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Abstract— Inertia-visual sensor fusion has become popular
due to the complementary characteristics of cameras and IMUs.
Once the spatial and temporal alignment between the sensors
is known, the fusion of measurements of these devices is
straightforward. Determining the alignment, however, is a chal-
lenging problem. Especially the spatial translation estimation
has turned out to be difficult, mainly due to limitations of
camera dynamics and noisy accelerometer measurements. Up
to now, filtering-based approaches for this calibration problem
are largely prevalent. However, we are not convinced that
calibration, as an offline step, is necessarily a filtering issue, and

we explore the benefits of interpreting it as a batch-optimization
problem. To this end, we show how to model the IMU-camera
calibration problem in a nonlinear optimization framework by
modeling the sensors’ trajectory, and we present experiments
comparing this approach to filtering and system identification
techniques. The results are based both on simulated and
real data, showing that our approach compares favorably to
conventional methods.

I. INTRODUCTION

Proper localization is a crucial issue in robotic applica-

tions. However, applications based on localization become

more and more demanding regarding dynamics. Mobile

robots move quicker and many applications are ported on

hand-held devices. As a consequence, the need for sensors

which are able to deal with such high dynamics increases

permanently. The best choice to measure quick motions are

inertial measurement units (IMUs), consisting of a gyroscope

and an accelerometer for each of the three spatial axes.

While high quality IMUs are common, e.g., in nautics

and aeronautics applications, they are usually considered too

expensive for robotic applications. The development of cheap

gyros and accelerometers based on microelectromechanical

systems (MEMS) reduced the cost of IMUs drastically and

helped to introduce them to many new application areas. The

drawback of these MEMS sensors is that they are quite prone

to noise, and large rotations and accelerations are needed to

produce measurements exhibiting a useful signal to noise

ratio.

Cameras, on the other hand, have proven to provide

an accurate static local and global localization by natural

landmarks. However, they fail as soon as they are exposed to
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fast motions because of motion blur and limited frame-rates.

The limitation of the frame-rate is mainly due to the large

processing cost for images. Hence, cameras and IMUs are

complementary sensors, which provide robust and reliable

localization if correctly fused in a filter framework, like, e.g.,

a Kalman filter. For slow motions, the camera provides a

drift-free pose estimation, while for fast motions, the camera-

based localization may fail, and the IMU is able to provide

valuable measurements.

The complementary nature of these sensors allows for

an effective combination of their measurements ([1], [2],

[3], [4], [5]), which in turn requires accurate temporal and

spatial registration between them. While the angular align-

ment between camera and gyroscopes can be computed in

closed form, the translational alignment is rather difficult to

compute. The only observable effect of the distance between

the devices is a difference in the measured translation due to

an acentric rotation axis. Fig. 1 sketches this effect of lever

action. The translational measurements need to be extremely

accurate in order to permit computation of the translational

alignment with acceptable precision. This prerequisite is not

met by the accelerometers, whose measurements are strongly

corrupted by noise, bias, and the influence of gravitational

acceleration. Furthermore, translation and rotation estimation

based on the camera images can generally not be separated

from each other, hence, errors in the rotation estimation also

affect the computation of the translation.

Fig. 1. The drawing sketches the motion of a camera-IMU setup. Both
sensors measure the applied rotation (R) and translation (t). The only
difference is the different lever action (tIMU, tCAM) due to the baseline
introduced by the rotation.

The natural way to perform the calibration is by modeling

the sensor’s trajectory along with the spatial registration

parameters. Most known approaches fuse the measurements

in a Kalman filter and basically extend the state vector with



angular and translational alignment parameters. Thus, the

alignment is approximated by the relaxed formulations of,

e.g., the extended or unscented Kalman filter (EKF, UKF),

which only approximate the nonlinear relations. Another

drawback of filter-based approaches is that the calibration

parameters, which should ideally be constant over the whole

sequence, are adapted continuously to best describe current

measurements. Thereby, the influence of each measurement

varies according to the system uncertainty. In case the

sensors can be calibrated offline the data should not be

processed sequentially in a filter, but the outcome should

rather be optimized in a batch-like manner to consider all

the information available equally. Therefore, we focus on an

optimization framework in our approach, which permits a

proper modeling of non-linearities and optimizes the spatial

alignment over the whole sequence simultaneously.

