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Abstract— In this paper, we state, using thorough mathe-
matical analysis, sufficient conditions to perform a rendezvous
maneuver with a group of differential-wheeled robots endowed
with an on-board, noisy, local positioning system. In particular,
we extend the existing framework of noise-free, graph-based
distributed control with a layer of Bayesian reasoning allowing
to solve the rendezvous problem more efficiently in presence of
uncertainties and in a probabilistically sound way. Finally we
perform extensive experiments with a team of four real robots,
and simulation with their corresponding simulated counterpart,
to confirm the benefits of our Bayesian approach.

I. INTRODUCTION

Since the 1960s, consensus problems have puzzled the

minds of many researchers in various fields, ranging from

computer science to information aggregation [16]. The term

consensus describes the problem of reaching an agreement

amongst different agents on a certain quantity or state. These

agents can share information about their state either by means

of communication or observations. In a network of robots,

solving the consensus problem on the position of each agents

refers to the task of controlling them as to reach a common

rendezvous point. To the best of our knowledge, the first

occurence of rendezvous for mobile agents was introduced

by Reynolds [20] in 1987 as one of the three rules stated to

create a flocking behavior, known as the flock centering rule.

It is only much later in 1999 that convergence of mobile

robots to a common location in space was studied by Ando et

al. [1]. It was then extended for both synchronous and asyn-

chronous cases by Lin at al. [13, 14]. However, they consider

a simple version of the rendezvous problem where the mobile

robots are holonomic (i.e. they are capable of moving in any

direction at any time), thus yielding simpler control laws

and tractable convergence properties. Other methods used

to achieve such a holonomic rendezvous include Laplacian

feedback [8, 10], cyclic pursuit [21], potential fields [12]

or even curve shortening [24]. Solving the rendezvous with

nonholonomic agents is more complex and proving the

convergence property can be difficult. Many work employ

feedback linearization to design relaxed control laws that

recreate the holonomic properties [11, 19]. Other works

create algorithms that are very specific to their application

needs [4, 5]. But most of them rely on deterministic as-

sumptions and rarely incorporate stochasticity as a modus

operandi.

On another front, probabilistic consensus or the idea of

reaching an agreement when observations are noisy received
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Fig. 1. (a) A Khepera III robot with a range and bearing module attached.
This range and bearing platform features sixteen infrared light emitting
diodes and eight infrared light sensors. (b) The kinematic model of a
differential-wheeled robot Ri.

attention for a long time, indeed, from 1959 with Eisenberg

and Gale [6] to 2008 with Cao et al. [3]. However, no contri-

bution focused on the rendezvous problem on non-holonomic

agents capable of performing noisy positioning observations

neither form a theoretical nor form an experimental point of

view.

A. Related Work

Using limited perception or localization capabilities to

create robotic formations or acheive the rendezvous has

received recent attention in [22, 23]. The ability to leverage

these limitations on non-holonomic robots to create static

configurations of robots is expressed inter alia by the suite

of papers [4, 5, 7]. Unfortunately, these contributions treat

the rendezvous problem in a deterministic fashion and are

therefore not applicable to platforms whose sensory per-

formance is affected by noise and further limitations in

terms of range and update speed. Other work such as [2]

study the convergence properties of holonomic agents under

noisy measurements in simulation. In this work, we will

build upon [7] a layer of Bayesian reasoning allowing for

a probabilistically sound convergence of real non-holonomic

agents, namely the Khepera III robot [17], equipped with

a relative range and bearing module [18] (see Figure 1(a)),

delivering noisy local positioning measurements.

B. Problem Statement

Let us assume we have a team of N differential-wheeled

robots R1, . . . , RN driven by the following kinematic

equations:






ẋi = ui cos θi

ẏi = ui sin θi

θ̇i = ωi

(1)

where ui is the linear translational speed, ωi the rotational

speed and the vector [xi, yi, θi]
T forms the triplet defining

the absolute pose or state of the robot Ri, as shown on Fig-

ure 1(b). Additionally, each robot Ri has a set of neighbors
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Fig. 2. (a) Robots R2 and R3 are in the neighborhood of robot R1, i.e.
N1 = { R2, R3 }, and robot R4 is the only neighbor of robot R2, i.e.
N2 = { R4 }. An arrow indicates that the robot at its head can observe
the robot at its tail. (b) The range eij between two robots is the Euclidean

distance
p

(xj − xi)2 + (yj − yi)2 separating both robot’s centers and

the bearing αij is the angle between the forward vector [cos θi, sin θi]
T

and difference vector [xj − xi, yj − yi]T.

