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Abstract—Direct transformation of sampling-based motion
planning methods to the Information-state (belief) space is a
challenge. The main bottleneck for roadmap-based techniques
in belief space is that the incurred costs on different edges of
the graph are not independent of each other. In this paper,
we generalize the Probabilistic RoadMap (PRM) framework to
obtain a Feedback controller-based Information-state RoadMap
(FIRM) that takes into account motion and sensing uncertainty
in planning. The FIRM nodes and edges lie in belief space and
the crucial feature of FIRM is that the costs associated with
different edges of FIRM are independent of each other. There-
fore, this construct essentially breaks the “curse of history”
in the original Partially Observable Markov Decision Process
(POMDP), which models the planning problem. Further, we
show how obstacles can be rigorously incorporated into plan-
ning on FIRM. All these properties stem from utilizing feedback
controllers in the construction of FIRM.

I. INTRODUCTION

Sampling-based path planning algorithms such as Prob-

abilistic Roadmap (PRM) [1] methods, Rapidly exploring

Randomized Trees (RRT) [2], and their variants have shown

great success in solving robot motion planning problems in

the absence of uncertainty. However, direct transformation of

these methods to planning under uncertainty is a challenge.

The first issue is ensuring that the roadmap nodes are

reachable. The second challenge is that the incurred costs on

different edges of the roadmap depend on each other; this

violates an assumption in roadmap based methods that each

roadmap edge represents an independent planning problem.

In this paper, we generalize the PRM framework to

the Feedback controller-based Information-state RoadMap

(FIRM) that takes into account both motion and sensing

uncertainties. The probability density function (pdf) over

the state is called belief or information-state. The FIRM is

constructed as a roadmap in belief space, where its nodes

are small subsets of belief space and the edges of FIRM

are Markov chains in belief space. It is the first method that

generalizes the PRM to belief space in such a way that the

incurred costs on different edges of roadmap are indepen-

dent of each other, while still providing a straightforward

approach to sample reachable nodes in belief space. These

properties are a direct consequence of utilizing feedback
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Fig. 1. (a) A simple PRM in state-space. (b) The belief evolution along
different paths that lead to the n8. As it is seen the belief depends on

the traveled path by robot. For example P
(3,6,7)
8 denotes the estimation

covariance at node n8, when the robot has traversed a path through nodes
(3, 6, 7) to reach node 8. (c) Corresponding belief paths in the belief
space. Belief at each node depends on the history of belief evolution. (d)
Unique beliefs assigned to each PRM node. Regardless of the belief history,
the belief at each node stops at these predefined beliefs. (e) The FIRM
corresponding to the given PRM. Note that µj ’s are not FIRM edges. Indeed,
(i, j)-th FIRM edge is generated by the action of µj on bis.

controllers in the construction of FIRM. Planning under

motion and sensing uncertainty is essentially a Partially Ob-

servable Markov Decision Process (POMDP). An important

contribution of FIRM is that it breaks the curse of history

in such POMDPs and provides the optimal policy over the

roadmap instead of only a nominal path.

Figure 1 illustrates the curse of history in POMDPs and

the approach of FIRM in breaking it. Although there exists

a single edge e(7,8) between nodes n7 and n8 in PRM (cf.

Fig. 1(a)), the belief evolution along e(7,8) is not unique (cf.

Fig. 1(c)) and it depends on the path, which has led to n7.
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Moreover, even if we assume there is only one path that

leads to n7, every time the robot traverses this path, due to

the randomness in measurements, the belief will end up at

a different value on n7, and therefore the belief-dependent

cost on edge e(7,8) is not predictable without having the

full knowledge of the belief at n7 or equivalently the full

knowledge of history of observations before reaching n7.

In FIRM, using node-controllers and appropriate stopping

conditions, we stop the belief evolution at predefined unique

beliefs associated with PRM nodes (cf. Fig. 1(d)). Doing so,

we break the curse of history by making the after-node belief

evolution independent of before-node belief evolution. Thus,

we can construct the PRM-like roadmap in belief space, i.e.,

FIRM, with independent edge costs.

Without edge independence, the incorporation of obstacles

in planning on roadmaps is a challenge because it either en-

tails costly repeated computations of collision probabilities,

or some collision measure has to be designed that in general

cannot capture the true collision probabilities and may lead

to overly conservative plans. However, in FIRM, owing to

the independence of edges, we can compute the collision

probabilities offline and incorporate obstacles in planning

over FIRM that leads to more reliable and less conservative

plans.

