
Simplicial Dijkstra and A* Algorithms for Optimal Feedback Planning

Dmitry S. Yershov and Steven M. LaValle

Abstract— This paper considers the Euclidean shortest path
problem among obstacles in Rn. Adaptations of Dijkstra’s and
A* algorithms are introduced that compute the approximate
cost-to-go function over a simplicial complex embedded in the
free space. Interpolation methods are carefully designed and
analyzed so that they are proven to converge numerically to the
optimal cost-to-go function. As the result, the computed func-
tion produces approximately optimal trajectories. The methods
are implemented and demonstrated on 2D and 3D examples.
As expected, the simplicial A* algorithm significantly improves
performance over the simplicial Dijkstra’s algorithm.

Index Terms— Optimal control, feedback motion planning,
Bellman’s principle, shortest paths, Dijkstra’s algorithm, A*
algorithm

I. INTRODUCTION

Computing the Euclidean shortest path to a given goal
is a recurring problem in robotics. In addition to optimal
robot navigation and manipulation, it is also useful in image
processing, financial modeling, physics, etc. We focus on
finding the shortest path between a given point and a
polygonal goal set in an n-dimensional environment with
polygonal obstacles. For n = 3 this problem is already
PSPACE-hard [3]; therefore, approximation methods have
been developed [4], [17], [21]. We, therefore, consider only
approximate shortest paths.

In robotics, algorithms that compute approximately opti-
mal paths are based on a common approach to discretizing
the problem: construct a reachability graph for a robot in
a given environment using, for example, regular grids [14],
[18]; and apply a graph search algorithm to find the shortest
path. Although this approach is appealingly intuitive, the
computed paths do not necessarily converge to the shortest
path as the graph resolution increases.

An improved approach is the continuous optimal cost-to-
go formulation of the shortest path problem [5], [7]. The
optimal feedback law (solution to the corresponding optimal
control problem) gives the shortest path when integrated. In
this case, the space of possible feedback laws is discretized
instead of the path space. This provides flexibility in choos-
ing the optimal path from a continuum of all possible paths.
Moreover, this approach does not require an implementation
of path following controllers; the motion strategy is instead
naturally given by the feedback law. In this sense, this
approach can be considered as an optimal version of a
navigation function [19].

D.S. Yershov and S.M. LaValle are with the Department of Computer
Science at University of Illinois at Urbana-Champaign, Urbana, Illinois,
61801, USA {yershov2,lavalle}@illinois.edu

Algorithms proposed in this paper extend the control-
theoretic approach outlined above. The main advantages of
the new method are:
• The feedback law is defined through interpolation,

thereby providing control values at every point in space,
not just at a discrete set of points. Moreover, the
interpolation technique is introduced for spaces of any
dimension and a general simplicial decomposition of
the environment, extending existing interpolation tech-
niques beyond regular grids in 2D or 3D [21] and 2D
triangulations of manifolds [13].

• The interpolation scheme inherits the causality property
of the original problem. We exploit this property to
build a Dijkstra-like [6] algorithm to solve the resulting
system of nonlinear equations in one sweep through the
domain. This provides an extremely efficient algorithm
for computing a feedback plan with an asymptotic
running time O(N logN) (here N is the number of
vertices in the simplicial decomposition).

• In case the initial point is known, we further reduce the
computational cost by proposing a continuous version
of the A* algorithm [10]. Introducing the heuristic into
the interpolation-based algorithm is nontrivial, and care
must be taken to ensure that the system of discrete
dynamic programming equations is solved correctly.

• The theoretical framework sketched in this paper pro-
vides error bounds for the proposed algorithms. This
analysis paves the way for showing convergence of the
approximate path to the optimal path as the resolution
of the simplicial mesh is refined.

The proposed approach concerns computations only, and
it closely resembles the numerical analysis framework for
the Eikonal equation in [20]. In this respect, our method is
different from [7], [14], [18], which address the problem of
simultaneous plan computation, path execution and dynamic
replanning. However, the approach can be thought of as
a planner that, if embedded into simultaneous execution
and replanning framework, possibly leads to an even more
general interpolation-based methodology.

