IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), 2011

Sampling Heuristics for Optimal Motion Planning in High Dimensions

Baris Akgun and Mike Stilman

Abstract— We present a sampling-based motion planner that
improves the performance of the probabilistically optimal
RRT#* planning algorithm. Experiments demonstrate that our
planner finds a fast initial path and decreases the cost of this
path iteratively. We identify and address the limitations of
RRT* in high-dimensional configuration spaces. We introduce a
sampling bias to facilitate and accelerate cost decrease in these
spaces and a simple node-rejection criteria to increase efficiency.
Finally, we incorporate an existing bi-directional approach to
search which decreases the time to find an initial path. We
analyze our planner on a simple 2D navigation problem in
detail to show its properties and test it on a difficult 7D
manipulation problem to show its effectiveness. Our results
consistently demonstrate improved performance over RRT*.

I. INTRODUCTION

Motion planning for a robot must consider both optimality of
the plan and efficiency of the algorithm. The two goals are
particularly important and challenging in high-dimensional
configuration spaces such as those of robot arms and mobile
manipulators. A common approach to this challenge is to
find a suboptimal plan and refine in the remaining time that
is allocated to the planning process. This paper presents
a novel method that improves the performance of optimal
motion planning techniques. Both the process of finding an
initial plan and plan optimization are performed faster in
comparison to existing methods.

Global collision-free planning for robot manipulators was
computationally infeasible prior to the advent of sampling
based planners. The critical advances made by [1-3] made it
possible to find feasible paths in high dimensions. Recently,
an optimal sampling based planner, RRT* [4], was intro-
duced by Karaman. It takes advantage of the rapid expansion
of RRT [2] while introducing path cost and optimality. RRT*
iteratively refines its path and converges to an optimal one
given coverage of the configuration space. We propose two
sampling heuristics that improve RRT#*, increase the rate of
cost reduction and implement a bi-directional version of the
algorithm to improve efficiency. The improvements can be
qualitatively seen in Figure 1.

II. RELATED WORK

Sampling-based randomized algorithms are the current state-
of-the-art to cope with high-dimensional motion planning
problems. For multi-query planning, most planners are based
on Probabilistic Roadmaps(PRMs) [1]. For single-query
planning, Rapidly-exploring Random Tree (RRT) [2, 3]

Baris Akgun and Mike Stilman are with the Center for Robotics and
Intelligent Machines and The School of Interactive Computing, Geor-
gia Institute of Technology, Atlanta, GA. (barisakgun@gmail.com,
mstilman@cc.gatech.edu)

&
=

SR AR
A

Wi
T

e

AN A Y
SR ﬂ 2
i '/ o = ¢/
\/ Y |
4 7
5z oo
\‘\,\ AT~ 5
N &
\,\ ¥
o

/
A
S

2
i)
i

“m,-v Z
s]
iy

3
e
K 7

7}

/7

Fig. 1. Two search trees produced in the same amount of time. Left:
Baseline RRT*. Right: A tree produced with proposed heuristics. The
proposed tree finds the optimal solution in less time.

based planners have become the de facto standard in high-
dimensional spaces. Our focus on changing environments
leads us to concentrate on single-query planning.

In general, RRT-like algorithms are only used to find
a feasible path efficiently without the notion of cost. The
skeleton of this algorithm is given in Algorithm 1. A tree in
the configuration space of the robot is grown by sampling
points and adding them to the tree if there exists a collision
free path between the sampled point and the tree. The
inherit nature (bias towards unexplored regions) of RRTs
make them good at randomly exploring a space but not
necessarily towards finding a path. Simple heuristics like
sampling towards a goal (goal biasing) is often employed
to speed up planning. The algorithm presented in [3] takes
a double tree approach, by growing one tree from the start
configuration and the other from the goal configuration, and
includes a simple heuristic to guide the two trees towards
each other. However, this does not take any notion of cost
into account and is only concerned with finding a path.

