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Abstract— Physical cooperation with humans greatly en- TN
hances the capabilities of robotic systems when leaving stan- - ve
dardized industrial settings. Our novel cognition-enabled con-
trol framework presented in this paper enables a robotic assis-
tant to enrich its own experience by acquisition of human task
knowledge during joint manipulation. Our robot incrementally
learns semantic task structures during joint task execution
using hierarchically clustered Hidden Markov Models. A se-
mantic labeling of recognized task segments is acquired from
the human partner through speech. After a small number
of repetitions, the robot uses an anticipated task progress to
generate a feed-forward set point for an admittance feedback
control scheme. This paper describes the framework and its
implementation on a mobile bi-manual platform. The evolution
of the robot’'s task knowledge is presented and discussed.
Finally, the cooperation quality is measured in terms of the
robot’s task contribution.

I. INTRODUCTION

. . . . ,Fig. 1. Experimental scenario: Human and robot jointly cagya bulky
As robots are entering new domains starting to providgumper to its mounting location during car restoration.

close physical assistance to human workers, a strong need fo
the ability to learn semantic task knowledge from human cczoupling between human and machine which inseparably
workers arises. Any approach of pre-programming all possserves as a channel for energy but also information exchange
ble interaction behaviors for all possible combinationtask Caster-like robot partner behavior reactively compensgati
goals is infeasible for fairly unstructured settings of famm the object dynamics is well-suited for human-robot joint
manual work. Instead, in our opinion, a cognition-enable@ulky load transport which is nicely shown in [2] and [3].
robotic co-worker is expected to implementiearning-by-  However, such a follower strategy implements merely a trol-
doing strategy for physical interaction tasks. This implies thaley for heavier loads rather than an actual cooperatiompart
the robot starts as a rather passpaek mule being guided and, while simple tasks can successfully be fulfilled, more
by a human partner. In order to exploit the naturally givermomplex tasks including environmental constraints tylhica
cognitive capabilities of the human co-worker, a cognitionrequire an active contribution to the task by the robot [4].
enabled robot observes the human task contribution in termgtive robotic assistance also reduces the effort applied b
of physical signals and learns how to recreate the complére human partner [5], [6], [7]. In order to plan the next robo
mentary patterns. Furthermore, the authors are convincegdtion for assistance to the human, the next human action
that a cognition-enabled robotic assistant should enti€h ineeds to be predicted. For simple motor tasks, findings from
own experience by acquisition of meaningful semantic kbehuman motor behavior are considered for movement pre-
from dialogue with human co-workers as a basis for furthediction, for example the well-known minimum jerk velocity
linguo-haptic interaction improvement. Neuroscientifiedfi  profile for point to point movements [5], [8]. However, for
ings second this opinion as loop closure around sensorgore complex tasks there are not any such analytical models
motor observation, imitation and control through explicitcurrently available. In consequence, learning from olsserv
communication is observed in action reproduction fromion approaches have become a favorable method to address
human-human settings [1]. these challenges. We have investigated the theoreticét bac
Exemplarily, in this work, we address the problem of jointground on task dynamics in joint manipulation and incre-
bulky object transportation, as illustrated in Fig. 1, heare mental learning for physical human-robot interaction [8],
the conceptual approach is not limited to this applicatiorRemaining open questions include the implementation of an
This task is specifically challenging due to the tight phgbic actively contributing robotic partner in joint human-rabo