II. PROBLEM FORMULATION
Consider the problem of optimal feedback planning in a

n-dimensional Euclidean space. High dimensional environ-
ments may arise from considering the configuration space of
a robot. Assume that the robot’s coordinates are restricted
by global constraints only. Hence, the robot’s coordinates x
are free to translate in Xfree = Rn \Xobs, in which Xobs is
an open set with (n − 1)-dimensional polygonal boundary.
Finally, assume the goal set, Xgoal ⊂ Xfree, is a closed set

with polygonal boundary. The problem is to find a feedback
plan that navigates the robot along the shortest path from
some initial state, xI ∈ Xfree, to the goal set, while avoiding
obstacles.

Formally the optimal feedback plan can be described as
a vector valued function F (x), such that the solution to the
initial value problem

ẋ(t) = F (x(t)) , x(0) = xI (1)

is the shortest path. Generally, we may consider discontin-
uous feedback plans, and hence the Filippov solution in (1)
is assumed [8].

It is well known that the optimal feedback plan can be
derived from the cost-to-go function, V (x), which satisfies
Bellman’s equation [2]:

V (x) = lim inf
δ→0

inf
h∈B(δ)

{
V (x+ h) + ‖h‖

}
, (2)

in which B(δ) is a ball of radius δ centered at the origin.
Once V (x) is known, F (x) = −∇V (x) is the optimal
feedback plan.

To summarize, the main goal of this paper is to compute
the cost-to-go function, and use the result to derive the
optimal feedback plan.

III. NUMERICAL APPROACH

Equation (2) admits an analytical solution in special cases.
For example, if there are no obstacles in the environment,
V (x) is simply given by the distance function to Xgoal. For a
two-dimensional environment with polygonal obstacles, this
problem can be solved exactly by visibility graph methods
[12] or continuous Dijkstra [11], [15], [16]. However, the
exact solution is not known under general conditions, and
thus we must rely on a numerical approximation, which we
discuss in this section.

A. Approximating V (x)

We construct a simplicial discretization of Xfree by choos-
ing a set of vertices Xd = {xi ∈ Xfree | 1 ≤ i ≤ N}
(a subset of Xfree). Further, define an abstract simplicial
complex, T = {T ⊆ {1, . . . , N}}, such that if T ′ ⊆ T ∈ T ,
then T ′ ∈ T . In this case, T ′ is called a face of T ; if
additionally T ′ 6= T , then it is called a proper face of
T . In this regard, the notion of (proper) faces is parallel
to the notion of (proper) subsets. Next, denote a geometric
representation of simplex T ∈ T as X(T) such that X(T)
is the convex hull of the set {xi}i∈T . The tuple (Xd, T) is
called a simplicial complex if any two simplices intersect
over the common proper face only, i.e., for any T and T ′

in T , X(T) ∩ X(T ′) = X(T ∩ T ′). Finally, a simplicial
complex discretizes Xfree, if

⋃
T∈T X(T) = Xfree.1

Next, build a piecewise linear approximation V̂ of the cost-
to-go function, using a simplicial discretization of Xfree. Let

1If the boundary of Xfree is not a polygonal set, then a simplicial
discretization may not exist. Although, it is still possible to find a simplicial
complex such that

⋃
T∈T X(T) ⊂ Xfree, and the difference Xfree \⋃

T∈T X(T) is “small”. In this case the shortest path in Xfree can be
approximated by the shortest path in the simplicial complex.

the approximation take value V̂i at vertex xi. Define V̂ (x)
by linear interpolation within simplex T ∈ T , the geometric
description of which contains x:

V̂ (x) = V̂
(∑
i∈T

αixi

)
,
∑
i∈T

αiV̂i , (3)

in which αi ≥ 0 for all i, and
∑
i∈T αi = 1. The values αi

are called barycentric coordinates of x within X(T). The
approximation is completely determined by its values at the
vertices of a simplicial complex through (3).