Initial attempts to incorporate cost and bridge the gap be-
tween exploration and exploitation issue in RRT-like planners
include the work in [5], which proposes to use a heuristic
quality function to guide the search. Instead of selecting the
nearest neighbor, they choose k-nearest neighbors and extend
the neighbor with the best quality. An anytime approach
to RRTs is developed in [6], where each subsequent call
to RRT improves the solution by utilizing the information
from previous calls. Samples which could not decrease the
cost of the path are rejected. However, the solution does
not necessarily converge to an optimal one. The algorithm
presented in [7], biases the search towards the low cost

Algorithm 1: RRT
1 V 4= Ginit
2 E<+0
3: while i <N do
4 g5y + SAMPLE(i)
5
6

EXTEND(V,E,q;)
. end while

regions of a cost-map by rejecting high cost states and
moving towards lower cost states via slopes of the cost
function. In [8], exploration is done in the configuration
space and exploitation (via potential fields) is done in the
workspace of the robot but optimality is not considered.
Probabilistically optimal RRTs, which the authors call RRT*,
are recently introduced in [4]. Probabilistic optimality is
analogous to probabilistic completeness. Under the assump-
tions given in [4], the solution converges to the optimal
path as the number of samples approaches infinity. This
approach includes the notion of cost within the tree. The
details of RRT* will be given in the subsequent section. The
work in [9] describes Rapidly-Exploring Roadmaps which is
another recent optimal single-query planner. The algorithm
maintains a graph which is updated by RRT type expansions
for exploration and PRM type connections along the found
paths for exploitation. This algorithm does not consider any
sampling strategies.

III. APPROACH

First, we describe the RRT* algorithm. We then present the
challenges involved in applying it to high-dimensional spaces
and introduce our sampling heuristics.

A. Baseline RRT*

The baseline RRT algorithm is given in Algorithm 1. The
SAMPLE routine selects a point in the robot’s configuration
space. EXTEND routine tries to grow the tree towards
that selected point. RRT* algorithm has its own EXTEND
routine, detailed in Algorithm 2. A concept introduced in
RRT#* is near neighbors, the neighbors within a certain radius
of a node. RRT* connects newly added nodes to its neighbor
node which yields the minimum cost. For the details on how
to choose this radius, the reader is referred to [4]. This is
the first loop in in Algorithm 2 and depicted in Figure 3(a).
Another concept is rewiring the tree. If the path from the
newly created node to a near neighbor node yields a lower
cost for that near neighbor, then the parent of the near node
is changed to the newly created node. This is the second
loop in in Algorithm 2 and depicted in Figure 3(b).

In Algorithm 2 EXTEND, generates a new point that is
v away from the nearest node towards the direction of the
sampled point as depicted in figure 2, but does not add this
node to the tree. NoCollision routine checks for collision on
the line between two points in the configuration space. The
NEAR routine finds the near neighbors of a node in the tree.
The Cost calculates the cumulative (integrated) cost from the
initial node along the tree and CostIm calculates immediate

init

Fig. 2. The EXTEND routine. The nearest node to the sampled point on
the tree is selected and a new node is added v distance from the nearest
node in the direction of the sampled point.

cost of going from one node to the other. The step size Vv is
decreased as the number of samples increase. as in [4].

B. Challenges in High Dimensions

In a time constraint scenario, where the path needs to be
improved in the remaining planning time, it is desirable to
have an algorithm that quickly decreases the cost of its plan.

For high dimensional spaces, the use of RRT* is limited.
Random sampling is not able to refine the paths and/or
find the optimal one in a reasonable amount of time. RRTs,
and consequently RRT*, have an exploration heavy nature.
This also adversely affects the rate of cost reduction in low-
dimensional spaces.

The reason behind this behavior can be explained by
utilizing the analysis in [10]. In a RRT, a path is defined
by the list of nodes that connect the start node to the goal
node. The nodes on the path are called the path nodes.
Let’s define two types of nodes as inner nodes and frontier
nodes. Inner nodes are the ones that are surrounded by other
nodes and frontier nodes are the ones that are neighboring
the unexplored parts of the configuration space. Inner nodes
have small Voronoi regions and frontier nodes have large
Voronoi regions. Voronoi region of a node is directly related
with its probability of being chosen for expansion. The issue
becomes more severe in high-dimensional spaces where the
frontier nodes are expected to have larger Voronoi regions.

As iterations go by, path nodes tend to become inner
nodes and their probability of being selected for expansion
decreases and becomes much lower than that probability
of the frontier nodes, due to corresponding sizes of their
Voronoi regions. This in turn hinders the path refinement.