In the next section, we review the most relevant related

work. Section III provides an overview of the method and

its contributions. In Section IV, we derive FIRM MDP as

a computationally tractable approximation of POMDP. In

Section V, we detail how the assumptions inherent in FIRM

can be satisfied and construct a FIRM. Experimental results

are presented in Section VI.

II. RELATED WORK

In recent years, there has been a concerted effort to

incorporate uncertainty into sampling-based motion planning

methods. A class of these methods deal with map uncertainty,

such as [3]–[5], while the methods in [6]–[8] deal with

motion uncertainty. Another class of methods that are most

related to FIRM consider both motion and sensing uncer-

tainties in planning, such as [9]–[15]. In the following, we

briefly discuss the planning approaches in these references

and place them in context with FIRM.

Censi et al. [9] propose a planning algorithm based on

graph search and constraint propagation on a grid-based

representation of the space. In the LQG-MP method of Van

den Berg et al. [10], the best path is found among the finite

number of RRT paths by simulating the performance of LQG

on all of them. Platt et al. in [11] plan in continuous space by

finding the best nominal path through nonlinear optimization

methods. Prentice et al. [12] and Huynh et al. [13] propose

PRM-based approaches, where the best path is found through

breadth-first search on the Belief roadmap.

In all these methods, a best nominal path is computed

offline. This nominal path is fixed regardless of the process

and sensing noises in the execution phase. [11] performs

replanning when large deviations happen, which is a com-

putationally expensive procedure since all the costs along

the path have to be reproduced for the new initial belief.

In FIRM, however, the best feedback policy, i.e., a mapping

from belief space to actions, is computed offline, which is a

main goal of planning under motion and sensing uncertainty

(POMDPs). In the method proposed by Toit et al. [14], the

nominal path is updated dynamically in a receding horizon

control approach, which entails repeatedly solving open loop

optimal control problems at every time step. Kurniawati et

al. [15] compute the value function at sampled milestones

and thus compute the optimal policy rather than the optimal

nominal controls.

In the methods that account for sensing uncertainty, the

state has to be estimated based on measurements. To han-

dle unknown future measurements in the planning stage,

methods [9], [11]–[14] consider only the maximum likeli-

hood (ML) observation sequence to predict the estimation

performance. In contrast, FIRM takes all possible future

observations into account in planning.

In the presence of obstacles, due to the dependency of

collision events in different time steps, it is a burdensome

task to include the collision probabilities in planning. That

is why the methods such as [9], [10], [14] design some safety

measures to account for obstacles in planning. However, in

FIRM, collision probabilities can be computed and seam-

lessly incorporated in planning stage.

III. METHOD OVERVIEW AND CONTRIBUTIONS

The FIRM graph is a generalization of the PRM graph,

whose nodes are small subsets of belief space and whose

edges are Markov chains induced by feedback controllers.

As a result, planning on FIRM is a Markov Decision Process

(MDP), referred to as FIRM MDP here. FIRM MDP is

defined on FIRM nodes, and thus it can be solved using

standard Dynamic Programming (DP) techniques [16].

Inducing reachable belief nodes: FIRM samples nodes in

the robot state space and then utilizes feedback controllers

to automatically induce unique beliefs associated with each

of these state space nodes (cf. Fig. 1). The controller can

drive the belief into the neighborhood of these belief states

in finite time and thus ensures reachability. This way FIRM

addresses the hard task of sampling in reachable belief space

that is usually required in belief space planning [15], [17],

[18].

Breaking the curse of history: A fundamental contribution

of FIRM is that the optimal action, at a given node, does

not depend on the traversed nodes, actions, and observations

prior to this node, i.e., it is independent of the history

of the information process (cf. Fig. 1). This is a direct

consequence of inducing reachable belief nodes using the

feedback controllers, which essentially breaks the curse of

history in POMDPs. In addition, the sampling-based nature

of the method borrowed from PRM allows us to ameliorate

the curse of dimensionality.

Efficient planning: The construction of FIRM is offline and

thus online planning (and replanning) is feasible. Moreover,

in FIRM, the optimal feedback policy, instead of the nominal

path, is computed offline. This is done by solving the
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dynamic programming problem associated with the FIRM

MDP on belief nodes induced by the feedback controllers.

Incorporating obstacles in planning: In the FIRM frame-

work, the collision probabilities can be computed, which

leads to more accurate plans, as opposed to a simplified

collision measure, that may lead to conservative plans. The

obstacles induce a failure node in the FIRM MDP, into

which the robot can be absorbed. Further, due to the offline

construction of FIRM, the heavy computational burden of

estimating collision probabilities can be done offline.