In the next section we will sketch and discuss related

approaches for IMU-camera calibration. In Section III we

will describe our approach and in Section IV we explain

how to get a proper parameter initialization. Finally, we will

prove the functionality of our approach based on simulated

and real data and compare it to state of the art solutions in

Section V.

II. RELATED WORK

Several visual-inertial calibration techniques already exist

in the literature. The calibration problem is very complex and

the underlying physical processes can only be modeled with

limited accuracy. This makes it necessary to introduce certain

assumptions which ultimately help to reduce the problem

complexity. To this end, there are mainly two approaches

that have been explored so far: Artificial, specialized mea-

surement setups, which facilitate closed-form solutions, and

filter-based approaches, which introduce several approxima-

tions.

Lobo and Dias make use of the gravitation vector, mea-

sured by the accelerometers, and a vertical calibration pattern

to estimate the rotational alignment of the inertial-visual

system [6], [7]. The translation between the devices is then

estimated by using a turntable. The accelerometers have to lie

in the center of the turntable so that they become the center

of rotation. In this way simplified equations known from

hand-eye calibration can be used to solve for the translation.

While this approach has the advantage to be static and does

not need dynamic motions, the necessary system setup is

rather cumbersome and error-prone.

The most popular solution is to use an extended or

unscented Kalman Filter (EKF, UKF) to estimate the sen-

sor alignment. Approaches of this category implement the

following states in their filter: position, orientation, linear

and angular velocity, bias of the gyroscopes, bias of the

accelerometer and finally translation and rotation between

IMU and camera.

Kelly and Sukhatme present an UKF based calibration

algorithm which can be based on artificial or natural land-

marks [8], [4]. The idea is to allow a robot to simultaneously

explore the environment while calibrating its sensors. If the

calibration step is done offline the computational overhead of

the UKF becomes irrelevant, while it provides a higher order

approximation than the EKF and should, thus, be preferred.

Mirzaei and Roumelioutis register the camera and IMU by

fusing the corner locations of a checkerboard in the camera

images with the measurements of the gyroscopes and the

accelerometers [9]. For that they use an error-state (indirect)

Kalman Filter. An initialization stage to find good start

values precedes the filtering. Further, they also explore the

observability of the Kalman Filter, with the result that only

rotations in two degrees of freedom are necessary to estimate

the IMU camera transformation [10]. As benchmark for

their experiments they use an optimization framework where

they minimize the error between measurements and state

estimates as described in [11]. The states and the covariance

matrices are linearly propagated as within an EKF, which is

similar to the approach described next.

Hol et al. [12] estimate the spatial alignment using a

common system identification technique. The innovation in

an EKF is minimized by standard gradient descent methods.

Their experiments are promising, but one drawback is that

the EKF linearizes the motion model which yields significant

errors, especially with large rotations.

Our approach is also optimization-based, but contrary to

the two previous methods we are not propagating the states

and covariances throughout a measurement sequence, but we

optimize based on the real nonlinear motion by modeling

the trajectory of the sensors. Any filter-based estimation is

performed sequentially instead of using the whole batch of

data as it is the case in our solution. Hence, our registration

results consider all available information at the same time

and do not estimate the constant IMU-camera alignment on

a sample-by-sample basis.

III. DESCRIPTION OF THE ALGORITHM

We propose to model the problem of determining the

relative pose and orientation of camera and IMU as a non-

linear batch-optimization problem. Within this optimization

framework, we seek to determine the trajectory of the unit

together with the calibration parameters for some calibration

data sequence. Since the problem is of very high complexity

and many parameters and characteristics of the employed

sensors are unknown, it is necessary to introduce reasonable

assumptions.

In our case, the assumption is that the trajectory associated

with the calibration sequence can be modeled by means of

twice differentiable smooth parametric curves p(t) and r(t)
describing position and orientation at time t, respectively.