B. Discrete dynamic programming

Since a piecewise linear function cannot satisfy (2) under
general conditions, we introduce a discrete version of Bell-
man’s principle by considering (2) at points of Xd only:

V̂ (xi) = min
T∈N (i)

inf
x∈X(Ti)

{
V̂ (x) +

∥∥xi − x∥∥} , (4)

in which N (i) = {T ∈ T | i ∈ T} ⊂ T is a set of simplices
incident to vertex xi, Ti = T \{i} is a proper face of simplex
T opposite vertex xi.

To construct a fully discrete numerical method we closely
follow [20] by using linear interpolation (3) to solve the
minimization problem (4) at each vertex. A similar dis-
cretization for the Hamilton-Jacobi equation is introduced in
[1] based on upwind differencing, whereas our approach is
based directly on discretization of the dynamic programming
principle (firstly introduced in [21]), and it generalizes to
high-dimensional simplicial grids.

IV. ALGORITHMIC APPROACH

The discrete dynamic programming principle (4), con-
sidered at all vertices of the discretization, describes a
system of nonlinear equations. An application of standard
iterative nonlinear solvers suffers from several shortcomings:
it requires a sufficiently accurate initial guess, running time
is high, and the result is only an approximate solution. By
contrast, discrete graph search methods, such as Dijkstra’s
algorithm [6] or A* algorithm [10], solve a similar system
of dynamic programming equations in optimal time without
requiring an initial guess. In this paper we implement a
modification of these algorithms to solve the given system.

A. Simplicial Dijkstra algorithm

We propose a Simplicial Dijkstra algorithm (SDA) that
evaluates the function V̂ in increasing order of its values
using a priority queue, similarly to Dijkstra’s graph search
algorithm. Under minimal conditions, our implementation
guarantees that equation (4) is solved only once for each
vertex. Thus, the entire computation is done in one “sweep”
through the simplicial complex; see Algorithm 1 for details.

Algorithm 1 is identical to Dijkstra’s graph search al-
gorithm if the complex is a graph (i.e, a 1-complex), and
minloc is replaced with the minimum cost over all paths to
neighboring vertices. In our case, however, minloc is defined
to satisfy (4) for general simplicial complexes.

Algorithm 1 Simplicial Dijkstra

Input: Simplicial complex (Xd, T), goal set Xgoal

Output: Approximation of cost-to-go function, V̂i, at all
vertices xi of simplicial complex

1: Initialize priority queue Q of all vertex indices. Set
priority key K̂i ← 0, for all xi ∈ Xgoal, and K̂i ← ∞,
otherwise

2: while Q is not empty do
3: Pop j with least key K̂j from Q
4: Set V̂j ← K̂j

5: for all T ∈ N (j) do
6: for all i ∈ T \ {j} do
7: V̂ ∗ ← minloc(i, T,Xd)
8: if V̂ ∗ < K̂i then
9: Update key of i to V̂ ∗ in Q

B. Local minimization problem
To satisfy (4), minloc must return a solution to the local

minimization problem

V̂ ∗ = inf
αj

{∑
j∈Ti

αj V̂j +
∥∥xi −∑

j∈Ti

αjxj
∥∥} (5)

for any given i and T , subject to linear constraints αj ≥ 0
for all j ∈ Ti and

∑
j∈Ti

αj = 1. Note that the local
minimization problem is equivalent to the shortest path
problem between vertex xi and the proper face of simplex T
opposite xi. The terminal cost on the face is given by linear
interpolation of values V̂j at vertices previously computed.
We propose a geometric algorithm to solve (5) exactly for
simplices of any dimension; see Algorithm 2 for details.