manipulation and generalization of the learning approach partner through the object. Any force and motion input is
higher-dimensional observations. The idea of a robot askirunsupervisedly segmented, clustered and added as haptic
for semantic information has been extensively explored imteraction primitive to an experience database. Additilyn
the Autonomous City Explorer project. A robot traveling any force and motion input is compared to existing database
through the city of Munich extracted semantic informatiorentries, generating recognition matches. Patterns tha ha
from communication with passers-by [10]. Transferringsthi been observed multiple times are classified to be of in-
concept to physical human-robot interaction in terms aftjoi terest and worth asking the human partner for a semantic
human-robot manual work is part of this paper’s inspirationdescription. This semantic knowledge is later used to ask
Il PROBLEM STATEMENT AND CONCEPTUAL APPROACH the human partner a'blout the.desired trajectory depengiing
' on the current recognition quality. Whenever the recognitio
The envisaged task is a joint load transport from g successful either directly from database matches or with
commonly known starting pose to a goal pose, first onlydditional certainty from direct human partner feedback, a
known to the robot's human partner. The research questioffotion pattern is generated according to the corresponding
we address in this paper are: How can a full-scale mobil@atabase entry. This motion is translated into a virtuateor
robot learn from haptic interaction, enrich its experiebge input, acting on the virtual admittance mentioned above.
asking questions and assist in an appropriate way based oIThe remainder of this paper is organized as follows: In
its knowledge? Secondly: How does an assistive behavigtie next Section Il an overview on the system architecture
emerge in our robot implementing our proposed approag§ given. Section lll gives a brief theoretical background
over time? to the algorithm for segmentation and learning from force

We confine our problem to the following conditions:  and motion data, followed by prediction in Section IV.

« One human moves a bulky object together with a robothe learned models are enriched with human semantic
from a starting pose to a final pose along an intuitiviknowledge, in Section V. The feedback control algorithms
trajectory avoiding collisions with the environment.  for task execution are explained in VI. Implementation and

o Both participantstightly grasp the samerigid object results from our experimental evaluation are presented in
with commonly known shape and dynamics. Section VII.

« Haptic interaction through the object and speech are By convention, bold characters are used for vectors and
possible communication channels between the humamatrices. Variables representing functions of time are not
and the robotic partner. necessarily marked as such for compactness of the mathe-

» Environmental constraints are such that a feasible pathatical descriptions.

to the goal exists. l1l. AN HMM A PPROACH TOLEARNING FORCE AND
The contribution of this paper is an experimental proof-of- MOTION SIGNALS
concept study towards an experience-driven physical 0bot 5 5,t0nomous acquisition of haptic motion patterns
assistant including knowledge acquisition, semanticlinge requires unsupervised segmentation, clustering, and -an in

and motion re-creation and control. cremental learning mechanism allowing generalization} an

Passive Follower behavior recreation using a regression algorithm.
- j e A. Automated Segmentation, Learning and Clustering
- Incremental | Making the robot more assistive as it gathers new ob-
| Learning -~ @ = servations requires as a first step an online autonomous
| / (Sec. 1) Haptic Database \\ | incremental Ie_arning f.ramework. The k_)asic structu_re for
_ : | the segmentation and incremental learning process is based
| Haptic Semantic on the algorithms in [11], which is summarized in this
SN T F()gegc":tl'\c/’)” DeSscrlp?/on | subsection and illustrated in Fig. 3 a).
| Haptic ¢' (Sec. V) In order to extract behavior patterns from observations
| Observations : | autonomously, the observed force and motion signals ate firs
sztrlggon | segmented into potential primitives. The stochastic aito
| (Sec. VI) assumes that data belonging to the same primitive will have

/  the same underlying distribution.
. . Once a segmentation point is detected, each segmented
Active Robotic Partner . . . . .

(Sec. VII) time series is encoded into a left-to-right HMM as ex-
plained in the following Section IlI-B. In order to group and
structure similar observations, a hierarchical tree ofalveir

As depicted in Figure II, our approach consists of fouprimitives is built as follows: the newly constructed HMM
major interacting modules. When the system is started, tli® compared to the existing nodes in theéemitive tree* and
robot acts as a passive follower, implementing a second, ) N . L

d dmittance control law in inertial coordinates an Th|_'ough_ou_t_th|s paper, primitive trge denotes the a hiehaal tree of
pr er admi gehawor primitives built by the clustering. The term ‘nodignotes a node
is pulled and pushed from start to goal by the humam the ‘primitive tree’.