The generic algorithm for offline construction of FIRM is

presented in Algorithm 1.

Algorithm 1: Generic Construction of FIRM (Offline)

1 Construct a PRM with nodes {nj} and edges {eij};
2 For each PRM node nj , design a controller µj and

reachable FIRM node Bj ;

3 For each FIRM node Bi, characterize the allowed set of

controllers A(i);
4 For each Bi and µj ∈ A(i), compute the cost, collision

probabilities and transition probabilities associated with

going from Bi to Bj ;

5 Solve the FIRM MDP to compute feedback π over

FIRM nodes.

The generic algorithm for online planning on FIRM is

presented in Algorithm 2.

Algorithm 2: Generic planning on FIRM (Online)

1 Given an initial belief, invoke some controller µi(·) in
FIRM to absorb the robot into FIRM node Bi;

2 Given the system is in set Bi, invoke the higher level

feedback policy π to choose the lower level feedback

controller µj(·) where j = π(Bi);
3 Let the node-controller µj(·) execute untill absorption

into the Bj or failure;

4 Repeat steps 2-3 untill absorption into the goal node

Bgoal or failure.

The concrete instantiations of these generic algorithms are

given in section V.

IV. THE POMDP TO FIRM MDP TRANSFORMATION

In this section, we detail how to transform a POMDP

into a FIRM MDP. In the first subsection, the POMDP

problem is briefly outlined. In subsection B, we develop the

transformation for the obstacle-free case, and in subsection

C, we show how to incorporate obstacles into the planning.

A. Preliminaries

Consider a controlled hidden Markov model with hidden

state X ∈ X, control u ∈ U, and observation Z ∈ Z,

with transition probability model p(X ′|X,u) and observation
model p(Z|X). Let Z0:k denote the set of observations

untill time k. Then, the information-state (belief) bk of the

system at time k, is defined as the probability distribution of

the underlying system state X given Z0:k, i.e., bk(X) =
p(X|Z0:k). Let the space of all such beliefs be denoted

by the belief space B. It is well known that the infinite

horizon POMDP problem can be cast as an MDP problem in

belief space, called belief MDP problem here, whose solution

is obtained by solving the following stationary Dynamic

Programming (DP) equation on the belief space B [16], [19]:

J(b)= min
u

{c(b, u) +

∫

B

p(b′|b, u)J(b′)db′}, ∀b ∈ B, (1)

where c(b, u) is the incremental cost of taking action u at

belief state b, J(b) is the optimal cost-to-go from belief state

b, and p(b′|b, u) represents the transition probability density

over belief states, given that control u is taken at belief state

b. This transition probability can be derived using Bayes rule

and the law of total probability [16], [19]. However, as is well

known, the above DP equation is exceedingly difficult to

solve since it is defined over whole belief space, and suffers

from the curse of history. In the following, we show how

the POMDP can be reduced to a computationally tractable

MDP over FIRM nodes.

B. Obstacle-free FIRM

Let us consider the DP in Eq.(1), through which the cost-

to-go function can be computed for the belief MDP problem.

We further restrict the problem’s scope by the following

assumption. Consider a set of sampled nodes in the state

space of the robot {ni}
N
i=1 that includes the goal node ngoal,

into whose vicinity we want to transfer the robot.

Assumption 1: We assume that corresponding to every

state node ni, there exists a unique stopping belief b
i
s and

an associated feedback controller u = µi(b) such that the
controller can drive the belief state into Bi in finite time with

probability one, where Bi is a small neighborhood of b
i
s. Bi

is referred to as the i-th stopping region or i-th belief node.
The feedback controller µi is a stationary controller, called

the i-th node-controller. Assumption 1 is satisfied if µi is

a proper policy [16]. Under the node-controller µi(b), the
belief evolves according to a Markov chain whose transition

density function is denoted by pµ
i

(b′|b) := p(b′|b, µi(b)).
Thus, the node-controller essentially induces the Markov

chain pµ
i

(b′|b) over the belief space B. Controller µi is

proper iff in the Markov chain pµ
i

(b′|b), each belief b is

connected to the Bi with a path of positive probability tran-

sitions [16]. Therefore, irreducibility of the chain pµ
i

(b′|b)
is the sufficient condition for µi to be proper. Irreducibility

essentially implies that the Markov chain can go from any

point in the belief space to any non-zero measure set in

the belief space in finite time with probability one. In the

next section, we discuss how such a node-controller can be

constructed.