Algorithm 2 Function minloc
Input: Vertex xi, simplex T , vertex coordinates Xd

Output: Solution to minimization problem (5)
1: Restrict T to face J ⊂ T such that all V̂j for j ∈ J are

known
2: Let V̂ ′ = maxj∈J V̂j and j′ = argmaxj∈J V̂j
3: Calculate normal vector ~n to planar section of V̂ ′ level

set of cost-to-go function (Fig. 1).
4: Calculate distance vector from xi to plane orthogonal to
~n and passing through xj′ (Fig. 2).

5: if no barycentric coordinate of distance vector within
simplex is negative then

6: return |〈xi − xj′ , ~n〉|+ V̂ ′

7: else
8: Restrict J to subset of non-negative barycentric coor-

dinates and repeat from step 2

To interpret Algorithm 2, consider a two-dimensional
simplex (triangle). Assume x3 is a vertex with unknown
V̂3, and without loss of generality, consider V̂1 ≤ V̂2 to be
known at vertices x1 and x2, respectively. In this setting,
the problem is to find the shortest path from x3 to the line
segment between points x1 and x2, given a linear terminal
cost V̂ (x) such that V̂ (x1) = V̂1 and V̂ (x2) = V̂2.

V̂ >V
2

V̂ =V
2V

1 < V̂ <V
2

V̂ =V1

x1 x2

Fig. 1: Level sets of V̂ (x) consist of two line segments
bitangent to two circular arcs. One of the circular arcs is
of zero radius if V̂ (x) ≤ V̂2.

~n

V̂ =V
2

V̂ =V2

V̂ =V2

V̂ =V1

x1 x2

x3

Fig. 2: The shortest path intersects the linear segment of the
level set. In this case V̂3 = V̂2 + 〈x3−x2, ~n〉, in which 〈·, ·〉
is a scalar product of two vectors.

For the considered shortest path problem, the level sets of
the cost-to-go function V̂ are illustrated in Fig. 1. Each level
set consists of two line segments bitangent to two circular
arcs, one of which may be of zero radius. Two cases are
considered: x3 belongs to a line segment or x3 belongs to a
circular arc. In the first case, the shortest path is orthogonal
to the line segment of the level set {x | V̂ (x) = V̂2}; see
Fig. 2. Hence, the solution is given by the distance to the line
segment, |〈x3 − x2, ~n〉|, plus the cost-to-go function value
on the segment, V̂2. In the second case, the shortest path
terminates either at x1 or at x2; see Fig. 3. Thus, the solution
to the local minimization problem is the lower of V̂1+‖x3−
x1‖ and V̂2+‖x3−x2‖. Finally, consider the distance vector
from vertex x3 to the line embedding the linear segment of
{x | V̂ (x) = V̂2}. This vector is within the triangle in the first
case, and outside otherwise. Using barycentric coordinates
of the distance vector, we have thus found a criterion to
distinguish between the two cases considered.

C. Simplicial A* algorithm

The SDA outlined in Section IV-A computes the approxi-
mate cost-to-go function in the entire environment regardless
of the robot’s initial configuration. If xI is known, however,
then it is desirable to perform costly computations only in
the vicinity of the optimal path. In the discrete case, the A*
graph search algorithm accomplishes this by employing a
heuristic at each iteration of Dijkstra’s algorithm [10]. We
propose a Simplicial A* algorithm (SAA) by invoking a
similar heuristic at each iteration of the SDA that narrows
the focus of computations to vertices along the shortest path;

V̂ =V
2

V̂ =V2

V̂ =V2

V̂ =V1

x1 x2

~n

x3

Fig. 3: The shortest path intersects the circular arc of the
level set. In this case V̂3 = V̂1 + ‖x1 − x3‖.

see Algorithm 3 for details.

Algorithm 3 Simplicial A*

Input: Simplicial complex (Xd, T), goal set Xgoal, initial
position of robot xI.

Output: Approximation of cost-to-go function, V̂i, in all
vertices xi in neighborhood of optimal path.