Fig. 2. System Architecture



a) HMM encoding

Unsupervised Section I1I-B probability of the transitions between the states, andu
segmentation Newsgg‘rg:n?”es and X are the weight, the mean and the covariance of the
[ ~ @ mixture components of the states.
: m While HMM'’s discretized state space provides a good
T recognition performance, it also leads to limitations when
generating a continuous trajectory as required for haptic
Incoming AN signal predictions. In order to improve this performante, t
twist and wrench / \ spatio-temporal correlation is learned during the trajrand
T | Primitive the responsibility over time of each state is calculated.
\ graph Multiple observations are used as training data. Each ob-
DN servationo = {*o(t),'o(t)} consists of the spatial data(t)
——————————— l— - == —l — — — — - which is the observed twist trajectory and wrench at time
b) (= ——— = - - - = = A and its associated time sequerioét) = ¢.

. . The above mentioned standard HMM parameters are
@mw tmw t@@#@ trained using the Baum-Welch algorithm [12] for the spatial

data. Additionally, the temporal data is used to calculate

| ’\P'rev )\* Anea:tl . . .
———————————— the time mearfu;;, the variance of the timéx,;;, and the
Aw covariance between temporal and spatial da¥;, for each
' statei and each mixture componeht

Aw generalized
output C. Decoding from HMMs
Using the additional temporal information acquired in
time the training, the responsibility over timéy;x(t), which
prediction represents the probability of being at statat time ¢ with

Incoming 5 , the k-th mixture component based on the time information,
observation /\/ ,' is calculated as

t t,,. tZ_ )
Viterbi state sequence e sese time t’yik(t) = N( ‘ Hik, lk) (1)

Viterbi state sequence e Scsche

N K

ty, .ty

Fig. 3. Overview of the learning and prediction procedukedenotes 2_: z_: N(ﬂ Hsj ESJ)
the most likely HMM given the incoming observations;,.., denotes the s=1j=1

HMM representing the previous primitive and,..: refers to the HMM : ; : _
representing the next most likely primitive that follows therent one Ay where a Gaussian for each statand each mixture compo

is the window HMM built based iM\, Aprew and Anez: and s. is the Nentk is centered on the mean of the tirhe;, and with a
currently estimated HMM state ofy given the incoming observations.  variance!y;;,. Note thatV is the number of states and
s the number of mixture components of each state.

IS |pserted as a member of.the closest node. If sgfflmentiy The spatial data is generated by the Gaussian Mixture
similar members are found in the node, a new child group

of this node is formed. Note that a node is also representeoegress.'qr? (GMR). algorithm We!ghted accordln'g. o the
responsibility over time. For each time stethe conditional

by an HMM, which is trained with the generated outputs : . -
from its members and the distance between the HMMs %xpectatlon of the spatial date?) is given by
estimated using a symmetric version of the Kullback-Leible N K tsy
divergence. The tree represents the robot's knowledge in  o(t) = > > 'yi(t) (mik + tz—f(t - t/u)) .
terms of a compact database of continuously incoming data i=1 k=1 ik
and each node represent@@avior primitive. IV. FORCE ANDMOTION PREDICTION

In parallel to the clustering process, the temporal re-
lation between behavior primitives is learned building a Relying on the knowledge acquired in Sec. Il represented
directedprimitive graph where the observed primitives areby the primitive graph and the primitive tree, a predictet! se
represented by its nodes and an edge between two nodk&int is generated. An overview of the prediction procedure

represents the probability to transit from one node to aroth is shown in Fig. 3 b).

This additionally learned structure allows trajectorydice ~ Given the incoming twist and wrench, the most likely
tions not only within a primitive but also during primitive nodeX* and its next most likely primitive\,,.,; are selected
transitions. from the primitive tree and the primitive graph respec-
i o tively. A window HMM Ay is then defined over the last
B. Encoding Force and motions into HMMs estimated),,.,, the current most likely\* and the next

HMMs provide a compact and probabilistic spatio-most likely primitive A,,...;. Note that a window HMM over
temporal representation of the training data. Each HMM sequentially executed left-to-right HMMs is built conniagt
is given by a set of parametefsr,a, w, 4,3}, wherew  the last state of the first HMM to the first state of the second
represents the initial state probabilities, represents the one.