Ni containing all robots Rj such that it can measure the

range eij and bearing αij to them. Its measurements of the

range and bearing may be affected by noise such that each

observation zij(t) of Rj at time t is defined by the vector

zij(t) =

[

ẽij(t)
α̃ij(t)

]

=

[

eij(t)
αij(t)

]

+ ǫz (2)

where ǫz is a random noise vector sampled for each obser-

vation from a probability distribution given by its probability

density function pdfz(ǫ). Hence at time t, a robot Ri gathers

an observation list Zi(t) = {zij(t)|Rj ∈ Ni}. Our goal is

to provide a control law that incorporates our knowledge

of pdfz(ǫ) to drive the N robots to a common rendezvous

point. This description is schematized on Figure 2. Finally

it is useful to introduce the following notation to gather all

distances and bearings between a robot Ri and its neighbors:

⊲ ei = [e1, . . . , ek, . . . , e|Ni|]
T with ek = eij

⊲ αi = [α1, . . . , αk, . . . , α|Ni|]
T with αk = αij

for each robot Rj ∈ Ni and their corresponding observa-

tions:

⊲ ẽi = [ẽ1, . . . , ẽk, . . . , ẽ|Ni|]
T with ẽk = ẽij

⊲ α̃i = [α̃1, . . . , α̃k, . . . , α̃|Ni|]
T with α̃k = α̃ij

for each robot Rj ∈ Ni.

II. PRELIMINARIES

A. Graph Theory

Our network of robots can be seen as a graph containing

N elements and can be described by the tuple G = {V , E},

where

⊲ V = {R1, . . . ,RN} is the vertex set and

⊲ E = {ek|ek = (Ri,Rj) =⇒ Rj ∈ Ni} is the edge set.

A graph is said to be strongly connected if there exists a path

from any vertex to any other vertex in the graph. It is weakly

connected if by adding for each edge (Ri,Rj) a new edge

(Rj ,Ri) to the edge set yields a strongly connected graph.

On a graph, one can define an adjacency matrix A such

that each of its element aij is defined as

aij =

{

1 if ek = (Ri,Rj) ∈ E
0 otherwise

.

A graph is symmetric if aij = aji. Note that a symmetric and

weakly connected graph is by definition strongly connected.

B. Noise-free convergence

Theorem 1: Given a symmetric and weakly connected

group of N differential-wheeled robots R1, . . . , RN driven

by the kinematic Equation 1, the control law






ui = ku(t, ei, αi)
∑

Rj∈Ni

eij cosαij

ωi = kω(t, ei, αi)

(3)

where ku(·) > 0 for all t ≥ 0, drives the group to a common

rendezvous point if and only if ui = 0 and eij 6= 0 imply

that kω(·) 6= 0 for at least one pair of robots Ri and Rj .

Proof: Let us assume that our group of N robots is

connected by an underlying graph defined by the adjacency

matrix A = AT (symmetric graph). The notion of symmetric

connection in a group of homogeneous robots does make

sense in reality where, often, if a robot Ri can observe

another robot Rj then Rj can observe Ri. Each robot Ri

can use the range eij and bearing αij to each of its neighbors

Rj to steer the whole group towards a single meeting point.

As done in [4], we can define a candidate Lyapunov function

V (e) =

N
∑

i=1

∑

Rj∈Ni

e2
ij =

N
∑

i=1

N
∑

j=1

aije
2
ij (4)

with e = [e1, . . . , e|E|]
T with ek = eij for each edge

ek = (Ri,Rj) ∈ E . It is clear that V (0) = 0 when all

inter-neighbor distances eij are 0, for all Ri,Rj ∈ Ni and

V (e) > 0 otherwise. Hence according to Lyapunov’s second

theorem, if V is a valid Lyapunov function and the graph

is at least weakly connected then all robots should converge

to the same location (independently of the graph topology).