1: Ĥi ← heuristic(xi, xI) for all xi ∈ Xgoal

2: Initialize priority queue Q of all vertices. Set priority key
K̂i ← Ĥi, for all xi ∈ Xgoal, and K̂i ←∞, otherwise

3: while Q is not empty do
4: Pop i with least key K̂i from Q
5: Set V̂i ← K̂i − Ĥi

6: for all T ∈ N (i) do
7: for all j ∈ T \ {i} do
8: V̂ ∗ ← minloc(j, T,Xd)
9: Ĥj ← heuristic(xj , xI)

10: if V̂ ∗ + Ĥj < K̂j then
11: Update key of j to V̂ ∗ + Ĥj in Q

Algorithm 3 is identical to Algorithm 1 in case of the
trivial heuristic corresponding to no prior knowledge of the
initial configuration. Although, if the heuristic approximates
the cost-to-come function (i.e., the optimal cost of reaching
the point from the initial state), then the SAA advances
towards the initial configuration since Ĥ(x) + V̂ (x) is
generally lower in this direction than in any other directions.
Moreover, if the heuristic is admissible (defined in [10]) and
consistent (covered in the next section), then the solution
given by the SAA is identical to the solution given by the
SDA at the evaluated vertices.

D. Requirements on meshes

As with most mesh-based numerical methods, compu-
tational error and consistency depend crucially on mesh
quality. Here, computational error is defined as the difference
between the cost-to-go function and its discrete approxima-
tion. An algorithm is called consistent if it correctly solves
the system of discrete dynamic programming equations. We
show that simplex size affects computational error, and the
regularity of simplex shape ensures consistency.

The computational error accumulates over the course of
the SDA or the SAA. At each iteration of the algorithm linear

interpolation error is introduced in the discrete dynamic
programming principle. Consider (5) in two dimensions; the
interpolation error is given by

ε = max
α1, α2

∣∣∣V̂ (α1x1+α2x2)−
(
α1V̂ (x1)+α2V̂ (x2)

)∣∣∣ . (6)

The Taylor series expansion for V̂ (x) in (6) suggests the
asymptotic bound ε ∼ ‖x1 − x2‖2. Introducing the mesh
quality parameter

h = max
T∈T

max
i,j∈T

‖xi − xj‖ , (7)

we conclude that ε ∼ h2.
The computational error, on the other hand, is proportional

to the number of iterations times the interpolation error at
each iteration, due to the error accumulation. The number of
iterations is given by the number of vertices M along the
longest of all optimal paths, so that E ∼ Mε. We estimate
M by dividing the length of the longest of all optimal
paths, L, by the mesh size h, which gives E ∼ Lh, i.e.,
the computational error is linearly proportional to the mesh
quality parameter h.

Consistency of the SDA is guaranteed, provided the dis-
crete Bellman’s principle satisfies the causality property: for
any i and j sharing a simplex, value V̂i depends on value V̂j if
V̂j ≤ V̂i. This property parallels the consistency condition for
Dijkstra’s algorithm, i.e., edge weights must be positive. For
the SDA, the causality property is satisfied if the following
holds for (5):

V̂ ∗ > Vj , for all j such that αj > 0 . (8)

The acute simplicial discretization guaranties (8). We
demonstrate this for the two-dimensional case in the setting
of the geometric construction from Section IV-B. First, notice
that V̂ ∗ ≥ V̂1. Second, V̂ ∗ depends on V̂2 only if vertex x3
belongs to a linear segment of the corresponding level set.
Hence, it follows from Fig. 2 that V̂ ∗ ≥ V̂2 if the projection
of x3−x2 on ~n is positive, which holds if the angle between
edges incident at vertex x3 is acute. Thus, as in [1], in 2D the
consistency conditions are guaranteed if the triangulation is
acute. Moreover, this geometric argument extends to higher
dimensions, in which case we say a discretization is acute if
the angles between all pairs of incident edges are acute.