Using the resulting window model, the Viterbi algorithm a) p(A* — A.e.:) = 1. The upcoming primitive is
can be applied to estimate the current HMM state To deterministic. No query is generated.
improve the accuracy of the prediction and estimate howb) 1 > p(A\* — A..t) > €. The robot is very certain
far the execution of this state is, the generalized output of about the upcoming primitive. A reconfirmation query
the window model can be used as a reference. Comparing is generated, suggesting,.,; as the next step.
the duration of estimated the statg in the incoming c¢) p(\* — M,ext) < €. No clear candidate for the

observations and the generalized output, the current chate upcoming primitive can be determined. A neutral query
be approximated as a time index of the latter. is phrased, asking for the next St&p...
Applying the regression explained in Section IlI-C and
given a desired prediction time horizon pfsamples in the I a2
future, the predicted data is calculated as follows o auery oA? ¥ X
. | PN PN
o(te+ L) = N o~ \_ =
N K . observation pret:!ctlon observation preti!ctlon observation preti_lctlon
t., t s ) ts ik (t ot ime ime ime
Z; k,;l vire ‘ot + L)) ( ik + ik (ot +L) ulk)) ’ (a) No query (b) Confirmation (c) Neutral query
. L Fig. 4. uery-generation mechanism
with o(t. + L) = <+” +t5r> : @) 9-4. Queng
vy : V1. RoBOT CONTROL ARCHITECTURE

wheret,. is the current state estimation on the generalized A feedback control scheme is adopted to provide a
state sequence,, is the time index of. on the generalized prediction-based assistive robot behavior as well as a homo
state sequencep,, is the length ofs. on the incoming geneous reactive behavior allowing for human force inputs.
observations state sequeneg. is a velocity factor given A Overall Control Scheme

X . . . . .
by |wc| wherez is the currently estimated twist arig. the As depicted in Fig. 5, holonomic maneuverability is
currently observed one. Note thatis calculated fron®(¢.).  provided by an admittance control scheme of a mobile
robot. The robot moves the object along a resulting pose
trajectoryx leading to an object wrenchi,,; in the robot's
Continuous force and motion patterns as used in the segontact point, serving as input to the admittance contnal la
mentation and learning algorithms as described in Section Indditionally, a human partner interacts with the object on a
describe the physical development of a task. However, in ogifferent contact point with wrench,,. The object geometry
der to exploit the cognitive capabilities of the human partn transforms this wrench ta, acting in the robot's contact
an intuitive direct user interface on a more abstract lewsstm point. Using the predictiont,,.q explained in Section IV
be provided. The extracted haptic primitives as introducegh assistive impedance control law generates an active robo
in Section Ill can be parameterized to provide a viablggrce inputaw,.
level of abstraction with a spatio-temporal resolutiortagie

V. EXTRACTION OF TASK SEMANTICS

for natural language descriptions. Whenever an unlabeI@
primitive is recognized, the robot acquires a descriptiomf Assistive | ur
its human partner. This label can then be used to Fpred _ | Control
« merge two or more primitives representing the same _ ,
semantic meaning @n | Oblect |uy N wu_| Robot Object
. ' N . Geometry Admittance Impedance
« generate queries on the next primitive to choose in cases z
of similar priors, Uobj
« reconfirm choices whenever the measured haptic input
deviates from the expected Fig. 5. Overall control scheme consisting of an impedance agsistive
’ control and admittance type reactive control scheme.
A. Merging multiple nodes B. Interaction Control

User input can be used to cluster two or more nodes The reactive robot behavior is realized implementing an
with the same semantic meaning into one. Therefore, thgmittance control law

generalized outputs of the source nodese used as training

input for a new node getting the same label. The source nodes u=M,%+ D,z ®)
become children of the new node. with a rendered virtual mas$Z, and rendered virtual
B. Query generation viscous frictionD,.. Note, that task-related constraints can