Quaternions will be used to represent orientations, thus r(t)
is a four-dimensional curve, while p(t) is obviously three-

dimensional.

The basic idea of our method is as follows: IMU and

camera can be seen as sensors that deliver measurements

that are a result of the same movement, observed from

different coordinate systems. Given accurate measurements

as well as accurate calibration data, we would be able to align

the measurements based on the different base coordinate



frames of the sensors. Conversely, we can evaluate the quality

of calibration values by measuring the alignment between

measurements. This leads directly to the idea of optimization

of calibration parameters by maximizing the alignment.

To distinguish between the measurements, we are going

to use successive superscripts C and I to denote samples

obtained by the camera or IMU. The measurements delivered

by the IMU are the rotational velocity vector ωI ∈ R
3 and

the linear acceleration aI ∈ R3. Depending on whether

the camera observes unknown or known landmarks, it can

provide relative or even absolute measurements. For sake

of generality we assume relative translational and rotational

measurements, which we interpret as linear and rotational

velocities, vC ∈ R
3 and ωC ∈ R

3, by knowing the sampling

period. To distinguish between the frames of reference, we

are going to use leading superscripts C, I or G to denote

quantities relative to the camera, IMU or the global reference

frame, respectively. With IRC and IqC , we denote the

rotation matrix or rotation quaternion, respectively, which in

this special case transforms 3D coordinates measured with

respect to the camera frame to 3D coordinates within the

IMU frame. The fourth element of the quaternions represents

cos(φ/2), where φ is the absolute rotation angle, and, thus,

the only real parameter. Furthermore, we denote with ItIC

the translation between camera and IMU frame expressed in

the IMU frame.

A. Objective Function

Relationships between the measurements of the different

sensors can be established according to [13], [14] as follows:

Iω̂t = IωI
t − IeωI ,t = IRC

(

CωC
t − CeωC ,t

)

and (1)

IaI
t −

IeaI ,t + IRG
Gg = IRC

(

Cv̇C
t − CėvC ,t

)

−
Iω̂t ×

(

Iω̂t ×
ItIC

)

− I ˙̂ωt ×
ItIC (2)

In above formulæ, Iω̂t denotes the real, error-free angular

velocity, ex represents the error of a specific measurement

x, and Gg is the gravitation vector (0, 0,−9.81)
T

. Measure-

ments of cheap MEMS gyroscopes and accelerometers are

not only affected by white noise, but also by a bias, which has

to be modeled explicitly. We will denote the bias values for

gyroscope and accelerometer by bωI and baI , respectively.

Since the bias values change extremely slowly over time, we

adopt the common assumption they are constant.

Unfortunately, a direct comparison as outlined above is

not possible, because the sensor measurements occur at

different time instances. Hence, we need a model which

allows to interpolate the motion at arbitrary points in time.

In our optimization approach, we want to minimize the

differences between the measurements and, thus, we aim

to minimize the error between all samples and a motion

model which inherently interpolates these measurements.

The measurement errors, δ, can be formulated by following

equations:

δωI ,i = IωI
i − bωI − ω(ti) (3)

δaI ,i = IaI
i − baI + Ir(ti) ⊙

(

IT
vq

Gg
)

⊙ Ir̄(ti) −
Ip̈(ti) (4)

δωC ,i = IRC
CωC

i − ω(ti) (5)

δvC ,i = IRC
CvC

i + ω(ti) ×
ItIC − Iṗ(ti) (6)

with

ω(ti) = 2 Ivq

(

Ir̄(t) ⊙ Iṙ(t)
)

, (7)

Ivq =





1 0 0 0
0 1 0 0
0 0 1 0



 , (8)

Ir̄(t) = diag
(

−1 −1 −1 1
)

Ir(t) (9)

and ti representing the measurement time of sample i.
The operator ⊙ denotes the quaternion multiplication. Note

that the formulæ are simpler if the trajectory is modeled

relative to the IMU frame. The only measurement revealing

information about the real orientation of the IMU relative to

the world coordinate frame is the gravity vector. However,

this becomes irrelevant if we also estimate the orientation

of the gravity vector relative to the initial pose of the IMU
I0g. Hence, the trajectory starts at the origin of the IMU

coordinate frame, aligned to its axes and can be estimated

independently of the global coordinate frame. Gg in Eq. 4

can now be replaced by I0g.

