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Abstract— We investigate mobile ad-hoc indoor networks
consisting of simple inexpensive robots, LANdroids, with lim-
ited wireless communication range and without any range or
location sensors. We focus on the problem of using the mobile
LANdroids to take responsibility for maintaining connectivity
between a static Gateway and mobile Targets that move beyond
the communication range of an established network. We refer
to such a tracking task as Target Tethering. This type of
network commonly uses IEEE 802.11 wireless protocols for
communication, with Received Signal Strength Indicator (RSSI)
as a measure of radio signal strength. RSSI data is noisy and
poorly relates to distance in indoor environments, leading to a
challenging Target Tethering task. Some algorithms use the
trace of single-source RSSI data to infer distance between
two nodes and use it to compute a Target Tethering policy.
However, such distance estimates are poor. We instead aim
at inferring physical network layout from RSSI data among
multiple nodes. We introduce a novel approach based on Cluster
Geometries, classes of network nodes corresponding to rotation-
invariant physical layouts of LANdroids and a mobile Target,
with the conjecture that multi-robot RSSI data can distinguish
the Cluster Geometries and therefore the physical layouts. We
proceed with extensive experiments and support our conjecture
by showing successful classification of the designed Cluster
Geometries given the multi-robot RSSI-based data. We then
combine the estimated Geometries with motion patterns of
the moving Targets to show that suitable multi-robot Target
Tethering policies for unknown indoor environments can be
learned using multi-agent reinforcement-learning. Specifically,
we use an interesting variation of Q-learning where we first
learn offline base policies in general open environments and
later specialize the policies seamlessly during online execution
to account for obstacles in the indoor environment.

I. INTRODUCTION

LANdroids [1] are simple inexpensive robots designed to
function as nodes in mobile ad-hoc networks that enhance
the capabilities of human-robot teams in urban environments.
Specifically, such networks extend the range over which the
team can communicate with static Gateways that link the
team to external communication channels. This scenario is
relevant to important real-world situations. In urban conflicts,
security forces often need to enter indoor environments
where electronic communication is preferred over voice
communication. Firefighters and other emergency personnel
often need to enter large buildings whose communication
infrastructure has been destroyed, so the team must deploy
ad-hoc communication infrastructure.

Let N = {N : N ∈ G ∪ T ∪ L} define a LANdroids
network where:

• Gateways, G = {Gi : i = 1..I, I ≥ 1}, provide IP-
connectivity to some communication channel;

• Targets, T = {Tj : j = 1..J, J ≥ 1}, typically
represent humans carrying wireless radios;

• LANdroids, L = {Lk : k = 1..K,K ≥ 2}, relay IP-
based communication between Gateways and Targets.

An example network, with a single Gateway, two Targets
and eight LANdroids is shown in Figure 1. The Gateway is
in a fixed physical location. The Targets are characterized by
their unpredictable, although not random, movement about
the environment as they attempt to complete their tasks.

Fig. 1. An example of a LANdroids network showing one static Gateway,
two mobile Targets and eight LANdroids.

When LANdroids are deployed, they self-organize by
physically moving about until they form a network such
that all Targets are directly or indirectly connected to one
or more Gateways. The collective goal of the LANdroids in
the network is to keep all the Targets connected to a Gateway.
Let c(N1, N2) be 1 if two network nodes, N1 and N2, have
IP-connectivity between them; 0 otherwise. Then, in a fully
connected graph over all N ∈ N , for each Tj , there exists at
least one path from that Tj to some Gi such that the product
of c(N1, N2) over all edges along that path is equal to 1.

We study the subsequent scenario where a Target, Tj ,
moves away from the established network thus risking loss
of connectivity. We focus on the problem of moving one or
more LANdroids such that the network can be stretched to
maintain connectivity with the moving Target, Tj . We refer
to this tracking task as Target Tethering.

LANdroids robots are envisioned as being inexpensive
enough that they need not be retrieved after deployment.
Because of this constraint, LANdroids do not have many
sensors; the only sensor available for communication is a
wireless radio which operates over a limited physical range
on the IEEE 802.11 (Wi-Fi) protocols. Received Signal



Strength Indicator (RSSI) is a measure of radio signal
strength in such wireless networks. RSSI data is noisy and
poorly relates to distance in indoor environments, leading to
a challenging Target Tethering task.

