The focus on high-level control using CKBot is, to the best of the authors’

knowledge, a novel approach.

2.4.2 Modular Robots - Configurations and Gaits

A configuration is the arrangement of modules of a modular robot. Configurations are

usually represented as graphs of parent-child module connectivity. CKBot configura-

tions are defined using a port-adjacency matrix [27] to depict connections between

infrared receiver-transmitter pairs. For n modules, this matrix M ∈ Rn×n is a (usually
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sparse) square matrix where each non-zero symmetric pair
(
Mi j,M ji

)
, i 6= j denotes

connectivity between port Mi j of module i and port M ji of module j. Figure 2.3 shows

how a modular robot is described using a port-adjacency matrix; for example, there is a

connection between Port 3 of Module 0 and Port 5 of Module 1 as seen in the upper left

symmetric pair of the matrix.

Figure 2.3: A simulated CKBot configuration with port-adjacency matrix. T 0
W is

the base transformation matrix dictating what translation and rotation the robot is

spawned with, and ~v f is the forward vector used to keep track of the orientation of the

robot on the 2D ground plane.

Modular robot configurations can locomote or manipulate by commanding each in-

dividual module. A gait is the repeated actuation of every module in a configuration.

There are two ways to represent gaits: Periodic and Fixed gaits.

A periodic gait denotes repeated motion of a configuration using sinusoids. Equa-
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tion (2.1) describes the angular motion θi of each module, where θi is the angle of mod-

ule i ∈ {0,1, . . . ,n− 1} for an n-module configuration. Due to the simple motion laws

associated with sinusoids, only 3 parameters are necessary for each module: Amplitude

Ai, Frequency ωi and Phase φi.

θi = Ai sin(ωit +φi) (2.1)

A fixed gait is a set of reference joint angles and an associated gait execution time

tg that describes how long the robot should take to complete one gait iteration. Fixed

gaits allow for more general motion of a modular robot since there is no restriction on

sinusoidal behavior. However, a fixed gait representation requires more memory for

storage and computational power for execution. Fixed gaits are used in the form of a

Gait Control Table (GCT) in [34].

GCT =



θ11 θ21 . . . θn1

θ12 θ22 . . . θn2

...
... . . . ...

θ1m θ2m . . . θnm


(2.2)

Equation (2.2) above shows an implementation of a GCT in matrix form. For m gait

steps, θi j corresponds to the jth reference angle command for module i. These gait steps

are then linearly interpolated at every sampled time in execution such that one iteration

of the gait is completed in time tg.

2.4.3 High-Level Control - LTLMoP

The problem outlined in Section 2.3 extends the work in [21, 20, 11], where high-level

control of a non-reconfigurable mobile robot is performed through the following:
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1. A discrete abstraction of the robot’s motion, sensors and actuators. The workspace

is represented as a graph where each node describes state of the problem. Namely,

each node denotes a region (in the set R) and the sensor information and actions

the robot can perform (in the sets X and A, respectively) abstracted into binary

propositions.

2. The required task specification S described using a subset of LTL known as

GR(1) [29] or using the structured English grammar which is then automatically

parsed into LTL formulas.

3. An automaton satisfying the LTL formula that is synthesized if the task specifica-

tion is possible to satisfy. More information about the automaton and guarantees

on correctness can be found in Section 2.5.2.

4. A continuous-time execution of the automaton. The robot has a set of low-level

controllers that continuously implement discrete transitions in the automaton. For

example, moving from region R1 to region R2 is a discrete transition in the au-

tomaton, but in continuous time involves motion planning from the robot’s current

position inside R1 through a transition facet between R1 and R2.

If the low-level controllers described above can appropriately carry out these tran-

sitions in the discrete abstraction of the problem, the hybrid controller generated guar-

antees that the robot satisfies S. Section 2.5 shows how the task space is enriched for

reconfigurable modular robots with the set of traits T such that the augmented problem

also has guarantees of correctness.

The approach in this paper uses the Linear Temporal Logic Mission Planning (LTL-

MoP [11]) framework. LTLMoP is a Python toolkit that allows a user to control a sim-

ulated or physical robot from a task specification written in structured English or LTL.
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It allows the user to define a task specification, draw a workspace consisting of regions,

generate the automaton satisfying the specification and actuate the robot. LTLMoP has

been used with a variety of platforms such as Pioneer (as in [11]), as well as legged and

humanoid robots.

