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Abstract— Several categories of optimization problems suffer
from expensive objective function evaluation, driving the need
for smart selection of subsequent experiments. One such cate-
gory of problems involves physical robotic systems, which often
require significant time, effort, and monetary expenditure in or-
der to run tests. To assist in the selection of the next experiment,
there has been a focus on the idea of response surfaces in recent
years. These surfaces interpolate the existing data and provide
a measure of confidence in their error, serving as a low-fidelity
surrogate function that can be used to more intelligently choose
the next experiment. In this paper, we robustly implement a
previous algorithm based on the response surface methodology
with an expected improvement criteria. We apply this technique
to optimize open-loop gait parameters for snake robots, and
demonstrate improved locomotive capabilities.

I. INTRODUCTION
Running an experiment on a robotic system can take

significant time, effort, and money. Unfortunately some ex-
periments, such as those involving complex environmental
interactions, cannot be simulated offline with a high degree
of fidelity and must be run on the robot to acquire meaningful
results. If one is to optimize the performance of such a
robotic system, it is important to choose each experimental
evaluation carefully so as to minimize the number of trials
required. Optimization techniques have been developed that
carefully analyze the previous trials in order to generate the
“best” next choice of experiment. These techniques strive for
global, not local, optimization of the objective function in a
small number of trials. Although proof of convergence to a
global optimum is not always possible, a global search is
still preferable to a local solution with stronger theoretical
guarantees.

Problems involving expensive cost function evaluations are
not limited to robotics. The aerospace industry often makes
use of computational fluid dynamics simulations that can take
hours to obtain a single data point [1]. The benefits of careful
consideration of the next experiment far outweigh those
of fast experiment selection. Another application involving
careful experiment selection is pharmaceutical development
[2], as it is desirous to reduce the number of human trials
required. These ideas are closely related to active learning,
where labeling a data point is an expensive operation and
the goal is to build a good classifier with minimal training
points via intelligent selection of these points, rather than
optimization.

The system we focus our efforts on in this paper is a snake
robot (Fig. 1), the most recent iteration of the mechanism
presented in [3]. A set of expressive and useful open-loop
locomotive motions, termed gaits, have been developed for
this robot, based on a parameterized model [4]. Previously,
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Fig. 1: A hyper-redundant snake robot, shown on an outdoor staircase.

these gaits were optimized by hand-tuning parameters to
improve performance. This can lead to suboptimal solutions,
and tends to not fully explore the parameter space. We desire
to use optimization techniques to modify gait parameters to
globally improve the effectiveness (here we focus on average
speed) of these gaits, and thereby enhance the capabilities
of the robot. Furthermore, we wish to optimize these gaits
in a more autonomous fashion, without relying on human
intuition.

Because of the robots highly dynamic and multimodal
locomotion we have been unable to develop a quantitatively
accurate model of the robot, and must rely on physical
robot experiments to obtain useful results. However, many
traditional learning methods depend on gradient information
in order to operate, which is not generated via these phys-
ical experiments. This “black-box” nature of the objective
function limits the choice of optimization method.

A survey of previous work provides promising approaches
to optimizing a single expensive scalar objective function
over an n-dimensional parameter space. Techniques such as
the Nelder-Mead simplex search [5] or subgradient methods
[6] have been used extensively, but do not use information
from all the previously sampled data points to make the best
possible function evaluation decisions. Therefore, these and
other similar methods are not well suited to the expensive
nature of our cost function evaluations.

A different approach is taken in the response surface
literature [7]. These methods aim to explicitly use all of
the information available to fit a surrogate for the actual
objective function. Based on the previously sampled points,
the best estimate of the true function is returned, along with
the estimated error in this approximation. Various techniques
have been used to generate response surfaces; stochastic
processes are often the chosen tool [8], [9], [10]. In this
paper, we focus on Gaussian process techniques (see [11]
for a more complete treatment) in fitting response surfaces
for the performance of snake robot gaits.