. - . be easily introduced by rendering a virtual stiffndss. in
In order to avoid false predictions on the upcoming, o ived spatial directions
primitive, a dialogue, based on the prior of the transition The assistive robot behavié)r based on the motion predic-

from \* t0 Apewt: (A" — Apewt), given by the primitive . )
. ner L onert) . . | sch
graph is executed. We distinguish three different cases, ggn Tprea 1S T€Ndered by an impedance control scheme

depicted in Fig. 4: U, = Kp(®pred — ) + Ka(Zprea — T) 4)



where K,, and K, denote the proportional and derivativetight grasp of the object. Lithium-ion polymer batterie$ (e
control gains respectively. power the system for long periods without recharging. For
_ o computational power, the robot carries three PCs (d). The
C. Manipulator-Base Coordination first is a anintel Core i7 920 running at2.66 GHz executing
The underlying control concept of the manipulator-basehe online learning and prediction algorithm on multiplelCP
coordination adopted in this paper is depicted in Fig. 6eores utilizing theOpenMP library at an update rate af) Hz.
Similar to [13], the admittance control law is calculated in
inertial coordinates so that repositioning of the mobilséa
does not affect the end-effector position. The actual end-
effector posé’x,, is used to derive a velocity commarfid:;
to the mobile base, following the base control law:

(é ehdg
Rw-b = T = dlag(Khdg K Ktng) €dst
Y Cing

Three independent proportional control laws move the mo-
bile base minimizing heading errey,q,, distance erroeq;

and tangential erroe,,, of the base pose w.r.t. the end-
effector poséex,,, as illustrated in Fig. 7.

Fig. 8. The human-sized mobile robot used in the experiment.
-- B. Implementation

The entire manipulator control scheme is implemented

Fig. 7. Base pose control w.r.t. to a reference posg of the manipulator’s n MATLAB/_SmuImk and exeCUte_d on theinux Real-

end-effector. Time Application Interface (RTAI) usingMatlab’s Real-Time
Workshop on a second PC. The control algorithm runs at a

A reference pose of the end-effectér, is chosen to meet frequency ofl kHz. The third PC is identical to the first and
certain requirements regarding task-related maniputabil ensures real-time control of the mobile platform and a syn-
The resulting motion comman@di; is then executed by an chronized data management utilizing tkegmoRTDB real-
omni-directional velocity control law as proposed in [14]. time database [18] available at [19] and tRBEEMPT_RT
Linux real-time kernel patch [20]. ThHRIARY Text-to-Speech
System is utilized for English-language speech synthesis.

In order to evaluate our approach and to get an impressionfFor simplicity, the implementation of the impedance con-
on the behavior of a robot implementing our proposegol law is reduced to the:/y-plane. The parameters from
scheme for learning, semantic labeling and control, wequations (4) and (3) were set to the following values:
conducted a full-scale experiment in our laboratory. As an .
exemplary domain, we chose a classic-car restoratiomgetti M, = d|ag(15 kg 15kg 0.3 kgm2)

The manipulated object, a2 m longMini’s steel bumper (b) D, = diag(80Ns/m 80Ns/m 7Nms/rad
weighing 1.9kg is depicted in Fig. 8. The distance between K, = diag(0 0 0)
the pre-defined grasp points of human and robot.ism.

. A k K,; = diag(30Ns/m 30Ns/m 0.1 Nms/rad
More information on the robot used can be found in [15]. .
Note, that the zero-value foK, leads to a drift-free

A. The Experimental Robot Platform behavior of the assistance controller to compensate féir dri
The robot used in this experiment (see Fig. 8) stands dRduced by the robot’s odometry. The 12-dimensional input

a four-wheeled omni-directional mobile platform (f) whichvector to the HMM training method is composed of the

offers roughly human-like maneuverability and smooth mofollowing dimensions in intertial coordinates:

tion [16]. Two identical anthropomorphic 7-degrees-of- « the 3-dimensional position of the end-effectqr

freedom (DoF) arms (c) are front-mounted on the top of the « the 3-dimensional angular velocity

main chassis to provide a human-like working space [17]. In « the 6-dimensional wrenchw in inertial coordinates

this experiment, only the right arm is used. Mounted ontés unified Gaussian computations on 6-D poses remain a

a JR3 wrench sensor, the manipulator is equipped with @mputationally extensive problem [21], we decided to use

Schunk PG70 two-finger parallel gripper (a) which allows angular velocities as unambiguous training input.