C. Local Biasing

Local biasing is a sampling heuristic that facilitates sampling
around the path nodes to accentuate the effect of RRT*’s
cost reduction. The local sampling algorithm is given in
Algorithm 3 and shown in figure 4. This heuristic attempts
to circumvent the decreasing probability of path nodes being
selected for expansion by explicitly sampling near them and
helps refining the current path towards a locally optimal one.
The aim is at least to reach a locally optimal solution itera-
tively within a reasonable amount of time, while preserving
global optimality. In a time constraint scenario, decreasing
the cost is more desirable than hunting for the optimal path

Algorithm 2: EXTEND_RRTS(V,E,q)

1 Gnearest < NEAREST (V,q)
2: Qnew EXTEND(qnearexh(IIy V)
3: if NoCollision(qnearest,gnew) then
V =V Uquew
Gmin < nearest
Onear < NEAR(V, Qnew)
for all gyeqr € Onear do
if NoCollision(qnear, qnew) then
if Cost(qnear) + CostIm(qnear, Gnew) < Cost(qnew)
then
10: qmin < qnear
11 end if
12: end if
13: end for
14: E«+~EU (QminaQnew)
15: for all gneqr € Qnear\qmin do
16: if NoCollision(gnear,qnew) AND Cost(Gnew) +
CostIm(quear, Gnew) < Cost(qneqr) then
17: Gpar < Parent(qnear)
18: E«+ E\(QpahCInear)
19: E<+EU (QneW;Qnear)
20: end if
21: end for
22: end if

Algorithm 3: LOCAL_BIAS(path)

q < RANDNODE (path)
q1 < path(qg—1)

q2 < path(g+1)

qtmp — (6]1 +612)/2—q

q
qrand — q + ||qtmpH RAND(rmil’h rmax)
tm,
return q,qnq4 P

R P B SANE

noR R

=)

which is unlikely to be found. Local biasing heuristic is
activated after an initial path is found.

In Algorithm 3, RANDNODE returns a random node
within the given path. The rest of the operations correspond
to selecting a random node, ¢,quq, along the direction of
qrmp Which is the vector between ¢ and the middle of its
two neighbors, ¢; and ¢,. If appropriate ry,;, and r,,, are
chosen, the procedure tends to straighten out the path. We
keep the former an order of magnitude smaller and the latter
on the same order as the step size to stay local to the path.

D. Node Rejection

Having a lower number of nodes in the tree and performing
a lower number of EXTEND steps are beneficial towards
efficiency. We can reject inclusion of nodes if they are guar-
anteed not to decrease the cost of the path. This rejection step
is activated once a path is found. Node rejection is applied
after SAMPLE routine selects a node and before EXTEND
routine. A node is rejected if the following inequality holds;

HCI— QStart“ + ||ngal _CIH > Cbest (1

N Gnearest o

-_

Gnew

(a) First Loop (b) Second Loop

Fig. 3. Depiction of the two loops in the algorithm 2.

Fig. 4. Random node generation procedure for local sampling. Nodes are
shown as vectors for visualization purposes.

Where ggarr and ggoqr correspond to the start and the goal
configurations, g corresponds to the candidate node and cpey
corresponds to the cost of the current lowest path cost.

A node is rejected if the current best cost is lower than the
total cost of directly going from the initial node to this node
and from this node to the goal node. Note that this approach
requires the cost measure to obey the triangular inequality.

E. Bi-RRT*

The bi-directional version of the RRTs (Bi-RRT), introduced
in [3], is more efficient than the single tree method. Bi-
RRT is presented in Algorithm 4. In this algorithm, one
of the trees is initialized with the start node and the other
with the goal node. One of the trees takes a step towards
a point (EXTEND part) and the other tree tries to connect
to the newly added node, denoted by ¢,, of the first tree.
The presented algorithm assumes that the EXTEND_RRTS
routine reports back whether it added a new node or not.
In the CONNECT routine, the second tree takes multiple
steps (in this case multiple EXTEND_RRTS calls with g,
as input) towards the last added node of the other tree until

Algorithm 4: Bi-RRT*

Algorithm 6: PLANNER

1V, init» Vp < 4goal

20 E, <0, Epj+0

3: while i <N do

qs < SAMPLE i)

if EXTEND_RRTS(V,,E,,q;) then
CONNECT (Vi Ep, qa)

end if

8 SWAP(V,,V,), SWAP(E,,Ep,)

9: end while

Algorithm 5: SAMPLE(k)

p < RAND(0.0,1.0)

if 6 < p AND —PathFound then
return g,y

else if B < p AND PathFound then
return LOCAL_BIAS(path)

else
return RANDQ

end if

A

e A A ol S

the node is reached or a collision occurs. The N defines the
maximum number iterations. The reader is referred to [3] for
other details of the Bi-RRT approach.