Planning goal: The planning goal is to transfer the robot

into some pre-specified region Bgoal corresponding to the

goal node ngoal, with probability one, following which the

system can remain there without incurring any further cost.

This is also known as a stochastic shortest path problem [16].

Assumption 2: It is assumed that the belief process in-

duced by µi can stop iff it enters the node Bi. Further, once

the system is in the node Bi, it is allowed to invoke one of
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the controllers µj(·) among j ∈ A(i), the k-nearest neighbor
set of i, that in turn will draw the system into the region Bj .

Based on these assumptions, the original MDP in belief

space, formulated using DP in Eq.(1), is now turned into a

Semi-Markov Decision Process (SMDP) [20] on the belief

space or equivalently an MDP on the continuous regions

Bi. We call this restricted form of the original POMDP, the

FIRM MDP, whose DP formulation is:

J(b)= min
j∈A(i)

Cµj

(b)+

∫

Bj

pµ
j

(b′|b)J(b′)db′, ∀b ∈Bi, ∀i. (2)

In the equation above, Cµj

(b) represents the expected cost

of invoking node-controller µj(·) starting at belief state b till
the node-controller stops executing. Mathematically:

Cµj

(b) =

T∑

t=0

c(bt, µ
j(bt)|b0 = b), (3)

T µj

(b) = min
t
{t|bt ∈ Bj , b0 = b}. (4)

where T µj

, which is a function of initial belief, is a random

stopping time denoting the time at which the belief state

enters the node Bj under the controller µ
j . The pdf pµ

j

(b′|b)
represents the belief transition pdf given that µj is invoked

at b.
The FIRM MDP, though computationally more tractable

than the original POMDP, is defined on the continuous neigh-

borhoods Bi and thus, still formidable to solve. Instead, let

us consider the following piecewise constant approximation:

J(b) ≈ J(bis), Cµj

(b) ≈ Cµj

(bis), ∀b ∈ Bi, ∀i. (5)

Given the above approximation, FIRM MDP in Eq.(2) can

be approximated as follows:

J(bis)= min
j∈A(i)

Cµj

(bis) +Pµj

(Bj |b
i
s)J(b

j
s), ∀i, (6)

where, Pµj

(Bj |b
i
s) represents the probability that the con-

troller µj invoked at bis takes bis into the Bj . Note that

in the absence of obstacles assumption 1 implies that

Pµj

(Bj |b
i
s) = 1.

Equation Eq.(6) is an arbitrarily accurate approximation

to the original FIRM MDP in Eq.(2) given that the functions

Cµj

(·) and Pµj

(·|·) are smooth with respect to their argu-

ments (i.e., at least continuous), and given that the belief

nodes Bi are sufficiently small. The approximation essen-

tially states that any belief in the region Bi is represented by

bis for the purpose of decision making. Abusing the notation

and defining J(Bi) := J(bis), Cµj

(Bi) := Cµj

(bis), and
Pµj

(·|Bi) := Pµj

(·|bis) leads to the equation:

J(Bi)= min
j∈A(i)

Cµj

(Bi) + Pµj

(Bj |Bi)J(Bj)

= min
j∈A(i)

Cµj

(Bi) + J(Bj), ∀i (7a)

j∗= π(Bi) = arg min
j∈A(i)

Cµj

(Bi) + J(Bj), ∀i. (7b)

Thus, the original POMDP becomes a finite N -state MDP

in Eq.(7) defined on the abstract “belief nodes” {Bi}
N
i=1.

Given Cµj

(·) and Pµj

(·|·), this problem can easily be solved

using standard DP techniques such as value/policy iteration

to yield a feedback policy π on the higher level embed-

ded MDP defined on the belief nodes Bi. Given that the

system stops in node Bi, this policy determines which node-

controller µj∗ has to be invoked, where j∗ = π(Bi). In order

to solve Eq.(7), the generalized costs Cµj

(·) and transition

probabilities Pµj

(·|·) need to be evaluated. We discuss how

to compute these in Section IV on FIRM construction.

C. Incorporating Obstacles into FIRM

In the presence of obstacles, we can never assure that

the node-controller µj(·) can drive any b ∈ Bi into Bj

with probability one. Instead, we have to specify the failure

probabilities that the robot collides with an obstacle. Let us

denote the failure set on X by F (i.e., F = X − Xfree).