If the graph is disconnected, then only robots connected to

each other reach the same location in space. Note that

eij =
√

(xj − xi)2 + (yj − yi)2 (5)

and combining it with Equation 1 yields

ėij = −ui cosαij − uj cosαji.

The derivative of V with respect to time becomes

V̇ (e) = 2

N
∑

i=1

N
∑

j=1

aijeij ėij

= −2

N
∑

i=1

N
∑

j=1

aijuieij cosαij + aijujeij cosαji

= −2

N
∑

i=1

N
∑

j=1

aijuieij cosαij +

N
∑

j=1

ajiuieji cosαij

Since A is symmetric (aij = aji) and eij = eji, we obtain

V̇ (e) = −4

N
∑

i=1

N
∑

j=1

aijuieij cosαij

= −4
N
∑

i=1

ui

N
∑

j=1

aijeij cosαij
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Fig. 3. Four robots converge to a common meeting point (a) without
and (b) with the presence of noise using Equation 6 and 10. Here we
have used Ku = 1/2 and Kω = 2. Additionally we have assumed
an independent noise ǫz = [ǫe, ǫα]T with ǫe ∼ N (0, 0.052[m2]) and
ǫα ∼ N (0, 0.152[rad2]) and an average time interval between observations
steps of dt = 0.2[s].

Posing

ui = ku(t, ei, αi)

N
∑

j=1

aijeij cosαij

finally results in

V̇ (e) = −4

N
∑

i=1

ku(t, ei, αi)





N
∑

j=1

aijeij cosαij





2

≤ 0.

We observe that V (0) = V̇ (0) = 0. Unfortunately, V̇ (e) = 0
even when e 6= 0, hence V̇ is only negative semi-definite.

However, the set S = {e|V̇ (e) = 0} does not contain any

trajectories of the system, except the trivial trajectory e(t) =
0, ∀t. Indeed S is equivalent to {e|ui = 0, ∀i} and we know

that

αij = atan2(yj − yi, xj − xi) − θi and thus

α̇ij =
ui sinαij + uj sin αji

eij

− ωi.

Hence, inside the set of trajectories S we have α̇ij = −ωi.

As we have stated that at least one robot Ri such that eij 6= 0
for a neighboring Rj will have a rotational speed ωi 6= 0, ui

will change and become different than 0 yielding a V̇ (e) < 0.

Therefore according to the Krasovskii-LaSalle principle, we

conclude that the system of robots converges asymptotically

to a common point in space.

As an example, let us use















ui = Ku

∑

Rj∈Ni

eij cosαij

ωi = Kω

∑

Rj∈Ni

sin αij

(6)

with Ku and Kω two positive constants. It is easy to verify

that, according to Theorem 1, this control law drives the

group to a common rendezvous point. Figure 3(a) shows a

simulation run with four robots using this control law and

how they converge to a single rendezvous location.

III. NOISY MEASUREMENTS

Theorem 2: Given a symmetric and weakly connected

group of N differential-wheeled robots R1, . . . , RN driven

by the kinematic Equation 1, the control law depending only

on noisy measurements ẽij and α̃ij given by Equation 2:






ũi = ku(t, ẽi, α̃i)
∑

Rj∈Ni

ẽij cos α̃ij

ω̃i = kω(t, ẽi, α̃i)

(7)

where ku(·) > 0 for all t ≥ 0, drives the group almost surely

to a common rendezvous point if and only if (i) ũi = 0
and ẽij 6= 0 imply that kω(·) 6= 0 for at least one pair of

robots Ri and Rj and (ii) the expected value Eǫz
[ũi] of

ũi over the observation noise which depends solely on the

probability density function pdfz(ǫ) has the same sign than

its equivalent deterministic control ui as given by Equation 3

(i.e. Eǫz
[ũi] · ui ≥ 0).

Remark 1: The first condition (i) on kω(·) may be safely

ignored if the noise component ǫz may take values different

than zero.