2.5 Approach

2.5.1 Traits

A trait Ti is a high-level descriptor for the properties of a modular robot. It is mapped

to a (possibly empty) set of configuration-gait pairs. A trait mapping Γ : T → 2G is

defined such that Γ(Ti) is the set of configuration-gait pairs that corresponds to a trait

Ti ∈ T . Γ can be defined manually by the user through two different techniques (out-

lined in Section 2.6). Classifying configuration-gait pairs g ∈ G with traits is necessary,

as automated selection of g requires knowledge of which traits correspond to which

configuration-gait pairs.

The mapping Γ is captured in a Configuration-Gait-Trait Library. Each entry

in the library corresponds to a trait Ti and its associated configuration-gait pairs Γ(Ti).

Whenever a new configuration-gait pair g is created, there is a user defined inverse trait

mapping Γ−1 : G→ 2T such that Γ−1(g) is the set of all traits used to describe the

configuration-gait pair g. The inverse trait mapping is converted to the trait mapping

as follows: for each trait Ti ∈ Γ−1(g), Γ(Ti) is now assigned the additional member g.

Table 2.1 shows some example traits and corresponding configuration-gait pairs.

Suppose that a new configuration-gait pair “Hexapod.run” with the traits “large”

and “legged” is added to Example 1 (in Section 2.3). In other words, the new input

to the configuration-gait-trait library is Γ−1(Hexapod.run) = {large, legged}. The new
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Table 2.1: Sample List of Traits and Configuration-Gait Pairs

Traits Configuration-Gait Pairs

Fast Hexapod.run, Loop.roll, FoldOver.slink

Nonholonomic Turning Tripod.crawl, Tee.crawl, Snake.crawl, Hexapod.run

Low Tripod.crawl, Tee.crawl, Snake.crawl

Stationary Cross.foldup, Biped.splits, TeeStationary.swim

Large Hexapod.run

Legged Tripod.crawl, Hexapod.run, Biped.splits

1D Motion Loop.roll, FoldOver.slink

Narrow Snake.crawl, Loop.roll, FoldOver.slink

relevant trait mappings and sets for this problem are:

• Γ(legged) = {Tripod.crawl,Biped.splits,Hexapod.run}

• Γ(narrow) = {Loop.roll,Snake.crawl}

• Γ(large) = {Hexapod.run}

• G = Γ(legged)∪Γ(narrow)∪Γ(large)

Generation of a hybrid controller to solve a specification consists of 1) generating

a discrete automaton and 2) executing the automaton in continuous time through low-

level controllers. The control dictated by the automaton must be checked for correctness

by ensuring that every possible set of active traits in the states of the automaton have a

non-empty mapping (refer to 2.5.2 for more information). Also, the gaits chosen by

the configuration-gait-trait library according to traits in the automaton must be executed

in continuous time to drive a robot in the workspace. When no traits are required, the

modular robot will use its default configuration-gait pair gde f ault .
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2.5.2 Guaranteeing Correct Control

For a given task, assuming it is realizable and satisfiable (that is, there are no contra-

dictions or impossible requirements), automaton A = ({X},{A,R,T},Q,Q0,γ,T ,δ )

is synthesized such that:

• X is the set of environment propositions (or sensor information),

• {A,R,T} is the set of robot propositions (actions, regions and traits),

• Q⊂ N is the set of states,

• Q0 ∈ Q is the set of initial states,

• γ : Q→ 2{A,R,T} is the state labeling function where γ(q)⊆ {A,R,T} is the set

of robot propositions that are true in state q,

• T (q) ⊆ T,T (q) = γ(q)∩T , is the set of active traits, or traits that are true in

state q, and

• δ : Q×2X →Q is the transition relation, i.e., δ (q,X ) = q′ ∈Q where q ∈Q is

a state and X ⊆ X is the subset of sensor propositions that are true.

The modular robot is guaranteed to satisfy S only if it can execute A . For correct-

ness, the controller synthesis algorithm must ensure that all possible trait combinations

T (q) for all the states q in the automaton have at least one configuration-gait pair cor-

responding to them. A task specification S is guaranteed to be correct if and only if

Γ(T (q)) 6= /0,∀q ∈ Q. Algorithm 1 shows how this check is performed.

The discrete automaton is executed in continuous time by calling basic motion plan-

ning controllers that dictate how the robot must move between regions. Based on

these instructions, the best gait (e.g. a left-turning gait instead of a forward gait) in
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Algorithm 1 Gait Checker
1: for q ∈ Q do

2: T (q) = γ(q)∩T

3: if T (q) =∅ then

4: return g(t) = gde f ault

5: else

6: if
⋂

τ∈T (q)

Γ(τ) =∅ then

7: return ERROR: Specification is not satisfiable.