Consistency of the SAA is implied by the modified causal-
ity property: for any i and j sharing a simplex, the value V̂i
depends on the value V̂j if

Ĥi + V̂i ≥ Ĥj + V̂j , or Ĥj − Ĥi ≤ V̂i − V̂j . (9)

In (9) we replace V̂i − V̂j with its minimum provided V̂i
depends on V̂j . In the two-dimensional case, the minimum
is achieved if ~n is parallel to the side opposite xj ; see Fig. 2.
Hence,

V̂i − V̂j ≤ ‖xi − xj‖ cos(α) , (10)

in which α is the angle between edges incident at vertex xi.
It follows from (9) and (10) that

Ĥj − Ĥi ≤ ‖xi − xj‖ cos(α) (11)

x2

x3

x1

x4

Fig. 4: Virtual edge flip trick in 2D.

must be satisfied for consistency. If H satisfies (11), then it
is called consistent. Higher-dimensional cases are analogous,
except that α must be replaced with the maximum angle
(minimum cosine) between any two edges incident at vertex
xi. In addition to the mesh requirements for the SDA, the
heuristic must be consistent for consistency of the SAA.

The airline distance is a commonly used heuristic for the
A* algorithm [10], but it fails to satisfy (11). Nevertheless, a
rescaled airline distance provides a consistent heuristic. We
introduce a mesh quality parameter

γ = min
T∈T

min
i,j,k∈T

cos(∠(xi, xj , xk)) , (12)

in which ∠(xi, xj , xk) is the radian measure of the angle
between vectors xi − xj and xk − xj . The parameter γ
measures the regularity of the simplicial mesh, with γ <
0 indicating there is at least one non-acute simplex and
γ = 1/2 for the “perfect” equilateral triangulation. It follows
from the triangle inequality and (12) that the airline distance
multiplied by γ satisfies (11). Furthermore, as the mesh
regularity improves, the parameter γ increases, and the
rescaled heuristic becomes increasingly usable.

If parameter γ is small, then the rescaled airline distance
is closer to the trivial heuristic, and the SAA has very
little advantage over the SDA. Nevertheless, the rescaling
coefficient and hence the quality of the heuristic can be
improved significantly by implementing a virtual edge flip
[1]. Figure 4 illustrates the idea of the virtual edge flip in 2D:
the local minimization problem at vertex x1 is solved for the
red simplices instead of the blue simplex. Red simplices are
built using vertex x4, which is opposite face (x2, x3) within
the green simplex (blue and green simplices are required to
share the face (x2, x3)). Using a virtual edge flip we can
improve γ for an equilateral triangulation up to

√
3/2. In

higher dimensions the improvement is less pronounced, but
three-dimensional experiments show that a virtual edge flip
still provides reasonable γ > 1/2.

All the requirements on meshes can be summarized in the
following two propositions.

Proposition 1 (Accuracy): For the proposed interpolation-
based algorithms, the interpolation error is of the second
order (i.e., ε ∼ h2), and the computational error is of the first
order (i.e., E ∼ h), with respect to mesh quality parameter
h defined in (7).

Proposition 2 (Consistency): If the simplicial decomposi-
tion is acute, then the SDA is consistent. If additionally Ĥ
satisfies |Ĥi − Ĥj | ≤ γ‖xi − xj‖, for γ as in (12), or, more
generally, Ĥ satisfies (11), then the SAA is consistent.

Fig. 5: Level sets of V̂ in the 2D environment with obstacles
(gray) computed using the SDA (black) and the SAA (white).

Fig. 6: Level sets of V̂ on a torus with obstacles computed
using the SDA (black) and the SAA (white).

V. RESULTS AND DISCUSSION

The proposed algorithms were tested in three different
scenarios: 1) a two-dimensional environment, 2) a two-
dimensional manifold, and 3) a three-dimensional environ-
ment. In all test cases, polygonal obstacles were introduced.
Simplicial meshes were generated using Gmsh software [9].
The same algorithms were applied, regardless of a problem’s
dimensionality or topology.

