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Abstract—With the continued improvements in portable com-
puting power and sensing systems it is becoming more common
for groups of robots to cooperate to achieve a goal. When the
robots are operating in an initially unknown environment, the
most natural form of cooperation is multi-robot exploration.
For many years frontier based approaches have been commonly
used to assign target points for each of the robots in the group
based on expected information gain and distance to travel. In
this paper we present an expansion to these approaches allowing
for the incorporation of multiple objective utility functions that
allow adjustment of the exploration priorities both for the
individual robots and the group as a whole. In addition, we
discuss real world results of our algorithm including our first
place finish at the Old Ram Shed Challenge and second place
at the MAGIC2010 main competition.

I. INTRODUCTION

Before a group of robots can perform a task, they must
first gain knowledge about their local environment. This may
come in the form of an a priori model of the environment
or it may have to be discovered in an online fashion. The
exploration task requires that a collection of sensor robots
systematically traverse an environment in order to locate
static and dynamic obstacles. Trade-offs between the rate
of exploration versus the thoroughness of exploration must
be made in order to minimize the overall search time. In
addition, the algorithm must be capable of working in any
environment with a minimum set of assumptions on robot
behavior and sensing capabilities. For single robots there
are a variety of approaches that can be used to guide the
robot towards unexplored areas. One of the most common
approaches is using the concept of the boundary between
the known areas of the map and the unexplored regions. The
non-obstacle portions of this boundary are collectively known
as the frontier [1] and are used as candidate goal points.
Algorithms have been proposed that extend the basic frontier
exploration scheme to multi-robot teams [2], [3], [4], [5] and
outdoor environments [6].

When evaluating potential target points for the next goal
location, most exploration algorithms use a combination of
the information gain from sensing while traveling to the target
and the cost of moving to that point. The information gain
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can be specified in several ways however, a typical method
is to set the information gain for a state equal to a function
of the knowledge about all states visible from that state. The
information gain for a trajectory is equal to the sum of the
information gain of all the states along the trajectory. It must
be recognized that as each state is entered it may change the
amount of certainty in surrounding states and thus lower the
information gain for subsequent states along the trajectory.
Due to this non-Markov property optimizing the information
gain over trajectories is computationally expensive, and many
algorithms estimate the information gain of a trajectory by
using the information gain of the final point [4], [5], [7]
while a few have attempted to explicitly include the expected
information gain along the entire trajectory [3], [8]. Others
have combined the information gain with additional features
such as communications constraints [9] or improved physical
models such as the likelihood of specular reflection from
nearby obstacles [10]. When combined with other features
the information gain is generically referred to as the utility
of the state. Similarly, the cost can be viewed as a function
of time, energy, or distance between the goal and the start
state.

The combination of the states utility and its cost directly
affect the order in which states are selected as potential goals.
This selection process can be centralized or distributed and
can be performed through the use of a market architecture
[5] or through a high-level task allocation scheme using Petri
Net Plans [11]. However the most straightforward method
is a greedy assignment that selects the best robot-goal pair,
assigns that to the robot, removes that robot from further
consideration adjusting the utility of all states to reflect the
assignment, and then repeats until there are no unassigned
robots[12], [9]. This is the method we have adopted in our
implementation.

The planning algorithm frequently has to take additional
information into account, such as communication range lim-
itations, sensor effectiveness and range, and terrain traversal
costs. This paper introduces an algorithm for cooperative
multi-robot exploration that utilizes a variant of a frontier
based approach with the ability to specify specific hard
and soft constraints on the robot through a central planning
algorithm. We will specifically demonstrate a utility function
incorporating soft constraints on maximum and minimum
inter-robot distances and a heading bias. While a few ap-
proaches allow for a generalized multi-feature utility function
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[13] ours differs in that we also allow for the creation of
logical areas to influence the exploration priorities. We define
these logical areas or regions as a set of states assigned to
one or more robots (either specifically or ordinally, e.g. to the
“first and second to arrive”) and an associated weight matrix.
This concept can allow a higher level planning system or
expert input to influence the direction and areas of primary
exploration. We will show an implementation that uses pre-
ferred and avoidance regions specified by human experts at
intervals during run-time. Our implementation also calculates
the information gain over the entire trajectory allowing for
a more accurate estimate of a states utility. Our algorithm
will be demonstrated on a two-dimensional grid based map,
although it is expandable to any graph based representation
of the environment. In addition, we show results of this
algorithm applied to a team of eight robots in a combined
indoor and outdoor environment as part of the MAGIC2010
challenge.