8: else

9: return g(t) = any g ∈
⋂

τ∈T (q)

Γ(τ)

10: end if

11: end if

12: end for

the current configuration-gait pair g(t) is selected. Each modular robot joint angle

θi(t), i = 0, . . . ,n−1 is then prescribed by g(t). It is assumed that the modular robot

reconfigures instantaneously, as this approach does not currently concern the process of

reconfiguration (this is a consideration for future work). That is, if the automaton has

a transition q→ q′ with γ(q) = (r j,Tm),γ(q′) = (rk,Tn), then the controller will take

the robot along a path from region r j to rk with joint commands in a configuration-gait

pair corresponding to traits Tm . Once the robot reaches rk it will instantly change to a

configuration-gait pair corresponding to traits Tn.

The need for a gait checker can be motivated by referring to Example 1. The automa-

ton synthesized from this specification, shown in Fig. 2.4, consists of 4 states q1, q2, q3

and q4. In order for the specification to be satisfiable, all the possible trait combinations

“legged” (in q2), “narrow” (in q3) and “legged ∪ narrow” (in q4) must have non-empty
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trait mappings. In this example, there is an error because Γ(legged)∩ Γ(narrow) =

/0; state q4 is not satisfiable given that the configuration-gait-trait library contains no

configuration-gait pair that satisfies both traits.

Figure 2.4: Automaton schematic for Example 1.

2.6 Populating the Library

A larger search space of configuration-gait pairs (and their associated traits) is necessary

for better results. The addition of more variety in the modular robot configurations

and gaits allows for more expressibility through traits; in other words, dividing a small

database into “legged” versus “non-legged” does not have the discriminatory power of

using many traits like “legged”, “fast”, “turns in place”, “low”, etc. However, it can be

difficult to use only the definitions for configurations and gaits in Section 2.4.2 to create a

collection of motion gaits for every configuration listed. The two approaches developed
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to assist the user in populating the configuration-gait-trait library are as follows. The first

is a manually controlled Gait Creator, and the second is a framework that uses Genetic

Algorithms [12] to automatically create gaits for a modular robot configuration based

on prescribed cost functions.

To assist with these tools, a 3-Dimensional physics-based simulator for modular

robots was developed using the Open Dynamics Engine (ODE) [3], with CKBot as the

model robot. ODE has been used in other related work such as [32]. The open-source

Python PyODE bindings for ODE [4], as well as PyGame [1] and OpenGL/PyOpenGL

[14, 2] for visualization enable the simulator to easily interface with LTLMoP for simu-

lation of a reconfigurable modular robot. The simulator allows users to quickly create,

test and modify different modular robot configurations and gaits.

2.6.1 Manual Population: Gait Creator

Figure 2.5: Tripod Configuration in the Gait Creator. The module being controlled is

highlighted in red.

The Gait Creator allows the user to manually move each individual joint angle and

see how the robot’s shape changes in a physics-based environment. This way, snapshots

of robot configurations can be captured and stitched together to form a gait. This gait
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is written as a fixed gait in the same text file containing the robot’s configuration in-

formation and previous gaits designed. These newly created gaits can then be executed

and tested in simulation and hardware to see how well they allow the robot to move.

Additionally, when creating a gait the user can choose to enter a set of traits describing

the robot motion which are then automatically added to the configuration-gait-trait li-

brary. Figure 2.5 shows an example of the Gait Creator’s capabilities, where the module

highlighted in red is the module the user is controlling.

2.6.2 Automatic Population: Genetic Algorithms

Genetic Algorithms (GA) are useful for solving complicated optimization problems

without the need to model a system. Solutions that maximize the target fitness function

for the problem have a greater likelihood of surviving the “natural selection” process

of the algorithm. A GA requires a genotype, which is a representation of the actual

system (or phenotype) being modeled. For this problem, the genotype is a numerical

representation of a modular robot gait (as shown in Section 2.6.2 below) and the phe-

notype is a simulation of the robot executing that gait. Each genotype is evaluated with

the user-defined fitness function (as in Section 2.6.2. Crossover and mutation are the

two common search techniques used in GAs to avoid local minima, and are explained

in Section 2.6.2. Search for better solutions is performed by crossover and mutation of

genotypes of probably high fitness to generate new solutions.