F. Resulting Algorithm

We combine the presented algorithms and heuristics to make
a complete planner. We have a single tree and a double tree
version. For brevity we will only present the former and
mention the differences with the latter in the text.

The resulting SAMPLE routine is given in Algorithm 5.
Before a path is found, this routine either returns a random
configuration, or the goal configuration. The latter is done to
bias the tree growth towards the goal so that the path is found
faster. The parameter 0 € [0,1] sets the frequency of goal-
biasing. After a path is found, the routine either returns a
random configuration or a configuration obtained from local
biasing. The parameter 3 € [0, 1] sets the frequency of local-
biasing. We do local biasing for explotiation and random
sampling for exploration. In the bi-directional version, goal
biasing is omitted. This is already facilitated by the Bi-
RRT#* algorithm itself. Note that the presented algorithm is
terminated with the maximum number of iterations but in
implementation, it is terminated with allocated time.

The overall algorithm is given in Algorithm 6. There a few
details that are left out for brevity. Node rejection needs the
lowest current cost and local-biasing needs the corresponding
path. In the bi-directional version, when local biasing is done,
both trees take a single step, i.e., CONNECT is not used.

Whenever a node gets in the vicinity of the goal (the other
tree in the bi-directional case), that node (node pair in the
bi-directional case) is stored. All the paths from these nodes
can be traced, their costs can be calculated and the one with
the lowest cost can be chosen. In practice, calculating the
best path does not have significant effect on performance
amidst near-neighbor calculations and collision checks.

It is important to note once again that the node rejection

1V 4= Ginit

2 E+0

3: while i <N do

4 qs < SAMPLE(i)

5. if -NODEREJECT (q5;) OR —PathFound then
6 EXTEND_RRTS(V,E,q5)

7 end if

8: end while

and local biasing heuristics are only activated after a path
is found. The aim of this combined algorithm is to find a
solution almost as fast as the baseline algorithm (RRT¥)
and iteratively improve the path quickly in the remaining
computation time. To summarize, we use RRT* updates for
optimality, local biasing to ensure that the nodes in the path
get expanded, bidirectional implementation to find paths fast
and node rejection to increase efficiency.

IV. ANALYSIS

A. Probabilistic Completeness

The probabilistic completeness and exponential convergence
of RRTs have been proven in [11]. It has also been shown
that RRT* shares the same properties, as shown in [4]. Since
we keep random sampling, and do not reject any nodes until
a solution is found, our algorithm does not lose this property.

B. Probabilistic Optimality

Given the same assumptions, our algorithm shares the prob-
abilistic optimality of RRT* since we keep random sampling
and sample rejection only rejects samples if they are guaran-
teed not to produce lower cost solutions if used in the path.
It is important to note that local biasing is only a sampling
heuristic which does not affect the types of paths produced.

C. Relation to Path Shortening and Smoothing

The paths returned by sampling-based planners are usually
jagged and need shortening and/or smoothing. A typical
example is the corner-cut approach presented in [12]. In this
approach, every other node on the solution path is removed
and the resulting path is checked for collisions. Variants, such
as selecting two random nodes on the path and checking
whether the robot could move from one to the other without
collisions, are fairly common.

The effect of local biasing heuristic is similar to these post-
processing steps in effect; both help to shorten and smooth
the path but there are a few key differences. Local biasing is
a sampling heuristic and does not delete any node from the
tree, thus it can be active during tree construction. Corner-
cut has an inherent lower limit on the cost, depending on the
locations of the path nodes. It only explores their possible
combinations whereas local biasing explores more space.

It is important to note that thw post-processing steps and
the local biasing heuristic are not orthogonal and these steps
can be applied on the path that our planner returns.

TABLE I
2D PERFORMANCE FOR A TIME BUDGET OF lsec. RESULTS AVERAGED
OVER 10 RUNS. PARENTHESES INDICATE STANDARD DEVIATION.

cy Cend Iterations
PL 8.07 (1.42) 5.84 (0.45) 5063 (166)
NR 8.07 (1.42) 5.16 (0.37) 9699 (1099)
LB 8.07 (1.42) 5.58 (0.68) 4732 (215)
CO 8.07 (1.42) 5.39 (0.71) 5593 (380)

V. SIMULATIONS AND RESULTS

We selected two test cases for simulation. First one is a
simple 2D navigation problem and the second one is a
relatively hard 7D manipulation problem. We use Euclidean
distance in the configuration space of the robot as our cost.