Now, let Pµj

(F |b) denote the probability that under node-

controller µj the system enters the failure set F before it

enters the region Bj , given that the initial belief is b. Again,
for smooth transition pdf’s and given that the sets Bj are

suitably small, and abusing the notation to Pµj

(·|Bi) :=
Pµj

(·|bis), we can modify Eq.(7) to incorporate obstacles in

the state space:

J(Bi) = min
j

Cµj

(Bi) + J(F )Pµj

(F |Bi)

+ J(Bj)P
µj

(Bj , F |Bi), (8a)

j∗ = π(Bi) = argmin
j

Cµj

(Bi) + J(F )Pµj

(F |Bi)

+ J(Bj)P
µj

(Bj , F |Bi), (8b)

where Pµj

(Bj , F |Bi) denotes the probability of reaching

Bj , under controller µj invoked at Bi, before hitting an

obstacle. J(F ) is a user-defined suitably high cost-to-go

value for failure. It is assumed that the system can enter

the goal region or the failure set and remain there subse-

quently without incurring any additional cost. Thus, all that

is required to solve the above DP equation are the values

of the costs Cµj

(Bi) and transition probability functions

Pµj

(Bj , F |Bi) and Pµj

(F |Bi). Thus, the main difference

from the obstacle free case is the addition of a “failure” state

to the FIRM MDP along with the associated probabilities of

failure from the various nodes Bi.

We would also like to quantify the quality of the solution

that is obtained by the FIRM. To this end, we require the

probability of success of a policy π at the higher level

Markov chain on Bi’s given by Eq.(8b). The FIRM MDP

now has N + 1 states {S1, S2, · · · , SN+1} that can be

decomposed into three disjoint classes: the goal class S1 =
Bgoal, the failure class S2 = F , and the transient class

{S3, S4, · · · , SN+1} = {B1, B2, · · · , BN}\Bgoal. The goal

and failure classes are recurrent classes of this Markov chain.

As a result, the transition probability matrix of this higher

level N+1 state Markov can be decomposed as follows [21]:

P =



Pg 0 0
0 Pf 0
Rg Rf Q


 . (9)
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The (i, j)-th component of P represents the transition prob-

ability from Sj to Si. Moreover Pg = 1 and Pf = 1,
since goal and failure classes are recurrent classes, i.e., the

system stops once it reaches the goal or it fails. Q is a

matrix that represents the transition probabilities between

belief nodes Bi in transient class. Rg and Rf are (N−1)×1
vectors that represent the probability of the transient nodes

{Bi}\Bg getting absorbed into the goal node and the failure

set, respectively. Then, it can be shown that the success

probability from any desired node Bi is given by the i-th
component of the vector Ps, denoted by Ps

i [21]:

Pr(success|Bi) = Ps
i , Ps = (I −Q)−1Rg. (10)

Thus, given that we can suitably construct the node-

controllers µi(·), the sets Bi, evaluate the transition costs

Cµi

(·) and the transition probabilities Pµi

(·|·), we can

transform the POMDP into a FIRM MDP.

V. FIRM CONSTRUCTION

In this section, we address how the four elements in

the FIRM, i.e., nodes Bi, node-controllers µi, transition

probabilities Pµj

(·|Bi), and costs Cµj

(Bi) can be con-

structed such that the necessary assumptions in section IV

are satisfied.

A. FIRM Nodes Bi and Control Policies µj

PRM samples its nodes {nj}
N
j=1 from Xfree based on

some appropriate probabilistic measure [1]. Similarly, in

planning in belief space it is desired to sample the belief

space, where the main problem is whether the sampled belief

is reachable or not. In general, characterizing the whole

reachable region of B is computationally infeasible. A main

contribution of FIRM is that instead of sampling in belief

space and characterizing if the sampled belief is reachable

or not, FIRM exploits node-controllers to induce reachable

regions in belief space B as is explained in the following.

The initial sampling in FIRM is done in the state space

using PRM techniques. After sampling PRM nodes {nj}
N
j=1

in Xfree, for each PRM node nj , we associate a node-

controller µj and FIRM node Bj ⊂ B that satisfy the

assumption 1. In the following we restrict our approach to

the linear models and nonlinear models that are locally well

approximated by the linearization. We also assume that both

process and measurement noises are drawn from zero-mean

Gaussian distributions. Suppose the system (linearized at nj)

has the state-space form:

Xk+1= AjXk +Bjuk +GjWk, Wk ∼ N (0,Qj) (11)

Zk= HjXk + Vk, Vk ∼ N (0,Rj). (12)

where, Wk and Vk are motion and measurement noises,

respectively, drawn from zero-mean Gaussian distributions

with covariances Qj and Rj .