II. ALGORITHM

Overview

The algorithm attempts to find the “best” goal state in
terms of the given cost function and then find the optimal
route to that end state. The “best” state is dependent on
distance/effort/time to arrive, amount of new information
available at that state, and any adjustments based on the
active constraints. To accomplish this, the algorithm used in
our implementation can be divided into three primary stages:
pre-processing of the input map, approximate ranking of the
frontier states based on a heuristic, and forward simulation
of the most promising goal states to determine the best
assignment for each robot, as seen in Algorithm 1.

The pre-processing stage generates the coverage, cost,
distance and information gain (IG) graphs for use in the
later stages as shown in lines 2-4 of Algorithm 1. These
graphs are used as the basis for conducting the search for a
candidate trajectory. To increase the likelihood of choosing
the optimal goal state each frontier state is placed in a sorted
list ranked by the estimated utility score divided by the cost
to reach that state as part of the second stage of the algorithm,
lines 8-10. In the third stage, lines 11-22, the paths to these
states are forward simulated in rank order and the best goal
state is assigned to the corresponding robot. Since the IG is
dependent on the trajectory taken, finding a globally optimal
path is intractable for online real-time applications, instead
we settle for its approximation.

The estimated utility score is composed of the information
gain per unit traversal cost along with any bias terms related
to the additional features and their associated weights. By
using the information gain per unit traversal cost to select
the next path, the algorithm may bypass isolated states while
moving towards larger unexplored areas of the map. By
applying a weighting factor to the traversal cost the ratio can
be skewed to make information gain more or less important
relative to the distance. In this way the thoroughness of explo-
ration can be adjusted to meet the exploration requirements.
The bias term has been introduced to control robot behavior

such as minimum and maximum separation distances, and
region assignments.

While our implementation uses a two-dimensional 8-
connected grid map as our base graph, the algorithm is
capable of operating on any graph based map.

Algorithm 1 Exploration Algorithm
1: // pre-process maps
2: [costMap,coverageMap] = process(map m)
3: costMap = inflate(costMap)
4: distMap = dijkstras(costMap, coverageMap)
5: RR = remainingRobots()
6: while RR.notEmpty do
7: // calculate IG and rank states
8: IGMap = infoGainEstimate(coverageMap)
9: bias = calcBias(m)

10: frontierHeap← calcScore(RR, IGMap, distMap, bias)
11: while t < planTime do
12: // forward simulate each state
13: pt ← frontierHeap.pop
14: ξ = planPath(pt)
15: score = evaluateTrajectory(ξ);
16: if bestScore < score then
17: bestScore ← score
18: bestTraj ← ξ
19: bestRobot ← pt.robot
20: robotGoals[bestRobot] ← pt
21: end if
22: end while
23: coverageMap ← coverageMap ∪ visible(ξ)
24: RR.pop(bestRobot);
25: end while
26: return robotGoals

Stage 1: Map Processing

In the first stage of the planner, the input map is pre-
processed to gather the necessary statistics for adequate rank-
ing. The input map is an m by n grid with values proportional
to the log probability of each state being occupied or free.
The output is a set of array’s.

The cost map is the first array and it represents the
environment as an m by n grid with the value of each
state proportional to the cost of traversing the corresponding
state of the input map. This cost value can be augmented to
include other factors such as time or energy to traverse the
state. In our implementation the cost is proportional to the
distance moved through the state. This cost map is augmented
by a buffer applied to each non-traversable obstacle. This
artificially increases the cost associated with traversing near
obstacles; in effect forcing the robots to take longer paths but
providing additional margin to collision. These parameters
can be specified and updated at any time by the higher level
systems to adjust the behavior of the robot.