A. 2D Navigation Case

This case was selected to easily visualize the trees and show
what each improvement does. We analyze each heuristic
separately and together against the baseline RRT* algorithm.
The environment is shown in figure 6(a). There are three
possible routes from start to goal. The one in the middle
is the globally optimal one and poses a narrow passage.
This environment is deliberately chosen to be very simple,
to better understand the properties of the algorithm.

We set our parameters as v = 0.2 (step size), 0 = 0.2
(goal-bias) and = 0.2 (local-bias). We set r,,;; = 0.1v and
Imax = 2V for the local bias algorithm. We have four condi-
tions; plain (PL), node rejection (NR), local bias (LB) and
combined (CO). The combined condition is the combined
planner. We gave each condition a time budget of lsec.
We pre-specified 10 random seeds to minimize the effect of
chance. Note that the conditions are exactly the same until
a path is found, so the path that they try to improve is the
same for all conditions, given the same random seed.

The average results of these runs are presented in Table I.
The columns are as follows; ¢ is the average initial path cost,
Ceng final path cost and the other is number of iterations.
From Table I, it can be seen that the most significant
improvement is node rejection. Node rejection increases the
number of iterations by more than 90% on top of plain RRT*
algorithm. Inclusion of local biasing decreases the final cost,
but the positive effect is not as strong as in the node rejection
case. This is partly because the environment is small and all
the trees more or less explore the necessary part of the space
to converge on a low cost.

The effect of local-biasing is more prominent during the
initial iterations. This is explored by analyzing a typical run
in detail. Figure 5 shows that local biasing has an impact
on initial cost decrease. This is beneficial for our scenario in
which remaining time is used for path improvements. Figure
6 shows the initial tree (same for all conditions) and the final
trees for different conditions. Note that these final trees are
not exhaustive and there are other cases. It can be seen that
the local bias smoothes and shortens path and node rejection
keeps the tree less spread. Note that the PL condition was
not able to converge to the optimal path (see figure 6(c)), but

8.5

Cost

6.5

5.5

4'50 0.2 0.4 0.6 0.8 1

Time

Fig. 5. Path cost versus time taken for a single run in the 2D case.

e YL 1
Qperd N/

4}1“" B
/ g
::‘.>\ ?‘ At
GOAL ',,\»XLJ' :ﬁf)
T £1¥
START XS. \ A~ T X
T
ro3
iz

(a) The navigation envi- (b) Tree when the first
ronment path is found

(d) Final Tree for NR

(e) Final Tree for LB (f) Final Tree for CO

Fig. 6. The shape of typical trees for different conditions at 1 sec.

it would have given more time. The time evolution of each
method is present in the accompanied video.

B. 7D Manipulation Case

This case is relatively hard to solve, similar to the one in [§].
We compare the bi-directional version of our algorithm with
the bi-directional version of RRT* since single tree versions
are not sufficient for this problem. The environment is shown
in figure 7. We used the same parameters as before except
we set B = 0.4 to compensate for the larger space. We again
take the 10 pre-specified random seed approach to test our
algorithm. We gave each condition a time budget of 300sec.
We denote the conditions with a bi prefix (e.g. biPL).

The average results of these runs are presented in Table II.
It can be seen that node rejection does not contribute by

Fig. 7. The manipulation environment, start (left) and goal (right)
configurations.

TABLE I
7D PERFORMANCE FOR A TIME BUDGET OF 300sec. RESULTS AVERAGED
OVER 10 RUNS. PARENTHESES INDICATE STANDARD DEVIATION.

cy Cend Iteration
biPL 22.48 (1.86) 21.01 (1.39) 61766 (8869)
biNR 22.48 (1.86) 21.01 (1.39) 60043 (8942)
biLB 22.48 (1.86) 17.25 (1.66) 49991 (12359)
biCO 22.48 (1.86) 17.21 (1.66) 50209 (12384)

itself. We argue that the reason is the restrictive nature of
the space. Node rejection helps when the search space is
wide. On the other hand, local-biasing decreased the cost by
23.4% on the average whereas RRT* decreased it by 6.5%.
Figure 8 shows a typical cost evolution versus time plot. It
can be seen that initial cost decrease is prominent which is
the desired result in our scenario. For some random seeds,
biPL and biNR did not decrease the cost at all and for others
biLLB and biCO performed significantly better. The halting of
cost decrease in biPL and biNR supports the hypotheses of
path nodes eventually becoming inner nodes. Moreover, the
resulting motion of the arm is smoother for the biCO, as can
be seen in the accompanying video.