In this paper we present an approach for inferring physical
layout of sections of the LANdroids network using RSSI
data from multiple network nodes and using the inferred
layout as a basis for Target Tethering. We introduce Clus-
ter Geometries, classes of network nodes corresponding
to rotation-invariant physical layouts of LANdroids and a
mobile Target, with the conjecture that multi-robot RSSI
data can distinguish the Cluster Geometries and therefore
the physical layouts. We also classify Target motion patterns
relative to Cluster Geometries using the RSSI data. We use
the learned Cluster Geometries and Target motion patterns
to develop a Target Tethering algorithm based on Markov
Decision Processes (MDPs) and multi-agent reinforcement
learning. We proceed with extensive experiments and support
our conjecture by showing the successful classification of
designed Cluster Geometries and Target motion patterns
using only RSSI-based data. We also demonstrate, using a
realistic simulation environment, that a multi-agent MDP
policy, learned offline using Q-learning in an open envi-
ronment, can be successfully specialized online with further
learning for a specific indoor environment to accomplish the
Target Tethering task.

II. RELATED WORK

Kotz, et al., [2] demonstrate that it is difficult to find a
simple function that models the relationship between RSSI
values and physical distance. Zickler and Veloso [3] show
that it is possible for a LANdroid to probabilistically infer
distance using a trace of RSSI values combined with motion
odometry and to then use the inferred probability distribution
to localize a stationary Target. They then use an auxiliary
compass to synchronize the geographic orientation of the
Target and the LANdroid. When the Target is in motion
it communicates its odometry readings to the LANdroid
and the LANdroid is able to follow the Target and keep
it connected. While this approach is shown to work well in
open environments, it is not as successful in environments
with walls. We proceed with the conviction that while RSSI
data is noisy and it relates poorly to physical distance, this
relationship is not random and can be revealed as a useful
pattern using RSSI data from multiple robots. Further, our
approach to solving the Target Tethering task does not rely
on auxiliary sensors, like compasses, and therefore solves for
the LANdroids domain more accurately.

Ahmadi and Stone [4] provide a model for a biconnected
LANdroids network that optimizes the physical layout of a
network such that every Target in the network is connected
to the same or different Gateways via two paths such that no
link in the network is shared by both paths. Further, only one
of the two paths is active at any given time and any network
link that is part of an active path is called a priority link–a
concept that we utilize in our approach.

III. PHYSICAL LAYOUT CLASSIFICATION

When a LANdroids network is initially setup, the LAN-
droids are deployed in an unknown environment randomly
such that they have no common geographic orientation
frame and no knowledge of each other’s relative physical
location. The static Gateways and the mobile Targets are
identifiable but their relative locations are also unknown.
The lack of an environment map, the lack of a common
geographic orientation frame, and the lack of initial relative
location information all combine to make Target Tethering
an extremely challenging task.

The simplest approach to Target Tethering is to follow the
moving Target using the LANdroid closest to it. However,
this poses two fundamental problems. Since we do not know
the relative physical locations of the network nodes, we
cannot identify the closest LANdroid. Since we do not have
a common orientation frame, we do not know in which
direction the LANdroid should move such that it follows the
Target. Consequently, prior work in this domain has focused
on the problems of (i) deducing physical distance from RSSI
data, and (ii) acquiring a common orientation frame.

The wireless radios on the LANdroids are the only sensors
available to estimate the relative layout of the network
nodes in physical space. Specifically, LANdroids do not have
physical distance sensors (e.g., RF range sensors, LIDAR)
nor do they have geographic location or orientation sensors
(e.g., GPS, compass) that could be used to estimate the
layout. Therefore, our approach, which classifies the physical
network layout in the neighborhood of the mobile Target
using RSSI data alone is highly valuable.