The response surface literature is concerned with how to
use information provided by the response surface in order to
select parameters for subsequent experiments, as summarized
by Jones [12]. This selection process inherently involves



a trade-off between exploitation, a local search near the
predicted maximum, and exploration, a global search to
reduce uncertainty. Various approaches have been developed
to balance this tradeoff, such as IEMAX [13], or maxi-
mizing the probability of improvement [14], [15]; however,
these require careful hand-tuning to ensure good algorithm
performance. Other approaches combine discrete stages of
local and global search, and recently have shown success in
improving the walking speed of a small humanoid robot [16].
In this paper, we instead choose to follow the lead of Jones
et al.’s EGO algorithm [17], and maximize the expected
improvement over the best experiment conducted so far. This
automatically balances the trade-off between exploration and
exploitation, informed by a rigorous statistical measure.

In this paper, we extend the previous usage cases of the
EGO algorithm by demonstrating its first application that we
are aware of to a physical robotic system. In doing so, we
have discovered new motions that extend the capabilities of
existing snake robots to locomote over obstacles and terrain
that were previously impassable. We also show that the EGO
algorithm can use an appropriate choice of response surface
parameters to successfully handle noisy objective function
evaluations. Finally, we propose the use of a combination
of unsupervised techniques to improve the quality of the
response surface fit.

II. THE SNAKE ROBOT SYSTEM

Snake robots (Fig. 1) are hyper-redundant mechanisms
which use internal shape changes to move through their
environment. The snake robots developed in our lab are
composed of a serial chain of actuators with 180◦ range of
motion. The rotation axes are offset 90◦ about the central axis
from module to module. These robots feature many degrees
of freedom (usually we use 16 modules) and a small diameter
of two inches. The benefits of this design include the ability
to crawl through small, tightly packed spaces and to locomote
through different environments with a varied set of gaits.
However, many degrees of freedom require complex and
coordinated controllers in order to generate useful motion.
Therefore, previous work of Tesch et al. [4] has focused on
developing a useful and general parameterized gait model for
the snake. This open-loop controller determines the desired
joint angles as a function of module number n and time t.
The equation is given by

α(n, t) =

{
βeven +Aeven sin(

dθ
dnn+ dθ

dt t), n = even,
βodd +Aodd sin(

dθ
dnn+ dθ

dt t+ δ), n = odd,
(1)

where the various constants (such as β, δ, and dθ
dn ) are

parameters that are modified in order to vary the robot
locomotion. These parameters are what we optimize over in
order to generate new motions and capabilities. This seven
parameter gait model is surprisingly general, and can produce
such varied motions as sidewinding, rolling, swimming, and
even climbing up a pole (Fig. 2).

Unfortunately, the gaits that have been found by hand-
tuning these parameters are still limited in their capabilities.
We are interested in increasing the speed of flat-ground
locomotive gaits, improving climbing up sloped surfaces, and
enabling crawling over unstructured terrain cluttered with
obstacles. Using machine learning techniques to conduct
a global search allows the discovery of new, less intuitive
gaits that might not have been realized by hand-tuning the

(a) Swimming (b) Sidewinding

(c) Climbing a pole (d) Rolling laterally

Fig. 2: The generality of the gait model is shown by the varied motions it
can produce.

parameters. Although human intuition is useful, removing
this inherent bias in experiment selection and replacing it
with a more principled approach allows the discovery of
previously unimagined solutions.

III. GAUSSIAN PROCESSES FOR FUNCTION REGRESSION
Gaussian processes (GPs) are used for many applications;

they can form a probability distribution over functions, inter-
polate between known values, or fit a function to unknown
points. In this paper, we are interested in using GPs to
produce a response surface, or an estimate of our objective
function (locomotion performance) as a function of the gait
model parameters.

Each Gaussian process is associated with a covariance
function which describes the general behavior of the true
function we wish to model. Many covariance functions are
parameterized by hyper-parameters that can be tuned to bet-
ter reflect the nature of the true function. In addition to fitting
various smooth and periodic functions, covariance functions
can also be used to model noisy observations by adding
a Gaussian noise term to the covariance function. Some
examples of the effects of different covariance functions on
regression are shown in Fig. 3.