Proof: Let us initially take a detour by assuming that

our dynamical system of robots is discrete. At each time step

lasting dt seconds, each robot moves according to an Euler

integration of its kinematic model given by Equation 1:






xi(t + dt) = ũi cos θi · dt + xi

yi(t + dt) = ũi sin θi · dt + yi

θi(t + dt) = ω̃i · dt + θi

(8)

where xi ≡ xi(t), yi ≡ yi(t), θi ≡ θi(t), ũi ≡ ũi(t)
and ω̃i ≡ ω̃i(t). We can then define a stochastic Lyapunov

candidate function as in Equation 4:

V (t) =

N
∑

i=1

N
∑

j=1

aije
2
ij(t)

and find the difference ∆V (t) = V (t + dt) − V (t) between

the values of that function at two consecutive time steps.

Using the relation in Equation 5 and additional trigonometric

properties, we obtain

∆V (t) = V (t + dt) − V (t)

=

N
∑

i=1

N
∑

j=1

aij(e
2
ij(t + dt) − e2

ij(t))

= −2dt ·
N
∑

i=1

N
∑

j=1

aij(ũieij cosαij + ũjeij cosαji)

+dt2 ·
N
∑

i=1

N
∑

j=1

aij(ũ
2
i + ũ2

j + 2ũiũj cos(αij − αji)).

Given the symmetry of A, ∆V (t) becomes

∆V (t) = −4dt ·
N
∑

i=1

ũi

N
∑

j=1

aijeij cosαij

+2dt2 ·
N
∑

i=1



|Ni|ũ
2
i + ũi

N
∑

j=1

aij ũj cos(αij − αji)



 .



where |Ni| is the cardinality of Ni (i.e. the number of

neighbors of robot Ri). It is clear that the stochastic operator,

as defined in [9]:

lim
dt→0

Eǫz
[∆V (t)]

dt
= −4 ·

N
∑

i=1

Eǫz
[ũi]

N
∑

j=1

aijeij cosαij (9)

is non-positive. Indeed if the expected value Eǫz
[ũi] has the

same sign as ui (as stated in condition (ii) of the theorem)

we have

lim
dt→0

Eǫz
[∆V (t)]

dt
= −4 ·

N
∑

i=1

Eǫz
[ũi]

N
∑

j=1

aijeij cosαij

= −4 ·
N
∑

i=1

Eǫz
[ũi] · ui

ku(t, ei, αi)

≤ 0.

In other words, the sequence of Lyapunov values

{V (0), V (dt), . . . , V (n · dt)} is a supermartingale as it

satisfies Eǫz
[V ((n + 1)dt)|V (0), . . . , V (n · dt)] ≤ V (n · dt)

when dt → 0. Again combining with the Krasovskii-LaSalle

principle of the first proof, we conclude that the dynamical

system converges to a common point in space.

Figure 3(b) shows a simulation run where four robots con-

verge to a single rendezvous location using the control law

defined by Equation 6 on noisy observations:














ũi = Ku

∑

Rj∈Ni

ẽij cos α̃ij

ω̃i = Kω

∑

Rj∈Ni

sin α̃ij

. (10)

In Figure 3(b), the noise component is sampled from a two

dimensional Gaussian distribution with a mean at zero and a

diagonal covariance matrix (i.e. ẽij and α̃ij are independent),

thus it is easy to verify that

Eǫz
[ũi] = Ku

∑

Rj∈Ni

Eǫz
[ẽij cos α̃ij ]

independence
= Ku

∑

Rj∈Ni

Eǫz
[ẽij ]Eǫz

[cos α̃ij ]

= Ku

∑

Rj∈Ni

eij cosαij = ui

and that Eǫz
[ũi] · ui = u2

i ≥ 0. The other conditions

were already verified for the deterministic control law in the

previous section.