The errors are weighted with the pseudo Huber cost

function h(δ) [15], which is differentiable and robust against

outliers. It is defined as

h(δx,i) = 2b2
x





√

δT
x,iδx,i

b2
x

+ 1 − 1



 . (10)

A common choice for bx is 3σ2
x, where σ2

x denotes the noise

variance and x the kind of measurements for ωI , aI , ωC or

vC , respectively.

Concatenating the matrices of all the error vectors

∆x = (δx,1 . . . δx,Nx
), with Nx the respective num-

ber of measurements, yields the total error matrix ∆ =
(∆ωI ∆aI ∆ωC ∆vC ). Thus, the objective function g(∆)
can be formulated as

g(∆) =
∑

x∈{ωI ,aI ,ωC ,vC}

(

1

σ2
x

Nx
∑

i=1

h(δx,i)

)

. (11)

B. B-Spline

The continuous, twice differentiable trajectory curve

model used in our approach is a cubic B-spline curve. Using

this curve model certainly constitutes a restriction, since

it imposes a number of constraints on the trajectory. Note

however, that it is still more general than the commonly

encountered assumption of piecewise linearity of motion,

which is usually made in filter-based approaches. We are now

going to introduce our notation used for B-spline curves. For



more detailed information about B-splines, see [16] or [17].

We define a B-spline curve as

s(t) =

M
∑

i=1

cib
k
i (t), (12)

where ci ∈ R
d are the d-dimensional control point values,

bk
i denotes the i-th basis function of order k and M is the

number of knots. The B-spline order k can be chosen arbi-

trarily as long as it is at least four. This is required because

the trajectory curve has to be at least twice continuously

differentiable, since we also need to compute the acceleration

from the position spline. We use a cubic B-spline that is

of order k = 4, which is equivalent to a piecewise linear

approximation of the acceleration measurements. With c, we

denote the vector (cT
1 cT

2 . . . cT
M )T ∈ R

Md of concatenated

control point values. We assume that an equidistant knot

sequence is used.

It is well-known that B-splines are linear in parameters,

which means that the evaluation of above formula at several

parameter locations t = (t0 t1 . . . tn) is equivalent to com-

puting the matrix-vector product B (t) c for a suitable basis

matrix B(t). More formally, this is expressed as

(s(t1)
T s(t2)

T . . . s(tn)T )T = B(t)c. (13)

For d-dimensional control point values, the basis matrix has

the shape

B(t) =











bk
1(t1) bk

2(t1) . . . bk
m(t1)

bk
1(t2) bk

2(t2) . . . bk
m(t2)

...
...

. . .
...

bk
1(tn) bk

2(tn) . . . bk
m(tn)











⊗ Id, (14)

where ⊗ denotes the Kronecker matrix product, and Id is

the d × d identity matrix. It is obvious that if the vector

of parameter locations t remains constant, so does the

matrix B. The time-stamps of the measurements are constant

and, hence, the matrix B has to be computed only once.

Furthermore, it is well-known that B-spline derivatives are

again B-splines, and as such are again linear in parameters.

In our optimization process, we are going to evaluate the

spline and its derivatives at the time associated with the

time stamps. This means that spline derivatives can also be

computed by simply evaluating Btc for some appropriate

matrix Bt representing the basis matrix of the derived spline.

In our implementation we need a B-spline of dimension

d = 7 and thus ci ∈ R
7 to model the IMU pose s(t) =

(pT (t) rT (t))T . Note that the quaternions are constrained

to be of unit length, as described in Section III-C, which

yields the expected six degrees of freedom for rigid body

motion.

The control point vector of the B-spline is part of the

parameter vector θ subject to optimization. Further, this

vector contains the two IMU bias terms, the initial direction

of the gravity vector, the quaternion and the vector describing

the translation between the IMU and camera coordinate

system. For sake of generality, we also model the scale factor

α of the measured camera velocity, assuming that natural

landmarks are used and the scale of translation is unknown

and, thus, is also estimated in our optimization.