Although Gaussian processes can be used to fit a variety of
functions, this technique still relies on a reasonable choice of
covariance function and a good selection of hyper-parameters
for that covariance function. One can judge the quality of a
covariance function and its hyper-parameters by calculating
the marginal likelihood of the training data given the GP
fit, as in [11]. Unfortunately, this likelihood must then
be maximized in a sub-problem during each iteration of
the overall optimization. This hyperparameter optimization
sub-problem often involves a search over a multi-modal
likelihood function, with large areas that are essentially flat.
This quality of the likelihood function causes simple search
techniques, such as conjugate gradient, to often terminate
early, or reach an incorrect local optimum. As suboptimal
choices for hyper-parameters can lead to extremely poor
response surface fits and consequently poor algorithm per-
formance, one of the main contributions made in this paper
is outlining a method to robustly select the best covariance
function and hyper-parameters. This selection process occurs
with minimal human intervention and without any knowledge
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Fig. 3: The first three images show the posterior of a GP (with a one-σ bound) sampled at two data points, with various covariance functions. (a): The
“squared exponential” covariance function that describes smooth functions, with hyper-parameters set to a medium length scale. (b): The same covariance
function, with the hyper-parameters adjusted to describe a longer length scale. (c): A periodic covariance function. In (d) and (e), we show how a covariance
function that takes noise into account explicitly, (d), does not overfit noisy data, as does the covariance function which assumes noiseless sampled data
points, (e). The no-noise model overfit the data so badly that the range of the function is thirty times that of the noisy model’s fit.

of the true function behavior. These improvements allow GP
function regression to be reliably and easily used to generate
response surfaces that can be used in high-level algorithms.

IV. EXPERIMENT SELECTION METRICS
Given a reasonable response surface, the question remains

of how to use this information in order to best select the next
experiment. This choice of experiment involves a tradeoff
between exploiting the best known regions and exploring in
areas that are largely unknown. At one extreme, an approach
would be to choose the current maximum of the response
surface; this method is not guaranteed to converge, even to
a local optimum. At the opposite extreme, one might seek
to maximize the information gain (described in [18]), which
serves to reduce the uncertainty in the function estimation.
Although this method will eventually find the global opti-
mum through dense sampling of the space, it wastes precious
function evaluations on improving the function estimate in
low, uninteresting regions of the objective function.

To improve the quality of search, we need to use the
estimated function value and the uncertainty of this estimate.
To this end, algorithms such as IEMAX [13] have been
developed, which pick a next point based on a weighted sum
of the estimated function and its error. A more statistically
rigorous metric is the probability of improvement [14], [15],
given by the integral of the tail of the predictive distribution
over the maximum value of the objective found so far, plus
some threshold. Unfortunately, both of these methods have
parameters that must be tuned to obtain the best performance.

The approach taken in this paper is that proposed by
Jones et. al. [17]. The metric that is maximized for point
selection is the expected improvement (EI) over the best
previous function evaluation. The response surface provides
a distribution Yx over objective function values at a point in
the parameter space x, where p(yx) represents the probability
density of the value yx ∈ Yx. Given ymax as the best previous
function evaluation (e.g., the fastest locomotive speed from
previous experiments), the EI can be calculated as

EI(x) =

∫ ∞
ymax

(yx − ymax)p(yx)dyx. (2)

The first term in this integral represents the improvement
over the previous best sampled point, and the second term
represents the probability of that improvement.

The key benefits of this method are that there are no
parameters to tune – the tradeoff between exploration and
exploitation is inherently handled – and that this metric
selects the point which is statistically most advantageous to
sample next, at least for a myopic search. When optimizing a

function, you desire the next experiment to improve the most
upon the current maximum; thus the quantity you actually
wish to maximize when selecting a new point is the expected
improvement. Furthermore, expected improvement has been
empirically shown to work well and to efficiently optimize
unknown black-box functions [17], [19].

V. PROPOSED ALGORITHM
The algorithm we apply to optimize the robot gaits is based

on Jones et. al.’s EGO algorithm [17]. After an initial sam-
pling, we iterate the selection process for each subsequent
experiment as follows, until convergence is reached or the
budget for experiments is exhausted:

1) Fit a response surface to the previously sampled data
points.

2) Search over the response surface for the test point
which maximizes expected improvement over the pre-
vious best experimental result.

3) Run this experiment.
4) Repeat.
We have identified two problems that occur during im-

plementation of this algorithm on noisy robotic systems.
First, hyper-parameters often get trapped in local maxima of
the likelihood, producing poor quality surface fits. Second,
the naı̈ve computation of the expected improvement for
noisy functions is emprically unsuccessful. In our proposed
algorithm, we have combined new and existing solutions to
these problems, and outlined a framework for incorporating
these techniques that reduces the need for human supervi-
sion during optimization. Furthermore, we have successfully
tested this algorithm on the snake robots in our lab. Below,
we discuss the individual techniques we use to overcome
these problems, and summarize the proposed algorithm.