Plain RRT* algorithm finds the initial path fastest whereas
our algorithm finds it later. We argue that streamlining the
implementation of our algorithm would help close the gap.
Note that biPL and biNR have almost the same performance
which suggests that best path calculation (for our algorithm)
does not significantly effect the performance.

The results show that local-biasing is a promising sam-
pling heuristic to accelerate cost decrease in sampling-based
planners. Node rejection, with its current implementation,
is not very useful when the space is restrictive and may
be omitted. However, its impact on computation time is
negligible, thus it is recommended to be kept.

VI. CONCLUSION

RRT* algorithm is a big step towards incorporating the
notion of cost and introducing probabilistic optimality into
the domain of sampling-based planners. However, its direct
implementation is not practical for high dimensional spaces.
RRT#* needs simple heuristics to make it more practical as
RRTs needed simple heuristics to make them efficient.
Towards this end, we have developed a sampling based
planner that adds two improvements over RRT* and imple-
ments a bi-directional version. This new planner can address
the challenges of RRT* in high dimensional spaces and
make it more efficient in general. The planner lets the user
have control over exploration and exploitation by providing

23

22r

201

Cost

191

18

1¥40 160 180 200 220 240 260 280 300
Time

Fig. 8. Path cost versus time taken for a single run in the 7D case.

parameters. The heuristics are simple and can readily be
incorporated into existing sampling based planners.

More informed local biasing, tighter node rejection criteria
and deeper analysis of the effects of heuristic parameters (e.g.
Fmin&Fmayx) are the immediate extensions of this work. Adapt-
ing the biasiness parameter according to the cost decrease
performance is also an interesting topic. There are also other
potential heuristics that can further improve performance.
Incorporating cost both into sampling and into tree growing
is an attractive future research direction.

ACKNOWLEDGEMENTS

We would like to thank Neil Dantam, Jon Scholz, Ana
Huaman and our reviewers for their helpful comments. This
work is partially supported by NSF grant IIS-1017076.

REFERENCES

[1] L. Kavraki, P. Svestka, J. claude Latombe, and M. Overmars, “Proba-
bilistic roadmaps for path planning in high-dimensional configuration
spaces,” in IEEE ICRA, 1996, pp. 566-580.

[2] S. M. Lavalle, “Rapidly-exploring random trees: A new tool for path
planning,” Towa State University, Tech. Rep., 1998.

[3] J. Kuffner and S. M. Lavalle, “Rrt-connect: An efficient approach to
single-query path planning,” in JEEE ICRA, 2000, pp. 995-1001.

[4] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” Int. J. Rob. Res., vol. 30, pp. 846-894, June 2011.

[5] C. Urmson and R. Simmons, “Approaches for heuristically biasing rrt
growth,” in IEEE/RSJ IROS, October 2003.

[6] D. Ferguson and A. T. Stentz, “Anytime rrts,” in /IEEE/RSJ IROS,
October 2006, pp. 5369 — 5375.

[7]1 L. Jaillet, J. Cortes, and T. Simeon, Transition-based RRT for path
planning in continuous cost spaces. 1EEE/RSJ IROS, Sep. 2008.

[8] M. Rickert, O. Brock, and A. Knoll, “Balancing exploration and
exploitation in motion planning,” in JEEE ICRA, 2008, pp. 2812-2817.

[9] R. Alterovitz, S. Patil, and A. Derbakova, “Rapidly-exploring
roadmaps: Weighing exploration vs. refinement in optimal motion
planning,” in IEEE ICRA, 2011.

[10] A. Yershova, L. Jaillet, T. Simeon, and S. M. LaValle, “Dynamic-
domain rrts: Efficient exploration by controlling the sampling domain,”
in /[EEE ICRA, 2005, pp. 3867-3872.

[11] S. M. Lavalle and J. Kuffner, “Randomized kinodynamic planning,”
The International Journal of Robotics, 2001.

[12] P. C. Chen and Y. K. Hwang, “SANDROS: A dynamic search graph
algorithm for motion planning,” IEEE Transactions on Robotics &
Automation, vol. 14, no. 3, pp. 390403, 1998.