Remark 2: The above theorem is valid as long as the

duration of a time step is fairly small with respect to the

forward and rotational motion of each robot. In practice,

however, observation cycles may be asynchronous and delays

may extend the duration of time steps. Fortunately, it is

possible to artificially limit the time step duration by en-

forcing a given control law to ignore old observations and

simply stop the robot’s motion if no new observation has

been made. In Figure 4, we made two simulation runs with

identical parameters, except that in Figure 4(b) robots would

stop when nothing is observed. In both runs, observations of
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Fig. 4. Four robots apply the control law of Equation 10 with a large
average time step duration, dt = 10[s]. (a) The robots do not take into
account the fact that dt is large with respect to control outputs, hence the
robots travel using very old observations and are not able to converge. (b)
The robots discard observations that are older than 2[s], hence the robots
travel shorter distances in-between observations and artificially lower the
effective duration of time steps and converge. The blue dots indicate places
where the robots stopped because no new observation was received. Here
we have used Ku = 1/2 and Kω = 2. Additionally we have assumed
an independent noise ǫz = [ǫe, ǫα]T with ǫe ∼ N (0, 0.052[m2]) and
ǫα ∼ N (0, 0.152[rad2]).

other robots may come asynchronously and may be measured

at completely different times. We notice that the stop-and-

go behavior implemented in the second figure effectively

reduces the travelled distance in-between time steps, thus

artificially lowering the time step duration with respect to

the control law applied. It shows a successful convergence

whereas Figure 4(a) shows robots unable to reach a common

meeting point.

IV. BAYESIAN CONTROL

In practice, it is often beneficial to incorporate the un-

certainties of the system. Especially when sensors are noisy

and update rates are low, adding a probabilistic dimension to

the position of nearby robots may yield to better estimates of

their actual position. In other words, although each robot may

have a different belief about the position of its neighbors,

the group should still be able to rendezvous. In this section,

we will explain how a Bayesian approach may be combined

with a control law satisfying Theorem 2 to exhibit successful

convergence.

A. Bayes Filter

A given robot Ri needs to track the position of the other

agents in the network otherwise known as its neighbors.

Hence, for each neighboring robot Rj , the robot Ri main-

tains a belief distribution bel(x
(k)
ij ) of the state x

(k)
ij of Rj

at each time step k (i.e. t = k · dt). We can group all

state estimates at time step k of neighboring robots in a

set X
(k)
i = {x

(k)
ij |Rj ∈ Ni}. The state of a robot defines

quantities of interest, in our case they could simply be

the relative range and bearing, that is x
(k)
ij = [e

(k)
ij , α

(k)
ij ]T

where eij(kdt) ≡ e
(k)
ij and αij(kdt) ≡ α

(k)
ij . As explained

in [25], the most general algorithm to compute beliefs

is the Bayes filter algorithm, which calculates the belief

distribution bel with respect the observations and control

actions performed assuming that past and future data are

independent if one knows the current state x
(k)
ij . Algorithm 1



shows the Bayes filter adapted to our problem statement with

u
(k)
i being a control action, Z

(k)
i ≡ Zi(kdt), z

(k)
ij ≡ zij(kdt)

and η a normalizing constant such that the integral over the

belief sums to one. The algorithm as shown here assumes

independence of the different measurements z
(k)
ij , which

is reasonable, and uses two probability density functions:

p(x
(k)
ij |u

(k)
i ,x

(k−1)
ij ), the state transition probability, and

p(z
(k)
ij |x

(k)
ij ), the measurement probability.

Algorithm 1 BayesFilter(bel(X
(k−1)
i ),u

(k)
i ,Z

(k)
i )

1: for all Rj ∈ Ni do

2: bel(x
(k)
ij ) =

∫

p(x
(k)
ij |u

(k)
i ,x

(k−1)
ij )bel(x

(k−1)
ij )dx

(k−1)
ij

3: bel(x
(k)
ij ) = ηp(z

(k)
ij |x

(k)
ij )bel(x

(k)
ij )

4: end for

The state transition probability captures how the range

and bearing of neighboring robots Rj of Ri are affected

by the motion of robot Ri throughout a time step. This

probability can integrate potential models about the motion

of neighboring robots as well as the coordinate transfor-

mation induced by a motion of the robot Ri itself. As an

example, let us consider a very basic motion model where

we assume to have no knowledge about the motion of nearby

robots (i.e. random walk): we can assume that the uncertainty

about their relative position propagates according to a zero-

mean Gaussian distribution with covariance matrix Σm. The

motion of Ri on the other hand is given by its control law

in the form of a forward motion ûi and rotational motion

ω̂i and we assume no uncertainties there. Using the update

Equation 8, we can obtain:

p(x
(k)
ij |u

(k)
i ,x

(k−1)
ij ) = Φ

(

e
(k)
ij

[

cos(α
(k)
ij )

sin(α
(k)
ij )