A. Initial experiment design and random searches
It is impractical to attempt to fit a useful response surface

to a very few data points. Instead, one should choose an
initial distribution of points to sample before the response
surface is constructed. One common approach for choosing
this sampling distributions is selecting a Latin hypercube
(LH) design [17], [19], [20]. At a high level, points in
an LH design are guaranteed to be well distributed along
each dimension of the parameter space .When using LH
sampling, one must also determine how many initial points
are chosen. We have found that although a range of values
work comparably well, 5 points seem to be sufficient for a
two or three dimensional parameter space.

We propose a large, intensive search for the maximum
likelihood covariance function hyper-parameters of the ini-
tial response surface. This search is worthwhile, because a



quality fit will carry through in the form of better formative
experiment selections, and a better initial hyper-parameter
setting for future iterations. To conduct this search, we
use a Matlab package associated with [11], which imple-
ments a conjugate-gradient method to minimize the hyper-
parameters’ negative log likelihood. This method requires a
starting point in hyper-parameter space for this minimization,
and as it is a local optimization method it is prone to local
minima. To overcome this problem, we propose running
a conjugate gradient search for each of many randomly
picked initial hyper-parameters, as suggested in [21]. We
use 50 random points for searching 3 to 5 dimension hyper-
parameter spaces.

After each new data point has been sampled, the hyper-
parameters should again be optimized. To avoid a large-
scale search, we seed one conjugate gradient search with the
hyper-parameters use to fit the previous iteration’s response
surface, and also choose a small number of random hyper-
parameters (5-10) to seed other conjugate gradient searches.
These random selections explore the space and increase the
chances of escaping local minima. It is not sufficient to
only use the previous response surface’s hyper-parameters,
because these sometimes lie outside the global maxima’s
basin of attraction in the likelihood function after subsequent
data points are added.

B. Multiple covariance functions
Poor quality regression can also be caused by using a

covariance function which does not describe the function
or is needlessly complex, where complexity refers to the
number of hyper-parameters and variety of functions it is able
to fit. We propose the selection of a set of covariance func-
tions. When fitting a response surface, the hyper-parameter
likelihood is maximized for each covariance function in the
set; the function with the highest likelihood is chosen. In
our experiments, we found using two covariance functions
was usually enough – an isometric squared exponential
with process noise (three hyper-parameters), and a squared
exponential with variable length scales in each direction
and process noise (d+ 2 hyper-parameters for regression in
Rd). We encourage the use of prior knowledge to choose
appropriate covariance functions; for example, if the true
function is periodic, periodic covariance functions should be
added to the set.

This adaptive approach improves upon using a single,
user-chosen covariance function through the entire optimiza-
tion. It eliminates the need for an expert in the loop, and
allows the complexity of the covariance function to adapt
to that of the data. Finally, as the likelihood of a complex
covariance function is distributed over a larger space of
hyper-parameters than that of a simple covariance function,
this approach selects the simplest adequate model, reducing
overfitting concerns.

C. Leave-one-out optimization
Fitting a response surface by maximizing the marginal

likelihood of Guassian process hyper-parameters can lead to
overfitting the data, especially when the sampled data points
were returned from a noisy process. Rather than maximizing
the marginal likelihood, we instead maximize the leave-one-
out likehood, as described in [11]. This provides robustness
to overfitting, and generally increases the quality of fit of the
surface.

D. Expected improvement with noisy functions
The variance predicted by the response surface generated

by a noisy covariance function is the sum of the variance
from the process noise (the explicit noise term) and the
variance from the uncertainty of the estimate of the under-
lying noiseless function. As expected improvement is large
in areas with large variance or high function estimates, and
the magnitude of the variance is lower bounded everywhere
by the process noise variance, an experiment selection bias
occurs towards higher areas of the function estimate.

To compensate for this bias, we subtract the process
noise from the total variance, leaving only the variance
from the uncertainty of the true function estimate. This is
empirically found to result in a better value for the expected
improvement, and leads to a more balanced, effective search.