Deducing distance from RSSI data is difficult due to
several factors such as the presence of walls and other large
obstacles between nodes. For example, two network nodes
that are 20 meters apart and are separated by two concrete
walls usually have a significantly lower RSSI value than two
nodes at the same distance that are separated by wood plank
walls. Since, a LANdroids deployment occurs in unknown
environments, we do not know a priori how to scale observed
RSSI values to reflect true physical distance.

We offer a radically different approach to this problem
whereby it is unnecessary to map RSSI values to physical
distance estimates. Instead we introduce the concept of
Cluster Geometries which allow us to infer relative physical
layout of network nodes without relying on the poor distance
metric; we then use these Cluster Geometries to define a
multi-agent MDP policy for the LANdroids in the Cluster to
follow when the Target in the Cluster starts moving.

A. Clusters

A Cluster, C, in a LANdroids network, N , consists of:
1) One Target, Tj ∈ T ;
2) Two or more LANdroid Cluster members, LCk ∈ L,

k=1,2,... from the neighborhood of the Target, Tj ;
3) A head node role assigned to one Cluster member, LCH ,

which identifies that LANdroid as being responsible
for coordinating the behavior of that Cluster.



In a given LANdroids network, at any specific time, only
one LANdroid has the priority link to a specific Target,
Tj [4]. That LANdroid claims for itself the role of the
head node, LCH , for the Cluster associated with Tj . LCH
then traverses the network to designate a small number of
neighboring LANdroids as Cluster members. Figure 2 shows
a sample Cluster.
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Fig. 2. The shaded area of the network shows a 4-LANdroid Cluster (κ=4)
with the head LANdroid node connected to the Target.

Additional Cluster members are chosen by the head node
on the basis of whether or not they are connected to the
Target, Tj , connected to the Cluster head node, LCH , or con-
nected to an already chosen Cluster member until κ Cluster
members have been chosen. κ, usually in the range of 2 to
5, is set according to the expected density of LANdroids in
the specific deployment. To illustrate, a 3-LANdroid Cluster
(κ=3) and a 4-LANdroid Cluster are shown in Figure 3. In
general, the larger the value of κ, the more useful RSSI data
we can gather, but this needs to be balanced by the increased
communication overhead amongst the Cluster members.
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B. Cluster Geometries

We next introduce the concept of Cluster Geometry. With-
out loss of generality, consider the three Clusters in Figure 4.
Note that each Cluster has the same number of LANdroid
Cluster members, κ=4. Priority links are denoted by solid
lines and secondary links are denoted by broken lines.
Further note that the three Clusters are indistinguishable from
an IP network topology perspective. However, if we take as
given that the Clusters actually represent the approximate
physical layout of the Target and the LANdroids, we can then
say that the three Clusters are indistinguishable in Cluster

configuration but clearly distinguishable in Cluster Geome-
try. Therefore, Cluster Geometries distinguish the physical
layout of Clusters that have identical network topology.
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Fig. 4. Three κ=4 Clusters with identical configurations and IP network
topology but distinct Cluster Geometries.

Cluster Geometries offer the following key benefits:
1) We can infer an approximate physical layout of the

Target and the LANdroids in its neighborhood with-
out relying on the highly unreliable pairwise RSSI-
to-distance mapping. Note that inference of physical
layout relies only on relative distances and not an
estimating actual distances based on RSSI values.

2) The Cluster Geometry is rotation-invariant in physical
space if it is used such that any actions by Cluster
members are described relative only to the Geometry.
For example, if L2 is asked to move Left relative to the
center Geometry in Figure 4, it can infer that to mean
that it should move away from L1 and L4 whether or
not that direction is the true geographic West.

3) Given a Cluster Geometry, Cluster members can syn-
chronize their orientation frames by executing coordi-
nated movement patterns and observing how the RSSI
values to all the other Cluster members change.