θ =
(

(cT
1 cT

2 . . . cT
M ) bωI baI

IqT
C

I0g ItT
IC α

)T
(15)

C. Constraints and Optimization Details

There are some constraints on a few parameters which

have to be satisfied for the optimization. The unit property

of the control points of the B-spline and of IqC has to be

ensured. Further, the gravity vector has to be of length 9.81
and the first control point of the spline is constrained to

represent zero rotation and zero translation to avoid depen-

dencies in the optimization parameters. This is because both

the direction of the gravity vector and the pose of the IMU

are going to be optimized – at the beginning of the trajectory

one of these parameters has to be fixed to prevent redundant

degrees of freedom. All these requirements can be formulated

as equality constraints which have to be zero:

req,1 =
M
∑

i=1

(‖ci‖) − M (16)

req,2 = ‖IqC‖ − 1 (17)

req,3 = ‖I0g‖ − 9.81 (18)

req,4 = c1 −

(

t0
q0

)

(19)

with t0 = 03×1 and q0 = (0, 0, 0, 1)T .

We use sequential quadratic programming (SQP) as op-

timization algorithm, because it is known to work well for

nonlinear optimization problem and it allows to implement

equality contraints [18].

For optimization purposes, it is generally necessary to

compute the gradient of the objective function, as well as

an appropriate Hessian approximation. The gradient of the

objective function can be computed by applying the chain

rule to Eq. 11 as

∂g(∆)

∂θ
= J

∑

x∈{ωI ,aI ,ωC ,vC}

(

1

σ2
x

Nx
∑

i=1

∂h(δx,i)

∂∆

)

, (20)

with J being the Jacobian of the error matrix ∆

relative to the parameter vector θ. The derivative

of the pseudo Huber cost function is stacked by

∂h(δx,i)
∂∆

=

(

∂h(δx,i)
∂∆

ω
I

T
∂h(δx,i)
∂∆

a
I

T
∂h(δx,i)
∂∆

ω
C

T
∂h(δx,i)
∂∆

v
C

T
)T

with

∂h(δx,i)
∂∆x

=

(

∂h(δx,i)
∂δx,1

T

. . .
∂h(δx,i)
∂δx,Nx

T
)T

and

∂h(δx,i)

∂δx,i

=
−2

√

δT
x,i

δx,i

b2x
+ 1

δx,i . (21)

The Jacobian J consists of following components

J =
∂∆

∂θ
=
(

Jc Jb
ωI

Jb
aI

JIqC
JI0g JItIC

Jα

)

, (22)



which can be computed in a straight-forward manner. The

main part of the Jacobian consists of the control points Jc =
(JT

c,ωI JT
c,aI JT

c,ωC JT
c,vC )T where each Jc,x looks like

Jc,x =













∂δx,1

∂c1

∂δx,1

∂c2

. . .
∂δx,1

∂cM

∂δx,2

∂c1

∂δx,2

∂c2

. . .
∂δx,2

∂cM

...
...

. . .
...

∂δx,Nx

∂c1

∂δx,Nx

∂c2

. . .
∂δx,Nx

∂cM













(23)

and each
∂δx,i

∂cj
consists of two parts:

∂δx,i

∂cj

=

(

∂δx,i

∂cp,j

∂δx,i

∂cr,j

)

(24)

with cp,j and cr,j the position and rotation component of

the control points modeling p(tj) and r(tj), respectively.

For approximating the Hessian of the system, the popular

BFGS method [18] is used.

IV. INITIALIZATION

The initialization of the optimization parameters is a three-

step procedure. First of all, we find the time offset between

the IMU and camera measurements and an initial estimate of

the orientation between IMU and camera coordinate frame
Iq̂C similar to [19].