State Representation

Each genotype ϕ is a representation of a specific periodic gait (refer to Section 2.4.2)

that is executed by the modular robot configuration. For a n-module configuration com-

prised of modules i = 0, . . . ,n− 1, the genotype is as shown in Equation (2.3) below
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such that |ϕ| = 3n. Rigid modules can also be specified in a configuration to con-

strain the gaits generated. This allows the user to reduce the search space of the Genetic

Algorithm by deleting motion restricted modules from the optimization problem. For

example, removing the “spine” of the Hexapod configuration in Figure 2.2 reduces the

number of modules to search on from 25 to 18.

ϕ = X1Y1Z1 . . .XnYnZn

where Xi ∈ {0,1, . . . ,12,13}

s.t. Ai = 5Xi

and Yi ∈ {0,1, . . . ,8,9} (2.3)

s.t. ωi = Yi

and Zi ∈ {0,1, . . . ,6,7}

s.t. φi =
π

4
Zi

The search space for periodic gaits has been limited in size by using an amplitude

step size of 5 degrees and limit of 65 degrees (and not 90 because large amplitudes can

lead to unsafe motion). Also, a frequency step size of 1 rad/s (though these values can

be scaled by a multiplier if necessary) and a phase step size of π

4 radians (45 degrees)

are used. Different resolutions or ranges of values will require different spaces for each

of the free parameters Xi, Yi and Zi.

Traits and Fitness Functions

Referring to Section 2.5, a trait Ti ∈ T is a word, or set of words, that describes the

motion and configuration of a modular robot. Some sample traits are “fast”, “stationary”

and “tall”. For each trait and robot trajectory generated from a genotype ϕ there is a trait
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score J(Ti,ϕ) that the genetic algorithm is maximizing. At the start of every instance of

the GA, the user must specify which traits to evaluate on. The fitness functions for all

the prescribed traits are then multiplied together to give the fitness function f (T,ϕ) as

shown in equation (2.4).

f (T,ϕ) = ∏
Ti∈T

J(Ti,ϕ) (2.4)

The trait score J(Ti,ϕ) is defined differently for every trait Ti. Note that the trajec-

tory of ϕ contains all the relevant trajectory information {x,y,θ ,z}, where x = x(t),y =

y(t),θ = θ(t) is the 2D trajectory along the ground (x,y) plane and z = z(t) is the robot

height away from the ground. By default, the algorithm assumes that the trajectory is

that of a single base module that depicts the center position of the robot. Other user-

defined trait costs may require the positions of specific modules in the configuration.

Some example trait scores are shown below.

Fast: The robot moves a large distance away from its origin

J(Fast,ϕ) =
√

(y f inal− yinitial)2 +(x f inal− xinitial)2

Stationary: The robot remains close to its origin

J(Stationary,ϕ) = 1
J(Fast,ϕ)

Forward: The robot moves in the positive x direction but

deviates little in the y direction

J(Forward,ϕ) = J(Fast,ϕ)
max(max(y),|min(y)|)
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TurnLeft: The robot turns left regardless of translation

J(TurnLeft,ϕ) = mean(θi+∆t−θi)

for time indices i = 0, ∆t, 2∆t, . . . , b t f inal
∆t c∆t and ∆t of choice

TurnInPlaceLeft: The robot turns left with little translation

J(TurnInPlaceLeft,ϕ) = J(TurnLeft,ϕ)
J(Fast,ϕ)

1DMotion: The robot has very little angular deflection

J(1DMotion,ϕ) = 1
std(θ)

Tall: The base module of the robot is far from the ground

J(Tall,ϕ) = mean(z)

Selection, Crossover and Mutation

The first generation of gait genotypes is instantiated randomly. After that, members

of the next generation are selected based on the fitness functions through roulette se-

lection. That is, the probability of a genotype ϕ j ∈ Φ to be selected for the following

generation is directly proportional to f (T,ϕ j), where Φ is the set of all genotypes of the

previous generation, |Φ| = p. A negative fitness function may arise from negative trait

scores; for example, if the robot was instructed to turn left but a particular gait causes the

robot to turn right, this genotype will be scored negatively. To account for negative trait

scores in the roulette selection process, the minimum score (if negative) is subtracted

from every score, thus ensuring there are no negative weights assigned.

Once a member has been selected, there is a chance of crossover, or combination

between two genotypes. With probability PCROSS, another genotype ϕk, k 6= j will
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be selected from the previous generation. Then, a crossover index c and one of two

crossover directions are randomly selected, as shown below for a n-module genotype

(of total length 3n). In other words, the new genotype is either a combination of ϕ j first

and ϕk second, or vice-versa.