We hypothesize that we can distinguish Cluster Geome-
tries for a given Cluster configuration using only the RSSI
data between the nodes in the Cluster. We demonstrate this to
be true in Section V. The ability to classify Cluster Geome-
tries is inversely related to the number of distinct Geometries
that we try to distinguish amongst for the same Cluster
configuration; i.e., if a large number of only mildly different
Geometries are introduced, then classification accuracy is re-
duced. As a domain-specific heuristic, if different Geometries
result in the same MDP policy for the Target Tethering task,
those Geometries can be collapsed into a single Geometry.
In many situations, even just two Geometries–one Geometry
with the Target outside the convex hull of the LANdroids
(e.g. the first Geometry in Figure 4) and the second Geometry
with the Target within the convex hull (e.g. the other two
Geometries in Figure 4)–can offer a meaningful reduction
in uncertainty about the physical layout of the LANdroids
network in the vicinity of a Target.

Using multi-robot RSSI data from all the Cluster members
allows us to reduce uncertainty about the Cluster Geometry
even if we cannot identify the Geometry definitively. Since
this approach relies only on very basic sensor data in the
form of RSSI values, any reduction in uncertainty is valuable.
Note further that this reduction of uncertainty is usefully



applicable, outside of the LANdroids domain, to any set
of network nodes with RSSI-based connectivity where it
is helpful to distinguish whether the network nodes are,
for example, stretched out in a line versus clustered in a
polygon. Furthermore, other approaches such as LIDAR and
RF range sensors, when available, can be used to further
reduce uncertainty.

IV. LEARNING TARGET TETHERING POLICIES

A. Target Motion Patterns

We assume that a Target’s motion is always linear and
categorize the motion pattern as being approximately:

1) away from the head node;
2) across from the head node; or
3) towards the head node.

Each of these motion patterns is illustrated in Figure 5. We
hypothesize further that given a Cluster Geometry, we can
determine the best match motion pattern based on how the
RSSI values between the Target and the Cluster members
evolve as the Target moves in physical space over time. Since
the motion pattern is a time series signal, it is in general
easier to classify than a static Cluster Geometry.
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Fig. 5. Arrows show three distinct Target motion patterns: (1) away from
head node, (2) across from head node, and (3) towards head node.

B. Multi-agent Q-learning

We aim to define an action policy for a given Cluster as:

πC : GC ×MC → AC

where:
• GC is the estimated Geometry of the given Cluster;
• MC is the estimated motion pattern of the Target

relative to the Cluster Geometry, GC ;
• AC is the chosen compound action for all the LAN-

droids in the Cluster.
We use reinforcement learning to derive the action policy,

πC . To review briefly, the MDP for a single Cluster, C, is
defined as:

MC = 〈S,A, δ, r〉

where:
• S = {si : i = 1..I} is a set of states;
• A = {aj : j = 1..J} is a set of actions;
• δ(s, a)→ s′ is a transition function;
• r(s, a) is a reward function.

We define the states, S, as the set of possible combinations
of Cluster Geometries and Target motion patterns:

S =
⋃
C∈C
GC ×MC

where C is the set of all Cluster configurations. We define
the actions, A, as the set of compound action assignments
where each LANdroid in the Cluster is assigned one of five
actions for moving up, left, down or right or to stay in place:

aL,C ∈ {Up,Left ,Down,Right ,Stay}
AC = {aL,C ; ∀L ∈ C}
A = {AC ; ∀C ∈ C}

The transition function, δ, is defined by numerous stochas-
tic interactions within the simulation environment. The re-
ward function, r, unknown to the MDP, is calculated by the
environment as:
• +1, if the Stay action for all LANdroids in the Cluster

for some time period, T, maintains connectivity to the
moving Target with strong signal strength;

• +7, if an action increases signal strength to the Target;
• -5, if an action decreases signal strength to the Target;
• 0, otherwise.

State is shared amongst all the LANdroids in the Cluster,
so the learning algorithm needs to be executed only on the
head node. We use the Watkins-Dayan [5] Q-learning update
rule which can be summarized as:

Q̂t(s, a)← (1−αt)Q̂t−1(s, a)+αt[rt+γ max
a′

Q̂t−1(s′, a′)]

where αt is the learning rate: 1/numVisits(s, a).
The presence of walls in indoor environments makes the

challenge of applying reinforcement learning to this problem
particularly difficult. Since we do not know ahead of time
the specific configuration of walls that the LANdroids will
encounter at execution time, we cannot learn an MDP policy
for that specific wall configuration. Instead, we learn a base
policy for a given Cluster Geometry and Target motion
pattern combination in an open environment. Then, during
execution, we continue the learning process to specialize the
policy for the specific wall configuration encountered.