The second step is to determine the number of B-spline

control points to be used. A high number of control points

means less smoothing and higher flexibility, but also in-

creases the complexity of the computation, and the possi-

bility of over-fitting. For our experiments we use 0.6 NC

control points, where NC denotes the number of camera

measurements. As we will show in the experiments this

amount provides a good compromise between computational

efficiency and accuracy. However, a more general solution

would be to evaluate the measurements of the accelerometers

and the gyroscopes to adapt the knot vector and the number

of control points to satisfy the requirements given by the

motion dynamics.

The final step is the initialization of the spline control

parameter vector c. A good initial estimate can be found by

calculating I r̂(t) = Iq̂G and I p̂ = It̂IG from the camera

measurements according to the following equations:

Gq̂C(ti) =
i
∏

j=1

⊙
q(CωC

j TC) (25)

Iq̂G(ti) = Iq̂C ⊙ G¯̂qC(ti) (26)

ÎtIG(ti) = It̂IC − IR̂G(ti)

i
∑

j=1

GR̂C(tj)
CvC

j TC (27)

whereas i ∈ {1..NC}, TC is the time period between

consecutive camera measurements and q(p) represents the

transformation of an Euler vector p to its corresponding

quaternion. The bar over a quaternion q̄ denotes the inverse

rotation as described in Eq. 9. For the sake of clarity we used
IR̂G(ti) and GR̂C(tj) in Eq. 27 as the DCM representation

of I q̂G(ti) and Gq̂C(tj), respectively.

Subsequently, the B-spline can be approximated by fol-

lowing least-squares fitting equation:

ĉ =
(

B(tC)T B(tC)
)−1

B(tC)T

(

p̂(tC)
r̂(tC)

)

(28)

with tC = (t1 . . . tNC ).
The last step is the initialization of the gravity vector I0g,

the bias terms bωI and baI and the relative pose vector
ItIC . Both bias values are initialized with zero vectors. A

first estimate for ItIC can either be extracted from a CAD

drawing or in case there is no drawing or other reliable

information it can be set to zero too. In general there is

no prior knowledge of the initial orientation of the gravity

vector I0g and thus, we assume that the acceleration during

the first few IMU measurements is negligible small so that

the sensor measurements consists mainly of the gravity force.

Thus, an initial estimate can be achieved by computing the

negative mean of the first few, L, samples:

I0ĝ = −
1

L

L
∑

i=1

IaI
i (29)

If there is no knowledge about the used landmarks, the

scale factor can be of any size. One approach to find a

proper initial guess is to use the maximum measured velocity

vC of unknown scale and choose an α which yields a

reasonable maximum velocity as it can be assumed during

the data acquisition. If the landmarks are known also the

scale is known (α=1) and, hence, can be removed from the

parameter vector.

V. EXPERIMENTS

In the following plots the X-axis components are colored

blue and the Y- and Z-components are in green and red,

respectively. The IMU measurements are marked with dots

and the ones of the camera with crosses.

A. Simulated Data

First, we will show the results of our approach on simu-

lated data to evaluate its performance based on ground truth.

In our simulation we assume that the camera provides images

with a frame rate of 15 Hz, while the IMU measurements

arrive with a rate of 120 Hz. The length of the simulated

registration sequence is about 10 s, which is similar to our

real registration sequences. The simulated rotational and

translational motion corresponds to three superimposed sine

waves with varying frequencies and amplitudes for each

degree of freedom. The signals are corrupted by noise with

the following standard deviations, which have been chosen

to be similar to the ones measured in the real data: σωI =
28.6 ◦/s, σaI = 0.5 m/s2, σωC = 4.3 ◦/s and σvC = 0.05 m/s.

The covariance matrix ΣP of the estimated parameters is

calculated according to [15] by

ΣP =
(

JT Σ−1
X J

)+
(30)

with ΣX = diag(σ2
ωI σ2

aI σ2
ωC σ2

vC ). A comparison of

the estimated values and their standard deviation with the



simulated values shows that the results are coherent. Fig. 2

and the table below illustrate the result of the presented

optimization approach – IφC denotes the Euler angles cor-

responding to IqC .

run ItIC [mm] IφC [◦]
x y z x y z

simulated 10 0 -5.0 90 0 0

estimated 10.4 3.0 -5.0 89.7 0.8 -0.8

std. dev. σ 5.3 5.5 5.6 0.4 0.4 0.4
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Fig. 2. Error between the simulated measurements and the estimated
trajectories. The upper plot illustrates both angular velocities ωI and ωC ,
the middle plot shows aI and the lower one vC . The errors of the estimation
correspond to the simulated noises.