Figure 5 shows level sets of the approximate cost-to-go
function in the 2D environment with obstacles. The black
level sets are computed using the SDA, and the white
level sets are computed using the SAA. The thick white
line surrounds vertices computed by the SAA. As we can
see, implementing a heuristic focuses the SAA on vertices
primarily in the direction of the robot’s location. Moreover,
values of V̂ at vertices computed by the SAA are identical to
those computed by the SDA, and level sets coincide. Hence,
the resulting optimal paths are identical.

Level sets of V̂ computed on a 2D torus with obstacles are
shown on Fig. 6. From this experiment, it is evident that the
proposed interpolation-based approach generalizes to finding
shortest paths (geodesics) on manifolds. As expected, the
SAA outperforms the SDA by exploring fewer vertices.

In Fig. 7 two slices of level sets of V̂ for a 3D environment
with obstacles are illustrated. The black level sets correspond
to SDA computations and white level sets correspond to SAA
computations. As we can see, both algorithms extend to 3D
cases. Moreover, the SDA explores more vertices than the
SAA, and the trend remains in higher dimensions.

To compare the performance of the SDA vs. the SAA,

Fig. 7: Level sets of V̂ in a the 3D environment with
obstacles computed using the SDA (black) and the SAA
(white).

TABLE I: Performance of SDA and SAA

Experiment Measure SAA SDA

2D obs. minloc call # 15202 31314
vertex # 727 1539

running time (sec) 2.16 4.16

2D torus minloc call # 274240 557112
vertex # 11550 23395

running time (sec) 72.91 138.35

3D obs. minloc call # 837297 1675890
vertex # 4515 9693

running time (sec) 131.82 426.03

we introduce two performance measures: the number of
minloc function calls and the number of computed vertices.
The former is a better metric since the local minimization
problem is computationally expensive. The latter, however,
is adequate in case memory is limited. As we can see
from Table I, the SAA consistently outperforms the SDA
in both categories introduced above for all experiments
considered. The running time of a Python implementation
on Intel Core i7 3GHz is also illustrated in Table I.

VI. CONCLUSIONS

In summary, we have developed an interpolation-based
method for approximating the cost-to-go function associated
with the Euclidean shortest path problem over a simplicial
complex. We introduced simplicial versions of Dijkstra’s
algorithm and the A* algorithm to compute the approximate
cost-to-go function from the system of the discrete dynamic
programming equations efficiently. We have shown that both
algorithms find a first-order accurate solution when provided
with an acute simplicial complex, and a consistent and
admissible heuristic in case of the SAA.The key features
of the proposed framework are:
• The implementation is independent of the dimension or

topology of the environment.
• For a simplicial complex with N vertices, both algo-

rithms have asymptotic running time O(N logN).
• The SAA consistently explores fewer vertices and re-

quires fewer minloc function calls then the SDA for the
same simplicial complex.

Acknowledgments

This work is supported in part by and NSF grant 0904501
(IIS Robotics), NSF grant 1035345 (CNS Cyberphysical
Systems), DARPA SToMP grant HR0011-05-1-0008, and
MURI/ONR grant N00014-09-1-1052.

REFERENCES

[1] T. Barth and J. A. Sethian, “Numerical Schemes for the Hamilton-
Jacobi and Level Set Equations on Triangulated Domains,” Journal of
Computational Physics, vol. 145, no. 1, pp. 1–40, Sept. 1998.

[2] D. P. Bertsekas, Dynamic Programming & Optimal Control, Vol. I,
3rd ed. Athena Scientific, May 2005.

[3] J. Canny and J. Reif, “New lower bound techniques for robot motion
planning problems,” in Proceedings of 28th Annual Symposium on
Foundations of Computer Science, Oct. 1987, pp. 49–60.

[4] J. Choi, J. Sellen, and C. K. Yap, “Approximate euclidean shortest
path in 3-space,” in Proceedings of the tenth annual symposium on
Computational geometry, ser. SCG ’94. New York, NY, USA: ACM,
1994, pp. 41–48.