]

|µm, Σm

)

(11)

where Φ(x|µ, Σ) is the multivariate Gaussian probability

density function with a mean µ and covariance matrix Σ
and

µm =

[

cos(ω̂idt) sin(ω̂idt)
− sin(ω̂idt) cos(ω̂idt)

]

[

e
(k)
ij cos(α

(k)
ij ) − ûidt

e
(k)
ij sin(α

(k)
ij )

]

.

The measurement probability describes the likelihood of

making an observation assuming that the true state of a

neighbor is known. As an example, we can simply use the

Equation 2 in the form

p(z
(k)
ij |x

(k)
ij ) = pdfz(z

(k)
ij − x

(k)
ij ). (12)

B. Control Law

Theorem 3: Given a symmetric and weakly connected

group of N differential-wheeled robots R1, . . . , RN driven

by the kinematic Equation 1, the probabilistic control law:






ûi = Ebel[ku(t, ei, αi)]
∑

Rj∈Ni

Ebel[eij cosαij ]

ω̂i = Ebel[kω(t, ei, αi)]

(13)

where ku(·) > 0 for all t ≥ 0, drives the group almost surely

to a common rendezvous point if and only if (i) ûi = 0

and the expected value Ebel[eij ] over the belief is not zero

(Ebel[eij ] 6= 0) imply that Ebel[kω(·)] 6= 0 for at least

one pair of robots Ri and Rj and (ii) the filter used to

compute bel is optimal in the sense that the estimation

Ebel[eij cosαij ] is unbiased with respect the observation

noise (Eǫz
[Ebel[eij cosαij ]] = eij cosαij) for all robots Ri

and Rj ∈ Ni.

Remark 3: The first condition (i) on kω(·) simply means

that if a robot does not believe that a rendezvous is reached

and its forward speed is null, it should have a non-zero

rotational speed.

Remark 4: The second condition (ii) is more restrictive

than its counterpart in Theorem 2 as it is more convenient

to express it in terms of optimality and unbiasness of the

filter. Indeed, a more general condition would state that the

expected value of Eǫz
[ûi] over the observation noise should

have the same sign than its equivalent deterministic control

ui as given by Equation 3 (i.e. Eǫz
[ûi] · ui ≥ 0), but it is

less practical to use.

Proof: The proof follows directly from the proof of

Theorem 2. As in Equation 9, we get

lim
dt→0

Eǫz
[∆V (t)]

dt
≤ 0

meaning that the sequence of Lyapunov values is a super-

martingale. Using the Krasovskii-LaSalle principle, we can

conclude that the dynamical system converges to a common

meeting point.

Finally, we can transform Equation 6 into a probabilistic

control law:














ûi = Ku

∑

Rj∈Ni

Ebel[eij cosαij ]

ω̂i = Kω

∑

Rj∈Ni

Ebel[sin αij ]
. (14)

Unfortunately, except for simple state transition probabilities,

measurement probabilities, and actual observation noise dis-

tributions, the convergence properties are often impossible

to prove analytically as the equations become intractable.

However, it is possible to use numerical approximation and

verify that the expected value of the control law satisfies the

second condition (ii) of the theorem.

V. EXPERIMENTS

A. Real Robots

Experiments were conducted with four Khepera III robots

equipped with a range and bearing module. The noise

characteristics of this module are shown in Figure 5 where

we can observe that the range and bearing noise behave like

independent Gaussian variables with standard deviations of

0.15[m] and 0.14[rad] respectively. The update frequency

of the positioning board is lowered to 0.5 Hz meaning

that a robot Ri makes at most one observation every two

seconds for each robot nearby. Three sets of experiments

were performed in a 3×3[m2] arena:

1) Basic: The robots are controlled by Equation 10 and the

stop-and-go behavior explained in Remark 2. As we have
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Fig. 5. Empirical probability density function of the noise ǫz of the
range and bearing module. The covariance matrix of the range and bearing
noises is Σ = [0.0221 − 0.0011; − 0.0011 0.0196] which shows little
dependency of the random variables.

seen, if the noises affecting the range and the bearing are

independent, this control law converges.