B. Real Data

The IMU-camera setup used for our experiments is shown

in Fig. 3. The PointGrey Flea2G camera is equipped with

a wide angle lens with approximately 120◦ aperture angle.

It is mounted on a Xsens-MTi IMU. In eight runs the

camera was moved in front of a checkerboard acquiring

images and inertial data for 10 s each. The camera rotation is

computed by extracting the corners of the checkerboard and

estimating the camera position in an optimization-framework

using Calde and Callab [20]. The optimization is initialized

as described in Section IV. Even though the scale factor α
is known in this special case due to known dimensions of

the checkerboard, we still optimize it as well. The resulting

value of α has turned out to be a good indicator for the

success of an optimization run: A value close to 1.0 usually

means that a reasonable data alignment could be achieved,

while large deviations of the optimal value indicate a failure

of the algorithm. Errors in the intrinsic calibration, the

accelerometer calibration or the checkerboard dimensions

Fig. 3. A PointGrey Flea2G camera with wide angle lens and a Xsens-MTi
IMU (orange box) as it is used in our experiments.

typically also cause slight deviations of α from the ideal

value. The scale factor is initialized to 1.0.

The results of all eight runs are illustrated in the table

below. It shows the estimated values for ItIC and the

corresponding standard deviations σItIC
:

run ItIC [mm] σItIC
[mm]

x y z x y z
1 -20.6 69.6 -30.7 37.9 49.6 60.1

2 -3.0 62.9 -31.3 25.9 33.7 38.2

3 -18.7 64.6 -39.4 28.2 32.2 36.9

4 -18.9 68.5 -33.2 18.4 24.5 22.4

5 -21.3 52.5 -33.4 6.5 9.0 8.2

6 -17.9 58.1 -33.5 4.7 12.3 4.3

7 -25.8 60.4 -30.9 6.7 8.5 6.7

8 -20.5 46.9 -25.1 13.9 41.4 16.7

We will now compare our results with the system identi-

fication (grey box) approach described in [12] and a filter

approach using an UKF as presented in [4]. The only

modification for the grey box approach is that we do not

use an EKF but a more accurate UKF instead to propagate

and update the system state. The parameter vector θUKF of

the optimization consists of:

θUKF =
(

bT
ωI bT

aI
I0gT IqT

C
ItT

IC

)T
(31)

The boxplots (box-and-whisker diagrams) in Fig. 4 illustrate

the calibration results of the three different approaches. The

estimation of the relative pose ItIC by the B-spline clearly

outperforms the filter-based methods, while the angular

alignment IqC yields comparable results. A closer look at

the results shows that especially the runs with less dynamics

account for this difference. The B-spline approach seems to

be more sensitive and, thus, it achieves adequate results even

if the dynamics of the calibration motion are low.

To evaluate the sensitivity of the presented algorithm

regarding the quality of the initialization, we used a bad

initialization to run the optimization. For that, we assumed

no knowledge about the relative and the absolute orientation,

setting IqC to zero and I0g to (0 0 − 9.81). The errors

between the trajectories and the measurements resulting from

the two different initializations are illustrated in Fig. 5(a) and

Fig. 5(b). The wrong initialization of the rotation between

camera and IMU becomes apparent in the angular velocity

plots. The bad initialization of the gravity vector becomes

obvious in the much larger scale of the acceleration plot
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Fig. 4. Estimation of I
tIC and the Euler angles IφC corresponding to IqC (boxplots). 1-left: B-spline, 2-middle: grey box, 3-right: UKF.

in Fig. 5(b) - the gravitation component in the acceleration

measurements can not be compensated properly. Neverthe-

less, in our experiments the optimization converges always

to the same result, shown in Fig. 5(c), which indicates good

convergence properties of this problem. The same experiment

was performed using the grey box and UKF approach. Both

could handle the bad initial orientation, but ran into serious

problems with the bad initial gravity I0g and, thus, could not

estimate the relative pose properly.