The m by n by r distance map is the second array
generated. The m and n dimensions are identical to those
used for the cost map while the r is the number of robots
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currently exploring. Each m by n layer, rid, has values
corresponding to the distance in meters from a given state
to robot id as calculated using a standard Dijkstra’s search
algorithm on an 8-connected grid. For our implementation
we did not allow traversal of unknown areas by setting the
cost for all unknown states to +∞ prior to running the
Dijkstra search, however any non-negative weight can be
given to unknown areas depending on the desired traversal
characteristics.

The third and final array is the coverage map which
provides an estimate of the IG possible from each cell. The
IG is derived from the occupancy grid provided as input.
As the absolute value of the information about a state grows
higher (the state is more confidently free or more confidently
an obstacle), the level of knowledge about that state increases.
Each state k is assigned a value qk that is inversely related
to the level of knowledge of that state; in a state for which
no doubt existed q = 0, whereas for a completely unknown
state q = 1. As the robot learns more about a state k through
sensing, the qk value decreases towards zero. Since the value
of qk is a measure of the confidence of the sensor reading for
state k, it can be converted directly from the log probability
of occupancy (if using an occupancy grid) or derived from
the sensor model. The IG then is calculated for a state j from
the coverage map by equation 1.

igj =
∑

k∈vis(j)

qk (1)

The function vis(j) returns the set of states visible from
a state xj . For our implementation vis(j) assumed a hor-
izontally mounted laser scanner capable of sensing along
rays emanating from the robot and extending out to the first
obstacle taller than (and thus intersecting with) the plane of
the sensor. This can also be a probabilistic model of the
sensor suite, to account for less accurate sensors.

If a state k is visible from two states i and j, then the IG
of i and j become dependent on the order the two are visited.
Once the robot enters state i, it will gain knowledge of state
k lowering its q value resulting in state j having a lower
IG. Due to this interdependence between all of the available
states, the IG for a given cell at a given time can only be
estimated. Initially, we set IGj,estimate to the IG value igj
assuming that the robot does not gain any information prior to
reaching state xj . This assumption leads to an over-estimation
of the IG of a state.

Stage 2: Ranking Frontier States

The second stage of the algorithm is the determination of
an ordered list of frontier states. A frontier state is a state that
is known (q = 0) and that has at least one of its 4-connected
neighbors with q 6= 0. Each frontier state, i is ranked based
on the score calculated element-wise as in equation 2. The
frontier list itself is simply a max-heap based on the score
of each entry.

score[i] =
(IGi,estimate)

ExpTradeOff

(distance[i])(1−ExpTradeOff)
·biasr·biasd·biasγ

(2)

The IGestimate and the distance values are taken directly
from the IG and distance maps, respectively, computed in
the first stage. The ExpTradeOff value is a user selected
parameter that adjusts the relative importance of distance
relative to IG. As ExpTradeOff approaches 1 the algorithm
prefers higher IG goals, as it approaches 0 it prefers lower
cost (shorter) paths, and when ExpTradeOff = 0.5 it is
neutral. The final term, biasr·d·γ is a robot specific term that
is the product of three additional elements to control the goal
selection process; region bias, distance bias, and repetition
reward. Since this and the distance term are robot specific,
a given frontier cell will be in the frontier list as many times
as there are robots exploring. Therefore, each individual entry
on the frontier list specifies a robot-goal state pair.

During exploration with heterogeneous robots, it may be
desirable to have a specific robot explore a specific subset of
the environment. The algorithm handles this by allowing two
distinct types of region assignment. The first is to assign a
robot id to a given region, the other is to specify the number
of robots allowed into a given region without specifying
discrete id’s.

The region bias term encodes this region information into
the score of each frontier cell. In the first case, the region has
a user specified set S of robots explicitly tasked to explore
the area and a multiplier m specifying the level of attraction.
For a robot numbered id the region bias is calculated by
equation 3.

biasr =

{
m id ∈ S
1
m otherwise

(3)

The second type of region has no specified set of robots
assigned to explore it. For this type of region the bias is
calculated by equation 4. This function allows for up to n
robots to be in an area without penalty.

biasr =

{
m id is among the first nrobot(s) in the region
1
m otherwise

(4)

Both types of regions reward robot-goal state pairs that
place the robot either in their assigned regions or into a region
without too many other robots as we have implemented it.