Node controller: We choose the node-controller µj as the

stationary Linear Quadratic Gaussian (LQG) controller, de-

signed for the linearized system at nj [16]. Under the Gaus-

sian assumption, the belief is characterized by a pair consist-

ing of estimation mean and covariance bk = (X̂+
k , Pk). We

denote the governing dynamics of belief under LQG by fb,

which indeed encapsulates Kalman filtering equations:

bk+1 = fb(bk, uk, Zk), uk = µj(bk). (13)

From control theory it can be shown that if the pair

(Aj ,Bj) is controllable and the pair (Aj ,Hj) is observable,
then the belief chain in Eq.(13) under µj is ergodic, i.e.,

limk→∞ bk = b∞ = (X̂+j

∞ , P j
∞), (see [22] for details).

Actually, the dynamics of the estimation covariance Pk is

deterministic and it converges to the deterministic covariance

P j
∞ [16]. Covariance P j

∞ is computed as P j
∞ = (I −

LjHj)P j−

∞ , where P j−

∞ is the solution following Discrete

Algebraic Riccati Equation (DARE) within the class of

positive semidefinite symmetric matrices.

P j−

∞ = GjQjGjT (14)

+Aj(P j−

∞ − P j−

∞ HjT (HjP j−

∞ HjT +Rj)−1HjP j−

∞ )AjT,

Lj = P j−

∞ HjT (HjP j−

∞ HjT +Rj)−1. (15)

The dynamics of estimation mean X̂+
k is random and it can

be shown that it converges to a stationary random vector

X̂+j

∞ , whose mean is nj = E[X̂+j

∞ ], (see [22] for details).

FIRM node: We define the unique stopping belief bjs
associated with nj as the mean of the stationary belief bj∞,

i.e., bjs = E[bj∞], which is equal to the following pair:

bjs = (nj , P
j
∞). (16)

According to the irreducible belief chain induced by µj , the

probability of absorbtion into any nonzero-measure set in

belief space centered at bjs is one. Therefore, Assumption 1

is satisfied by defining the j-th FIRM node Bj ⊂ B as a

region centered at bjs.

Bj = {b = (X,P )|‖X − nj‖ < ǫ, ‖P − P j
∞‖ < δ}, (17)

where, ǫ and δ are suitably small thresholds that determine

the FIRM node size Bj .

Transition probabilities and edge costs: Computing tran-

sition probabilities Pµj

(·|Bi), and costs Cµj

(Bi) associated
with invoking node controller µj at node Bi, in general can

be a computationally expensive tasks. Here, we utilize the

Monte Carlo-based (MC-based) methods to approximate the

collision probabilities. The dependency of collision events

in different time steps, which is ignored in most collision

probability computing methods in the POMDP literature, can

be taken into account rigorously in MC-based methods. An

MC-based approximation can reach any desired accuracy by

increasing the number of particles M . However, the main

problem of MC-based methods is their high computational

cost, which might preclude their use in online scenarios.

Nevertheless, owing to the offline construction of FIRM, the

high computational burden of MC-based approaches can be

tolerated. The method is detailed in [22].

Depending on the application, one can define a variety of

cost functions for taking node-controller µj at Bi. Here, we

first consider estimation accuracy to find the paths, on which

the estimator and accordingly controller can perform better.
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A measure of estimation error is the trace of estimation

covariance. Thus, we use Φ = E[
∑T

k=1 tr(Pk)]. In stationary

LQG, the covariance matrix evolves deterministically and

thus the expectation operator can be omitted. However, if

the filter of choice is the Extended Kalman Filter (EKF), the

covariance matrix evolution is stochastic and this measure

can take into account its stochasticity. Moreover, as we are

also interested in faster paths, we take into account the

corresponding mean stopping time, i.e., T̂ = E[T ], and the

total cost of invoking µj at Bi is considered as a linear

combination of estimation accuracy and expected stopping

time, with suitable coefficients α1 and α2.

Cµj

(Bi) = α1Φ+ α2T̂ . (18)

B. Offline Construction of FIRM

The crucial feature of FIRM is that it can be constructed

offline and stored, independent of future queries. Moreover,

owing to the reduction from the original POMDP to an N-

state MDP on belief nodes, the FIRM MDP can be solved

using standard DP techniques such as value/policy iteration

to yield the optimal policy j∗ = π(Bi) on the FIRM MDP

defined on the belief nodes. Indeed, at each belief b ∈ Bi,

the policy j∗ = π(Bi) decides which node-controller µj∗

has to be invoked among j ∈ A(i). Algorithm 3 details the

construction of FIRM.