The last experiment shall illustrate the sensitivity of the

optimization with respect to the number of control points.

The relative pose ItIC and the scale factor α react most

sensitive to changes of these parameters and, thus, they are

used to evaluate the quality of the estimation. Fig. 6 shows
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Fig. 6. Estimated relative pose ItIC (above) and scale α (below) with
respect to the number of knots.

the convergence of the optimization results with increasing

number of knots. According to this experiment, there are no

significant improvements to expect using more than 0.6 knots

per camera frame for our registration sequences. If the spline

has too few knots, it will not allow accurate modeling of the

acceleration measurements and, thus, the velocity measured

by the camera does not fit the approximated acceleration. A

large number of knots increases the number of control points

and, consequently, the overall optimization duration.

The accuracy of the spatial registration depends strongly

on the measured motion. No calibration framework will

be able to improve the result beyond the calibration errors

which affect the fusion. Thus, assuming that the observability

conditions mentioned in [10] are met, the accuracy of the

spatial alignment strongly depends on the signal to noise

ratio. In general, the noise of the sensors cannot be reduced

further, thus, one should aim to provide a calibration run

with high dynamic motions. If at least the same dynamics

as a specific application requires are provided, the residual

calibration error can be neglected because the resulting

fusion error is not significant compared to the measured

motion.

VI. CONCLUSION

In this work we presented a batch-optimization based

solution for the problem of IMU-camera registration. Our

experiments have shown that our approach compares fa-

vorably to conventional methods. This is due to a more

general approximation of motion as in Kalman filters, which

allows to model the non-linearities more accurately. The

approach has shown to provide good convergence properties

independently of the parameter initialization. As a byproduct

of the registration one yields the smooth trajectory of the

sensors as B-spline.

The presented approach is not real-time capable like

conventional filtering solutions, but if an offline calibration is

feasible an optimization based calibration should be preferred

as the experiments illustrate. By modeling the trajectory with

a B-spline one can avoid the first order approximation of

the state as in [11], [12]. Especially such high dynamic

motions as required for the IMU-camera calibration yield
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Fig. 5. The first two plot-columns show the errors of ωI , ωC (both in the upper row), aI (middle row) and vC (lower row) relative to a good and
a bad B-spline initialization as described in the text. Note the difference in the angular velocity plots and the difference in the scale of the acceleration
plots. The rightmost plot denotes the estimation result, which is the same for both initializations.

large linearization errors. Varying the order of the B-spline

and the number of the knots allows for an easy adaption to

the dynamics of the calibration sequence. Of course, a higher

order and more knots result in longer processing times -

hence, a trade-off has to be found.

High dynamics in the calibration motion increase the

signal to noise ratio and, thus, the accuracy of the calibration

result. The use of a checkerboard limits the dynamics of the

motion. Thus, in future we want to evaluate sequences with

natural landmarks. However, without any knowledge about

the environment we can only estimate the camera translation

up to scale. The presented framework already provides such

a scale parameter which makes it easy to adapt. We wonder

if the higher signal to noise ratio of the IMU would allow

for still more accurate calibration even with less accurate

landmark tracking.

The number and the location of the B-spline knots has

been determined empirically in this work. Estimating the

optimal number and location of the knots would speed up

processing and make it adaptive to arbitrary dynamics.

Another possible improvement is a direct fusion of the

landmark locations in the images with the IMU motion,

avoiding the currently preceding camera pose estimation.

While this would increase the complexity of the optimization

framework, we would expect increased accuracy.

VII. ACKNOWLEDGMENTS

This work was partially funded by the DLR internal

funding for image-based navigation systems.

REFERENCES

[1] A. Chilian and H. Hirschmuller. Stereo camera based navigation of
mobile robots on rough terrain. In IEEE/RSJ IROS, Oct 2009.

[2] K.H. Strobl, E. Mair, T. Bodenmüller, S. Kielhöfer, W. Sepp,
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