[5] K. Daniel, A. Nash, S. Koenig, and A. Felner, “Theta*: Any-Angle
Path Planning on Grids,” Journal of Artificial Intelligence Research,
vol. 39, pp. 533–579, 2010.

[6] E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische Mathematik, vol. 1, no. 1, pp. 269–271, Dec. 1959.

[7] D. Ferguson and A. Stentz, “Field D*: An Interpolation-Based Path
Planner and Replanner,” in Robotics Research, ser. Springer Tracts in
Advanced Robotics, S. Thrun, R. Brooks, and H. Durrant-Whyte, Eds.
Springer Berlin Heidelberg, 2007, vol. 28, ch. 22, pp. 239–253.

[8] A. F. Filippov, Differential Equations with Discontinuous Righthand
Sides: Control Systems (Mathematics and its Applications), 1st ed.
Springer, Sept. 1988.

[9] C. Geuzaine and J.-F. Remacle, “Gmsh: A 3-d finite element mesh
generator with built-in pre- and post-processing facilities,” Interna-
tional Journal for Numerical Methods in Engineering, vol. 79, no. 11,
pp. 1309–1331, 2009.

[10] P. Hart, N. Nilsson, and B. Raphael, “A Formal Basis for the
Heuristic Determination of Minimum Cost Paths,” IEEE Transactions
on Systems Science and Cybernetics, vol. 4, no. 2, pp. 100–107, Feb.
1968.

[11] J. Hershberger and S. Suri, “Efficient computation of Euclidean
shortest paths in the plane,” in Proceedings of 34th Annual Symposium
on Foundations of Computer Science, 1993, pp. 508–517.

[12] S. Kapoor, S. N. Maheshwari, and J. S. B. Mitchell, “An Efficient
Algorithm for Euclidean Shortest Paths Among Polygonal Obstacles
in the Plane,” Discrete & Computational Geometry, vol. 18, no. 4, pp.
377–383, Dec. 1997.

[13] R. Kimmel and J. A. Sethian, “Computing geodesic paths on mani-
folds,” Proceedings of the National Academy of Sciences of the United
States of America, vol. 95, no. 15, pp. 8431–8435, July 1998.

[14] S. Koenig and M. Likhachev, “Improved fast replanning for robot
navigation in unknown terrain,” in Proceedings of IEEE International
Conference on Robotics and Automation, 2002, pp. 968–975.

[15] J. S. B. Mitchell, “Shortest paths among obstacles in the plane,”
in Proceedings of the ninth annual symposium on Computational
geometry, ser. SCG ’93. ACM, 1993, pp. 308–317.

[16] J. S. B. Mitchell, D. M. Mount, and C. H. Papadimitriou, “The Discrete
Geodesic Problem,” SIAM Journal on Computing, vol. 16, no. 4, pp.
647–668, 1987.

[17] C. Papadimitriou, “An algorithm for shortest-path motion in three
dimensions,” Information Processing Letters, vol. 20, no. 5, pp. 259–
263, June 1985.

[18] M. Pivtoraiko and A. Kelly, “Fast and Feasible Deliberative Motion
Planner for Dynamic Environments,” in Proceedings of International
Conference on Robotics and Automation (ICRA), May 2009.

[19] E. Rimon and D. E. Koditschek, “Exact robot navigation using
artificial potential functions,” IEEE Transactions on Robotics and
Automation, vol. 8, no. 5, pp. 501–518, Oct. 1992.

[20] J. A. Sethian and A. Vladimirsky, “Ordered Upwind Methods for Static
Hamilton–Jacobi Equations: Theory and Algorithms,” SIAM Journal
on Numerical Analysis, vol. 41, no. 1, pp. 325–363, 2003.

[21] J. N. Tsitsiklis, “Efficient algorithms for globally optimal trajectories,”
Automatic Control, IEEE Transactions on, vol. 40, no. 9, pp. 1528–
1538, Aug. 1995.