2) Motion: The robots are controlled by Equation 10 but use

a motion model based on their wheel encoders (odometry)

to update the position of the latest observations with respect

to their local coordinate frame. In other words, they assume

that the position of their neighbors is given by the latest

measurement that they continuously update to account for

self-locomotion.

3) Bayesian: The robots use Equation 14. A particle filter im-

plements Algorithm 1 with 512 particles per neighbors using

Equations 11 and 12. Figure 7(a) shows a run performed by

the real robots using this Bayesian control law.

For all sets, Ku = 1/2 and Kω = 2 and the underlying graph

is assumed to be fully connected. The position of each robot

is monitored with SwisTrack [15] during 60 seconds. After

10 runs, the root mean square error (RMSE) defined by the

Euclidean distance between each pair of robot is computed

and displayed in Figure 6(a). Note that the real robots cannot

meet at a single point due their size: the minimal distance

between two robots is at least equal to the diameter of a robot

which is approximately 12[cm]. Although not conclusive,

these results show in average a quicker convergence for

both approaches taking self-locomotion into account. All

approaches show successful convergence and confirm the

mathematical properties developed in previous sections.

B. Simulation

To obtain additional quantitative results we resort to use a

kinematic point simulator where the motion of the robots is

given by Equation 8 with an update step lasting dt = 64[ms].

The robots have an infinitesimal size, allowing them to

meet at the same physical location. Additionally, the noise

of the range and bearing observations is sampled from a

multivariate Gaussian distribution with a diagonal covariance

matrix Σ = diag([σ2
e , σ2

α]). All other parameters are set to

reflect as closely as possible reality. Although not shown

here, setting the real noise ratios into the simulator exhibits

near-to identical convergence properties than Figure 6(a).

We perform the same three sets of experiments with two

observation noise profiles.

First we use a range noise σe = 0.5[m] and a bearing noise

σα = 0.14[rad]. After 1000 runs, the RMSE is computed and

displayed in Figure 6(b). We can clearly observe the benefits

of the Bayesian control law which due to its better estimate

of the other robots’ position is able to converge faster. As

expected, the basic control performs worst.

Second we use a range noise σe = 0.15[m] and a bearing

noise σα = 1[rad]. After 1000 runs, the RMSE is computed

and displayed in Figure 6(c). Again, the Bayesian control

performs best with a faster a more predictable convergence.

C. Discussion

The advantages of using a Bayesian approach to solve the

rendezvous serves is two-fold. On one hand, it allows us to

exploit the knowledge of the sensory noise characteristics

and incorporates it nicely in a single unified framework. On

the other hand, the motion model (if known) can result in

faster convergence times or create interesting behaviors that

are hardly possible using the standard reactive rendezvous

equation (Equation 7). In the simplistic model explained

in Equation 11, we have assumed no information about

the motion of neighboring robots. In a real application,

this assumption might be too pessimistic since the control

laws implemented on all the robots belonging to the team

might be engineered and therefore exploitable for further

optimization. Therefore, although we have used this simple

equation as our state transition probability to allow a fair

evaluation of the convergence performances, exploiting this

knowledge could yield far better results if carefully chosen.

To finish on an upbeat note, Figures 7(b) and 7(c) show that

with minimal changes to the control law or the connection

graph it is possible to achieve, on real robots with noisy

sensors, complex behaviors such as a reconfiguration into a

predefined shape or a cyclic pursuit.

VI. CONCLUSION

In this paper we have proved, via thorough mathematical

analysis, sufficient conditions to perform a rendezvous ma-

neuver on a group of differential-wheeled robots endowed

with an on-board, noisy, local positioning system. In partic-

ular, we extended the simple framework of reactive control

with a layer of Bayesian reasoning allowing to solve the

rendezvous problem more efficiently and in a probabilis-

tically sound way. Finally, we have performed systematic

experiments, both on real robots and simulation, to show the

benefits of our Bayesian approach running simplistic update

rules. Future work includes the definition of more efficient

motion and observation models to merge more complex
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