E. Resulting implementation
The resulting implementation still contains the basic struc-

ture of the original EGO algorithm. However, the improve-
ments that have been made significantly improve the al-
gorithm’s performance on physical systems. Our proposed
algorithm begins with a space-filling Latin hypercube se-
lection of initial experiments. When these experiments are
completed, a large scale leave-one-out likelihood maximiza-
tion occurs over multiple covariance functions and from
many initial hyper-parameters. The results of the search are
a covariance function and hyper-parameters that describe a
response surface that fits the initial sampled points. After
the initial function fit, the following steps are repeated until
convergence or until the available number of experiments has
been exhausted.

1) Select the parameters which result in the maximum
expected improvement. Subtract the variance of any
process noise from the response surface error estimate.

2) Run an experiment at the selected set of parameters.
3) Fit a response surface to the updated set of sampled

data points. Maximize the leave-one-out likelihood,
over a space of multiple covariance functions and a few
randomly sampled, locally optimized points in hyper-
parameter space.

Using random restarts to improve the chances of finding
the global maximum is a common technique taken in the ma-
chine learning community. Using a leave-one-out approach is
also fairly standard. These both improve the implementation,
but alone did not cause this algorithm to perform well for
actual robotic systems. The use of a set of covariance func-
tions and the improvement for noisy covariance functions
also were important. When these features were added, the
algorithm became viable for physical systems.

VI. RESULTS
In order to test our algorithm on the robot, we chose to

optimize locomotion speed over various terrain (see Fig. 4).
Rather than optimize over the entire gait parameter space, we
fixed some of these parameters to obtain a reduced subset of
qualitatively similar gaits

Using hand-tuned sidewinding parameters, the robot
would tip when attempting to climb up a slope. However,
our algorithm quickly found a number of improved solutions.
The optimized set of gait parameters, discovered after only
26 trials (Fig. 5(a)), resulted in a swinging motion that
served to balance the snake on the slope during the climb



(a) (b)

(c) (d)

Fig. 4: Various obstacles were built on which to optimize open-loop gait
performance. Note that each of these can either be inclined or flat or the
ground. (a): A simple wood slope. (b): Irregularly spaced small square
obstacles. (c): Three black pipes, split in half along the center. (d): Note
the scale; the robot, even when lifting its body a moderate amount, cannot
pass over the obstacles.

(a)

(b)

Fig. 5: (a): The sampled speed from each experiment conducted during the
optimization. The solid line represents the best value found so far, or how
many search iterations are required to obtain a certain level of performance,
and is a useful visual comparison of results. (b): Still shots from the
optimized climbing motion of the robot. In order to keep its balance, the
robot “swings” from a horizontal position to one aligned with the slope of
the incline.

(Fig. 5(b)). This result not only demonstrates the efficacy of
the proposed algorithm, but also extended the capabilities of
the snake robot. More importantly, the new set of parameters
was found without expert knowledge regarding parameter
selection; the only human interaction was resetting the snake
and measuring the distance traveled.

As comparing the newly discovered climbing gait with
one hand-tuned for flat ground is misleading, we also op-
timized the speed of locomotion across flat ground. In this
experiment, a significant improvement was found early in
the experimental trials. This early success is likely due to
the fact that the sidewinding parameter subspace has large

(a) (b) (c)

Fig. 6: (a): The sampled speed from each experiment conducted during
the optimization. The solid line represents the best value found so far. The
previous best speed was approximately 5 inches per second; the new motion
has a speed more than triple this figure. (b): The previous hand-tuned
sidewinding motion. (c): The optimized gait; although it used the same
fixed parameter values as the sidewinding gait, it is qualitatively different
than the existing sidewinding motion. Note that although this optimized gait
has an increased amplitude, simply increasing amplitude from the previous
hand-tuned gait will produce a less effective gait; this increase must be
coordinated with a change in the other parameters.

(a) Half pipe obstacles, hori-
zontal.

(b) Small square obstacles, hor-
izontal.

(c) Half pipe obstacles, sloped. (d) Small square obstacles,
sloped.

Fig. 7: Results from optimization tests on two sets of obstacles. Each
obstacles was set flat on the ground for a first round of optimization tests; a
second set of tests was conducted for each obstacle when set at an angle. For
each test, the sampled objective function value is plotted for each experiment
conducted, and a solid line indicates the best sampled value so far.

regions which have not been adequately explored. When
hand tuning a sidewinding motion, the performance usually
decreases as an independent parameter is moved outside of
a small range. By removing the human bias when searching
the parameter space, other areas of this space are visited,
significantly altering the motion of the robot.