For example, consider the scenario in Figure 6 which
depicts the learned policy for a 4-LANdroid cluster. The
arrows show the possible actions, for each LANdroid in
the cluster, that could be suitable given the Target’s motion
pattern, shown by the thinner arrow. The relative lengths of
the arrows indicate the relative magnitude of the Q-values
for each of those actions. We see that the Up action of the
bottom-right LANdroid has the highest Q-value. However, if
the Cluster tries to execute this action on the bottom-right
LANdroid, it may discover that there is a wall or some other
obstacle that prevents that LANdroid from moving Up. We
solve this problem using the following approach.

The Cluster categorizes the possible actions, aL,C , of each
LANdroid into good and bad actions based on whether the
Q-values are above a state-specific threshold, QτGC ,MC

. The
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Fig. 6. Solid arrows show the learned policy for a 4-LANdroid Cluster,
given a Target motion pattern shown by the dashed upward arrow, where
the length of each solid arrow represents the magnitude of Q-values for that
action, with (left) and without (right) the maximum value action available.

head node then identifies the Cluster member with the best
combination of possible actions, by summing the Q-values
for that LANdroid that are above the threshold:

QSLC =
∑

a∈AC :Q(a)>QτGC,MC

Q(a)

We make a design choice to have only one Cluster member
follow the Target at a given time although this is not a strict
requirement. The head node assigns responsibility for fol-
lowing the Target to the Cluster member–including possibly
itself–that has high QS . It does not simply choose the Cluster
member with the highest value of QS , but instead chooses
amongst the Cluster members according to a probability
that is distributed proportional to the QS value of each
Cluster member. The assigned Cluster member LANdroid
then chooses an action from amongst its set of good actions
again using a probability distribution proportional to the Q-
values of each action. If the assigned LANdroid is successful
in following the Target by maintaining good connectivity
with the Target throughout the motion pattern, then the
tethering task for the whole Cluster is considered successful
for that motion pattern and all Cluster members continue
with the Stay action until the next time the Target moves.

On the other hand, if the assigned LANdroid is not
successful in following the Target, i.e., its RSSI value to the
Target drops significantly or it is not able to increase its RSSI
value sufficiently within a fixed time period, it reports that
development to the head node, which then assigns the task
of following the Target to the next most promising Cluster
member. An action that encounters a wall or otherwise de-
teriorates signal strength to the Target accumulates negative
reward, so the Q-value for that action decreases during its
unsuccessful attempt to follow the Target. Therefore, even
if the head node chooses that same LANdroid again for
the next attempt, that LANdroid is more likely to choose a
different action because the unsuccessful action’s likelihood
in the probability distribution is now lower. This approach
effectively adapts, or specializes, the previously learned base
policy to the current environment.

Our approach to Target Tethering can be applied recur-
sively to achieve powerful results. For example, the Target

in the Cluster is the base case or T0. The LANdroid that
ends up following the Target can then be viewed as T1 and
the other LANdroids in the network can be tasked with also
tethering to T1. This logic recursively leads to T2, T3, and so
on to yield a chain of moving LANdroids where the sequence
of the chain is determined at runtime in accordance with
environmental constraints. Such behavior causes the whole
LANdroids network to stretch with the moving Targets.

V. EXPERIMENTAL RESULTS

We conducted four sets of experiments to test our hy-
potheses that Cluster Geometries and Target motion patterns
can be classified using only multi-robot RSSI data and that
effective Target Tethering policies can be learned using a
combination of offline and online Q-learning. For the sim-
ulation experiments, we use a realistic simulator developed
specifically for the LANdroids domain [6].

A. Geometry Classification in Simulation

We setup the three Cluster Geometries shown in Fig-
ure 4 in a representative indoor environment with walls.
We collected multi-robot RSSI data for each Geometry by
moving the Target and Cluster members to various locations
within that indoor environment while still approximately
maintaining the chosen Geometry. We choose sufficiently
different locations for each observation such that the number
and angles of walls between various nodes in the Geometry
varies for each observation.