Algorithm 3: Offline Construction of FIRM Graph

1 input : Free space map, Xfree

2 output : FIRM graph G
3 Sample PRM nodes V = {nj}

N
j=1;

4 forall the ni ∈ V do

5 Design the stationary LQG µi about the node ni;

6 Compute associated bis using Eq.(16);

7 Construct FIRM node Bi using Eq.(17);

8 forall the i do
9 forall the j ∈ A(i) do

10 Set b0 = bis;
11 Generate sample belief path b0:T (using

Eq.(13)) and ground truth path X0:T induced by

controller µj invoked at Bi;

12 Compute the transition probabilities and costs

associated with these sample paths using

MC-based approaches.

13 Compute cost-to-go’s {J(Bi)} and feedback π over the

FIRM by solving the DP in Eq.(8);

14 G =
(
{Bi}, {J(Bi)}, {µ

i}, π
)
;

15 return G;

C. Planning with FIRM

Given that the FIRM graph is computed offline, the online

phase of planning (and replanning) on the roadmap becomes

very efficient and thus, feasible in real time. If the given

initial belief b0 does not belong to any Bi, we create a

singleton set B0 = b0 and connect it to FIRM through its

k-nearest neighbors A(0). Afterwards, due to the designed

stopping condition, if no collision occurs, the belief is

guaranteed to be in one of the nodes Bi at the decision

stages. Thus, given the current node, we use policy π defined

in Eq.(8b) over FIRM nodes to find j∗, and pick µj∗ to move

the robot into Bj∗ . Algorithm 4 illustrates this procedure.

VI. EXPERIMENTAL RESULTS

In this section we construct FIRM on a sample environ-

ment. A 3-wheel omnidirectional mobile robot is used in

experiments with the nonlinear kinematic model given in

[23]. The state vector is composed of a 2D location and

heading angle X = [x, y, θ]T . In experiments, the robot

is equipped with exteroceptive sensors that provide range

and bearing measurements from existing landmarks (radio

beacons) in the environment. The 2D location of the j-th
landmark is denoted by Lj . Measuring Lj can be modeled

as follows:

jZ = [‖jd‖, atan2(jd2,
jd1)− θ]T + jv, jv ∼ N (0, jR),

where, jd = [jd1,
jd2]

T := [x, y]T − Lj .
jv is a state-

dependent observation noise, with covariance

jR = diag((ηr‖
jd‖+ σr

b )
2, (ηθ‖

jd‖+ σθ
b )

2). (19)

In other words, the uncertainty (standard deviation) of

sensor reading increases as the robot gets farther from the

landmarks. ηr = ηθ = 0.3 determines this dependence, and

σr
b = 0.01 meter and σθ

b = 0.5 degrees are the bias standard

deviations. Similar model for range sensing is used in [12].

We assume the robot observes all NL landmarks at all times

and their observation noises are independent.

Figure 2(a) shows a sample environment, including ob-

stacles, landmarks, and enumerated nodes in (x, y, θ) space.

Algorithm 4: Online Phase Algorithm

1 input : Initial belief b0, FIRM graph G
2 if ∃Bm such that b0 ∈ Bm then

3 Set i = m and compute j∗ = π(Bm);
4 else

5 Define the singleton set B0 = b0;
6 forall the j ∈ A(0) do
7 Generate sample belief path b0:T (using

Eq.(13)) and ground truth path X0:T induced by

controller µj invoked at Bi;

8 Compute the transition probabilities and costs

associated with these sample paths.

9 Set i = 0 and compute j∗ = π(B0) using Eq.(8b);

10 while Bi �= Bgoal do

11 while bk /∈ Bj and “no collision” do

12 Apply the control uk = µj∗(bk) to the system

and get the measurement Zk+1;

13 Update belief as bk+1 = fb(bk, µ
j∗(bk), Zk+1);

14 if Collision happens then return Collision;

15 Set i = j and compute j∗ = π(Bi);
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Nodes are shown by blue triangles, that encode the position

(x, y) and heading angle θ of the robot. Landmarks are

shown by black stars. The corresponding FIRM nodes are

computed and shown in Fig. 2(b). All elements in Fig. 2(b)

are defined in (x, y, θ) space but only the (x, y) portion of

them is shown here. Each bjs = (nj , P
j
∞) is illustrated by

a red dot representing nj and a green ellipse, representing

3σ ellipse of covariance P j
∞. Each FIRM node Bj is a

neighborhood around bjs. In the experiments, we define the

node region using the component-wise version of Eq.(17), to

handle the error scale difference in position and orientation

variables:

Bj = {b = (X,P )| |X − nj |
.
< ǫ, |P − P j

∞|
.
< ∆}, (20)

where, |·| and
.
< stand for the absolute value and component-

wise comparison operators, respectively. We set ǫ =
[0.07(meter), 0.07(meter), 1(degree)]T and ∆ = ǫǫT to

quantify Bj’s. Part of this neighborhood that is defined for

estimation mean X̂+ is shown by a cyan rectangle centered

at nj . The other part of this neighborhood is illustrated

by two dashed green ellipses that represent 3σ covariances

of P j
∞ − ∆d and P j

∞ + ∆d, where ∆d is the matrix ∆,

whose off-diagonal elements are set to zero. For illustration

purposes, both these neighborhoods are five times magnified

in Fig. 2(b).

Figure 3(a) depicts the sample paths of ground truth state

and estimation mean in green and dark red, respectively,

for M = 100 particles. As seen in Fig. 3(a), the behavior

of ground truth on the edges that have access to accurate

observations is remarkably close to the planned behavior. In

contrast, on the edges that get less informative observations,

the controller cannot effectively compensate for the devia-

tions of the ground truth from the nominal path, which can

lead to collision with obstacles.

To avoid clutter, Fig. 3(b) depicts sample estimation co-

variance evolution only for a single particle. In this figure,

we set the process and observation noises to zero, to keep

the center of ellipses (i.e., estimation mean) on the planned

points. However, note that in general estimation mean is

affected by the noise (as it is seen in Fig. 3(a)). Indeed,

Fig. 3(b) can be seen as the maximum-likelihood estimation

uncertainty tube over the roadmap.

To complete the construction of FIRM, we compute the

properties associated with invoking the j-th controller at the

i-th node, such as collision probability, filtering performance,

and stopping time. Table I shows these quantities for several

(Bi, µ
j) pairs in FIRM. The pair (Bi, µ

j) represents the

(i, j)-th FIRM edge. Finally, we perform planning on FIRM

to find the optimal policy based on the defined costs in

Eq.(18). We show the most likely path under the best policy

of FIRM, i.e., Eq.(8b), in red in Fig. 3(b). The shortest path

is also illustrated in Fig. 3(b) in yellow. It can be seen that

the “most likely path under the best policy” detours from the

shortest path to a path along which the filtering uncertainty

is smaller and it is easier for the controller to avoid the

collisions.
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Fig. 2. (a) Figure depicts the underlying PRM graph. Gray polygons are
the obstacles and black stars represent the landmarks’ locations. (b) Selected
FIRM nodes {B1, B2, B3, B4, B6, B7, B15, B18, B21, B27, B31, B36}.

VII. CONCLUSION

In this paper, we have proposed the Feedback controller-

based Information-state road map (FIRM) for solving the

motion planning problem under motion and sensing uncer-

tainties. This problem originally is a POMDP, whose solution

is intractable. Exploiting feedback controllers, we reduce it

to a tractable FIRM MDP that can be solved by standard

DP techniques. FIRM utilizes feedback controllers to create

the reachable node regions in belief space, and construct a

graph, on which a higher level policy is defined to provide

the optimal plans. An important consequence is that FIRM

overcomes the curse of history and curse of dimensionality

in the original POMDP problem. Finally, by computing the

collision probabilities, obstacles are also appropriately taken

into account in planning on FIRM. We believe that FIRM

provides an important step toward solving POMDPs and

utilizing them as a practical tool for robot motion planning

under uncertainty.
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TABLE I

COMPUTED COSTS FOR SEVERAL NODE-CONTROLLER PAIRS IN FIRM USING 100 PARTICLES

Bi, µ
j pair B1, µ

4 B4, µ
18 B18, µ

21 B21, µ
27 B27, µ

31 B1, µ
3 B3, µ

13 B13, µ
11

1−Pµj
(F |Bi) %97 %95 %99 %77 %79 %87 %55 %79

Φ 18.5967 11.2393 6.8229 15.1148 26.2942 23.6183 48.8189 43.6207

E[T ], σ[T ] 238.2, 21.8 193.0, 28.7 150.0, 15.1 209.6, 24.5 170.8, 22.6 200.3, 22.7 242.4, 30.1 219.2, 26.7
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