The two genotypes are:

ϕ j = j1 j2 j3 . . . j3n−2 j3n−1 j3n

ϕk = k1k2k3 . . .k3n−2k3n−1k3n

The two possible crossovers are:

DIRECTION 1: ϕnew = j1 j2 . . . jc−1kc . . .k3n−1k3n

DIRECTION 2: ϕnew = k1k2 . . .kc−1 jc . . . j3n−1 j3n

Note that each element of a genotype corresponds to either an element X , Y or Z,

within the respective domains as in section 2.6.2. The equivalence is as follows: ϕ j =

j1 j2 j3 . . . j3n−2 j3n−1 j3n = X1Y1Z1 . . .XnYnZn.

Assume that after crossover, the new genotype ϕnew is now

ϕnew = n1n2n3 . . .n3n−2n3n−1n3n

Finally, with probability PMUTAT E , a mutation index µ is chosen such that the ele-

ment nµ is changed randomly to another legal value. Again, this depends on whether nµ

is an X , Y or Z value corresponding to amplitude, frequency or phrase (respectively).

Limitations

There are some complications with the GA framework. Firstly, solutions are not necce-

sarily close to optimal and convergence of the algorithm towards a “good” solution is
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not guaranteed to occur at any particular time. Secondly, users can specify traits to syn-

thesize contradictory fitness functions. A simple example is using the traits “fast” and

“stationary”, as their trait scores are reciprocals of each other and the fitness function

would equate to 1 for any non-zero displacement of the robot. Composing a fitness func-

tion with trait scores requires judicious human selection of traits. Future work involves

investigation of automatically selecting trait scores. Lastly, there are many parameters

(simulation time/step size, crossover/mutation rates, population sizes, termination con-

ditions) to this algorithm. The “best” values to choose vary with every aspect of the

problem, ranging from the traits being used to how many modules a configuration con-

sists of. A MATLAB post-processing script is used to generate graphs for validation of

results (refer to Figures 2.7 and 2.8).

2.7 Results

2.7.1 Gait Creator

A sample gait created manually using the Gait Creator is shown in Figure 2.6. This

“Slinky.slink” configuration-gait pair causes the robot to move forward by folding over

itself. The Gait Creator was useful in creating such a gait that required fine tuning to

avoid falling in an incorrect direction. This configuration-gait pair was assigned with

the traits narrow, 1D motion and handles steps. The “Hexapod.run” configuration-gait

pair, pictured in Figure 2.2, was inspired by motion of insects such as cockroaches [28].

This 25-module robot and its motion were given the traits large, legged and nonholo-

nomic turning.
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Figure 2.6: Manually generated Slinky gait.

2.7.2 Genetic Algorithms

The examples in Figures 2.7 and 2.8 have been performed with 50 generations and a

population size p = 50. All the examples use probabilities PCROSS = 0.5 and PMUTAT E =

0.15, and each genotype is evaluated over 350 simulation timesteps amounting to 11.7

seconds of motion.

In Figure 2.7, a turning gait is generated for the 9-module Cross configuration under

the trait TurnInPlaceLeft. The algorithm is therefore scored on how little the base mod-

ule moves from the starting position, and how quickly it is able to turn in a clockwise

direction. In Figure 2.8, the traits Tall and TurnRight are prescribed for the 4-module

Snake configuration. The simulation screenshots show that the base module (in this

case, the “tail” module) is lifted off the ground as the robot turns to the right. The units

of the graph are normalized to the module height. The center of the Snake configuration

in its rest position is at a height of 0.5 modules and peaks at approximately 1.5 modules

tall.



27

Figure 2.7: Best Orientation time history for Cross configuration under trait “TurnIn-

PlaceLeft” (Top). Screenshots of configuration running the resulting gait (Lower).