We extract features for classification from the RSSI data.
We denote the RSSI value between the head node and the
Target as rssiHN , the RSSI value between Cluster member
L2 and the Target as rssiL2 and so on.

Ri =
rssiLi
rssiHN

, i = 2..|{L ∈ C}|

We use the Ri values as features for classification using a
10-fold cross-validated Support Vector Machine (SVM). We
obtain test set classification accuracy of 94%± 3%.

Normalizing the RSSI values for classification is a crit-
ical element of our procedure; it contributes a degree of
environment-invariance to the trained SVM. If the SVM is
trained using Ri values from an environment with wood
walls but the online classification is done in an environment
with concrete walls, the absolute RSSI values in the two
environment will differ significantly but the normalized Ri
values will be relatively consistent. Similarly, Geometries
whose physical layout is smaller or larger than the one used
for training will still have equivalent Ri values.

B. Geometry Classification using Robots

We also executed the simulation experiment described
above using real robots. We collected multi-robot RSSI
data over six floors of two different buildings. Constructing
features as in simulation, we obtained test set accuracy of
about 60%. We then added additional features, Rij , capturing
the relative RSSI values amongst the LANdroid Cluster
members themselves. Figure 7 compares the normalized
RSSI values for the first two 4-LANdroid clusters in Figure 4.



The plots represent 175 observations of 3 Ri values and 6
Rij values, each Ri and Rij computed relative to the RSSI
value between the head node and the Target. We obtained
classification accuracy of 84%±3% with the added features.
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Fig. 7. Comparison of normalized RSSI values for 9 classification features
from the A- and S-shaped Geometries shown in Figure 4.

C. Target Motion Pattern Classification

We setup the three Geometries of Figure 4 in the simulator
and executed three Target motion patterns as in Figure 5.
Figure 8 traces, for the first of the three Geometries, a sample
time series of normalized RSSI values observed by each
Cluster member. The normalization is done relative to the
initial RSSI value between the head node and the Target. We
find that we can distinguish different Target motion patterns
for the same Geometry and also that the same Target motion
pattern generates distinct traces for different Geometries.
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Fig. 8. Each subplot shows the distinct trace pattern of normalized RSSI
values observed by the four LANdroid Cluster members for the three Target
motion patterns represented in Figure 5.

D. Learning a Target Tethering Policy

We implemented the reinforcement learning approach de-
scribed in Section IV in simulation. We setup the Geometry
shown in Figure 5 and executed 50,000 training episodes
of those Target motion patterns in an environment with no
walls to obtain the base policy. The exploration-exploitation
tradeoff is biased towards exploration during offline training
and strongly biased towards exploitation for online execution.
At the start of online execution the base policy is loaded
and the MDP state is initialized to the estimated Geometry
and Target motion pattern as classified by the Cluster. We
find that the head node assigns responsibility for following
the Target to different Cluster members until the Tethering
task is successfully completed. The video attachment shows
three scenarios where different Cluster members successfully
execute Tethering actions when the Target moves away from
the head node in a given 4-LANdroid S-shaped Geometry.

VI. CONCLUSION

In this paper, we contribute a solution to the Target
Tethering problem in the LANdroids domain. We introduced
Cluster Geometries, which characterize the physical layout
of LANdroids in the vicinity of a Target and provide a
solid foundation upon which Tethering policies relative to
the Geometries can be defined. This approach avoids the
difficult task of reliably mapping RSSI values to physical
distance. We have shown through our experimental results,
in simulation and using real robots, that such Geometries
can be classified with a high degree of accuracy using only
the multi-robot RSSI data from the Cluster. We further note
that Cluster Geometries can be used to reduce uncertainty
about physical layout of any Wi-Fi connected network nodes,
outside of the LANdroids domain. We also contribute an
interesting approach to Q-learning that first learn a base
policy in a general environment and later specializes the
policy for the encountered environment. Our experiments
demonstrate that this approach produces successful Tethering
policies. Future work in this area is expected to focus on
methods to increase classification accuracy using features
from additional sensors such as video cameras and LIDAR.
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