The motion of the hand-tuned sidewinding gait is depicted
in Fig. 6(b), while Fig. 6(c) shows the motion resulting from
the newly optimized parameters. The first exciting aspect of
this result is the fact that we achieve three times the speed of
a gait hand-tuned for the same purpose. The second exciting
aspect is that the resulting motion is a previously undis-
covered method of locomotion; it is qualitatively different
from the existing sidewinding gait. This new motion is also
more dynamic than the existing sidewinding gait, relying on
momentum rather than solely kinematic forces in order to
locomote.

We tested this algorithm on several additional problems;
the objective in each case was to obtain the highest average
speed across the obstacles shown in Fig. 4. As our previous
gaits could not move over the obstacles at all, any success
represents a new capability of the snake. The results, shown
in Fig. 7, demonstrate that our proposed algorithm finds
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Fig. 8: (a): Each of three experiment selection metrics (expected im-
provement, IEMAX, and random) was used for gait speed optimization
of a simulated snake robot. The function evaluations at each iteration
were averaged over 20 optimization runs. This averaged value is plotted
to compare performance of each algorithm. (b): Algorithm performance
comparison on the physical robot. Our expected improvement algorithm
(solid line) was tested against a Nelder-Mead search (dashed line), which
shows a slower rate of improvement.

parameters that successfully locomote the snake in each case.
Although the results so far have been based on optimizing
a parameter subspace composed of sidewinding gaits, we
are not limited to this space and have also optimized various
other gaits on the snake robot, as well as an eight dimensional
parameter space in simulation.

At first glance, one concern is the “jumpy” nature of the
optimization process. It is important to realize that this is
expected; even though this algorithm does not attempt to
accurately model the entire objective function, it must still
sample poor quality regions of the space to be certain of the
correct overall trend of the function. A more steady trend is
seen in aggregates of multiple trials, such as in Fig. 8(a).

Finally, this algorithm is useless if a simpler algorithm
could outperform it. Therefore, we have run extensive com-
parisons to other algorithms in simulation. These results,
such as those in Fig. 8(a), demonstrate that our expected im-
provement based algorithm outperforms other optimization
approaches. Furthermore, we have also compared algorithm
performance on the actual robot. In Fig. 8(b), we show that
our approach also reaches a maximum faster than a Nelder-
Mead search, as our algorithm searches globally rather than
constraining itself to a local search.

VII. CONCLUSION

In this paper, we have shown that maximizing expected
improvement using a response surface is an effective tool for
choosing subsequent experiments in optimization problems
involving real robots. This allows us to optimize existing
gaits for snake robots, and endows the robot with new gaits
and capabilities. Furthermore, we have discussed modifica-
tion to the standard expected improvement-based algorithm
EGO which improve the algorithm’s performance, and allow
it to work with noisy functions. In addition, we present
optimized results for our existing gait model which allow
the robot to move faster than ever before, and climb over
terrain which previously would have been an impasse.

Although expected improvement would seem to be the
“correct” metric to maximize over a response surface, there
are still areas for improvement. For example, if the response
surface is not actually a reasonable surrogate, it can choose
a series of points that are very slow to converge to a global
maximum. Furthermore, the calculation of expected im-
provement in the presence of noise is not yet fundamentally
sound. Although our implementation works well empirically,
a rigorous method to measure expected improvement in the

presence of noisy samples should be developed. Another area
for improvement is to modify the metric to be non-myopic.
We wish to find a statistical quantity that makes optimal
choices given multiple remaining steps. Unfortunately, non-
myopic solutions are often intractable, and so approximate
extensions are envisioned.

Finally, we will expand these methods to the field of
multi-objective optimization. In particular, we will search
more than one objective function, perhaps speed and energy.
However, rather than find a single optimum representing
some weighted combination of these objectives, we will
search for a pareto set of points which are all optimal in
some sense – they are all non-dominated points.

Overall, we believe this work introduces an exciting
and promising optimization technique to the robotics field,
demonstrating its efficacy on a highly dynamic and multi-
modal platform.
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