Figure 2.8: Best base module height time history for Snake configuration under the

traits “Tall” and “TurnRight”(Top). Screenshots of configuration running the resulting

gait (Lower).
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2.8 Example: Rescue Robot

2.8.1 Task Specification

### Initial conditions and safety. ###

Robot starts in Safehouse

Env starts with false

Always not Mountains

### Rescue mission goals. ###

If you are sensing distress_signal then

visit Rescue_Point

carrying_person is set on Rescue_Point and

reset on Safehouse

If you are activating carrying_person or you

activated carrying_person then visit Safehouse

If you are activating carrying_person or

you activated carrying_person then do

not Trench

Do not Trail unless you activated carrying_person

or you are activating carrying_person

If you are not sensing distress_signal and

you are not activating carrying_person then

visit Watchtower

### Reconfiguration goals. ###

Do T_narrow if and only if you were in

between LeftOfTrench and RightOfTrench

Do taking_cover if and only if you are sensing

air_raid

Do T_low and T_legged if and only if you are

activating taking_cover

Figure 2.9: Task Specification in structured English.

The capabilities of the approach are demonstrated through a rescue robot scenario exe-

cuted in simulation and with a real robot. The high-level task specification in structured
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English is as shown in Figure 2.9 and the workspace for this example is shown in Fig-

ure 2.10. The lines labeled with a “###” are comments, and therefore not part of the

specification.

The robot must begin in the Safehouse region and stay away from the Mountains

region. It is commanded to visit the Watchtower and remain there to patrol unless a

distress signal is sensed. In this case, the robot must pick up a person from the Rescue

Point and return to the Safehouse with the person. When carrying a person, the Trench

is too dangerous so it is unavailable. The task specification also has requirements on the

configuration-gait pair of the robot by using the trait prepositions T narrow, T low and

T legged. If the robot is in between the regions bordering the Trench (that is, inside the

Trench), it must adopt the trait T narrow in order to fit in this region. If the robot senses

an air raid, it must perform the action taking cover. When the robot is taking cover, it

will adopt the traits T low and T legged.

Figure 2.10: Workspace for the task specification.
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2.8.2 Execution of Task Specification

Figure 2.11 shows some screenshots of the example specification in simulation. Each

image displays the simulated robot in the workspace and the simulated sensors, where

the sensors highlighted with a border are active. These images show that the default

configuration-gait pair used is “Snake.crawl”. When the trait T narrow is active, the

configuration-gait-trait library selects Loop.roll; similarly, when the traits T low and

T legged are active, the library selects the “Tripod.crawl” configuration-gait pair.

Figure 2.12 shows screenshots of the same task specification performed using the

CKBot platform. In order to ensure that the configuration-gait-trait library picks configuration-

gait pairs that are only realizable in simulation, the additional trait T hardware was in-

cluded. This trait, along with the structured English sentence “Always do T hardware”,

ensures this. There are two differences with the execution in simulation. The first is that

the gaits in “Tripod.crawl” for the hardware are different; in the simulation example,

they were created using the Gait Creator and on CKBot they were automatically synthe-

sized using the GA framework. The second difference is that the library now selects the

“Snake.crawl” configuration-gait pair instead of “Loop.roll” when the trait T narrow is

active because “Loop.roll” is not labeled with T hardware.

2.9 Conclusions and Future Work

This paper detailed an approach for provably correct control of reconfigurable modular

robots through a configuration-gait-trait library. This has been demonstrated both in

simulation and with the CKBot hardware. Two methods (one manual and one automatic)

were presented to facilitate the population of this library through gait creation. The

novelty in this approach is the dual use of traits to describe modular robots; traits are
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Figure 2.11: Simulation screen shots. The images, from top to bottom, left to right,

show: a) The default Snake.crawl configuration-gait pair moving in the environment, b)

The Loop.roll configuration-gait pair in the Trench, c) The Tripod.crawl configuration-

gait pair when air raid is active and d) Snake.crawl returning to the Safehouse while

carrying person is true.

Figure 2.12: Hardware screen shots showing CKBot powered via Ethernet, with Vicon

markers for pose information. The Tripod.crawl configuration-gait pair moving in the

Trail region as air raid is being sensed (left) and the default Snake.crawl configuration-

gait pair (right).
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used as binary propositions in the high-level control problem, and also to synthesize

fitness functions for the Genetic Algorithm gait generator.

Future work directions include: (a) Adding reconfiguration controllers to replace

instantaneous robot transformations, (b) Experimenting with additional modular robot

platforms and (c) Improving the Genetic Algorithm gait generator by exploring different

options. Some examples of alterations to be investigated are: (i) using gait types that are

not uncoupled sinusoids (such as CPGs [24, 16] or Gait Control Tables [34]), (ii) extend-

ing the set of traits to deal with more complicated or specialized types of motion, (iii)

exploring higher-level ways to express fitness functions through natural or structured

language and (iv) optimizing robot geometries as well as gaits through reconfiguration

(as is done in [25]).
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