VIl. EXPERIMENTAL EVALUATION
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Fig. 6. Inertial admittance-type control scheme
The online learning algorithm is parameterized as follows left of behind
. . L 10r ero the car
Each segment and each node is encoded in an HMM with : thetrolley . ~" "7 o-
states and 1 Gaussian per state. In order to form a node ~-Ie Kl " .
the primitive tree, a group of at least 2 members is neede 8 pefbre “v\" between car
and only the upper nodes of each branch are considered the trotley——", E and trolley \
. . . i A v
the prediction. We use a window of 90 samples over th h”ght Icl’f R \ "
. . . . . . A 1
incoming observations for the primitive recognition and ¢ 6 the trolley =~ | \ leftof
. . . = 1
window HMM with 30 states. The predicted data term use E | N \ the car
. \ ]
as reference for the impedance control law \W&ks. Q47 L i
o right of ' \
10 missing thecar \‘ Y
. 9 model fragment s \
~.‘~“\ \\_\;\; \
8 Y ¥ = )
W ‘ ‘ ‘ ‘ ‘
w % D) Z 3 10
‘,!‘i x [m}
6r [
= ';' Fig. 10. 2-dimensional position component of 12-dimensioealegalized
g car \'i output and acquired semantic labels for the graph nodes. &tebox
4k l}@ represents the furcation area examined in Fig. 12.
el
trolley '-:! behind
g‘\ the car
2F i left of left of
. % the trolley > the car
‘ ‘ ‘ ‘h‘;'"-"l“li:“:'y ‘ before /
b 2 1 6 8 10
z [m]

the trolley

\ between car

/ and trolley
Fig. 9. 2-dimensional position component of 12-dimensiorahing data \

from three trials per each of three semantically differerihpa
C. Results

right of
the car

Y

. . . . . right of
Fig. 9 depicts the 2-dimensional position component of the the trolley
actual first nine trials taken with our system in this scemari rig, 11.

Resulting primitive graph. Note, that nodes represeotion
The human partner has chosen three semantically differesggments, not single locations.
paths from the starting pose to the goal pose.

Note, that the odometry drift leads to diverging paths. Iflecided to present data of the first furcation as marked in
Fig. 10 the 2-dimensional component of the 12-dimension&lig. 10. The green line shows the baseline implementation: A

generalized output of the learning algorithm after the ninpassively following robot. Significant force is requiredotall
trials from Fig. 9 is shown. Additionally, the labels acadr

the robot into they-direction, perpendicular to the primary
from the human partner after successful re-detection @lirection of motion. The red line shows, how completely suc-

primitives are shown. Note, that the primitives are labgled-essful prediction due to user feedback leads to significant
not the furcations. The primitive labeléeft of the car does

reduced forces. The case of a false prediction was provoked
not terminate near the actual goal pose. The training dat@ generate the force trajectory shown in black. However,

did not yield the necessary characteristics for successfafter the positive slope along a distance of appfoxm, the
segmentation as the human partner had difficulties to avoRfediction is corrected and the force returns to a comparabl
collisions between the robot and the car in narrow space. absolute value as in the correctly predicted case.

The labeled primitive graph from Fig. 11 shows the seman- For this proof-of-concept implementation, we consider
tic map derived from the learning and labeling procedureghe required exerted wrench as a suitable measure for the
This graph is used and further extended in every furthelr trigperformance evaluation of the assistance. Fig. 13 shows

An effect of successful prediction is visible in Fig. 12.the assistance improvement due to successful prediction in

As a comparison of the entire trajectory from start to goalelation to the passive case (1. trial), and mispredicions
is difficult, due to the significant trial-to-trial variancave

occuring due to missing user feedback.

Th
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