The distance bias only applies to robots in the same region.
For these robots, a penalty is applied to any goal state
evaluation that results in the robot being either too far or
too close to another robot’s assigned goal state. The distance
bias is given by equation 5.
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biasd =


1 if only robot in region
1 Dmin ≤ dnearest ≤ Dmax

dnearest

Dmin
· penalty dnearest < Dmin

Dmax

dnearest
· penalty dnearest > Dmax

(5)

Dmax and Dmin are the maximum and minimum ranges
desired between a robot and its nearest neighbor. For our
implementation, Dmax is based on wireless coverage range,
to prevent loss of network connectivity, while Dmin is based
on maximum sensor range, to minimize unnecessary overlap.
The penalty term is used to tune the relative importance of
the distance bias term.

The final bias term provides biasγ to the robot for selecting
the same goal as during the previous iteration. This term
effectively requires a new goal state to be at least γ times
better than the previous goal before the robot would rank it
higher and thus change goal states. With this implementation
adding penalties or rewards to the utility function based on
additional features was made simple since all bias terms were
multiplicative.

At the end of this stage of the algorithm, all of the frontier
states are in a sorted list, once for each robot.

Stage 3: Forward Simulation and Goal Assignment

The third stage of the algorithm is to forward simulate the
paths to potential goal states in order to determine a better
estimate for the IG. During this stage the highest ranked
frontier state-robot pair is selected from the frontier list
and the trajectory is forward simulated to determine which
states can be observed based on the current obstacle map.
This IG is then used in equation 2 in place of IGestimate
to determine the actual score for the state-robot pair. As
processing time allows, additional frontier states are removed
from the frontier list and forward simulated, with the best
robot-goal state pair being saved. At the conclusion of the
allowed processing time, the state with the highest score is
paired with its associated robot, and that robot is removed
from the list of eligible robots. The IG array is recalculated
based on the predicted movements of the newly assigned
robot and stage two and three are repeated for the remaining
robots. This process repeats until the last robot receives an
assignment. In this way each robot has received the best
overall assignment that it could have from the states that
were forward simulated.

Example

As an illustrative example, Figure 1 - 3 depict various
snapshots of the exploration process. For this sequence, six
robots were used with an effective sensor range of 7m.
The ExpTradeOff value was 0.5, multiplier m was 1000,
penalty was 1 and Dmax and Dmin were 50 m and 15
m, respectively. In Figure 1, the robots have just begun
their exploration routines. The robots have separated into two
groups with the spacing within each group at the lower end of
the allowable window. By Figure 2 robot 5 has found one of

Figure 1. Six robots beginning an exploration simulation. The black area
to the right is unknown, white is free space and the thick colored lines are
the exploration trajectories for the next time step.

0 100 200 300 400 500

Figure 2. After ten minutes of exploration, robot 5 has entered a building
area in the upper left corner.

the general exploration regions around an explorable building
in the upper left corner of the image and has begun the
exploration of the interior. After forty minutes of exploration,
the map is largely complete with robot 3 surveying the other
accessible building, and the other robots cleaning up islands
of unknown regions as shown in Figure 3.

III. RESULTS

A. Simulation Results

The algorithm was run on a series of randomly generated
2-dimensional grid maps similar to Figure 4 of varying sizes.
During testing the minimum distance was set to the sensor
range we saw in practice while the maximum sensor range
was based on communications distances. A range of values
was tried for all other user adjustable values and validated
during subsequent real-world testing. The final values used
for all of the tests were ExpTradeOff set to 0.5, and
biasr to 1000 and 0.001 for the first and subsequent robots,
respectively. The distance bias penalty was set to 1 and
Dmin = 20 m and Dmax = 50 m. The robot was given
a sensing radius of 10 m and was allowed up to 0.3 sec of
planning time during the forward simulation stage, resulting
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Figure 3. After 40 minutes of exploration. Robot 3 has now entered a
building in the center right while robot 5 has finished the upper left building
and resumed exploration outside. The medium thickness lines are exploration
trajectories longer than one time step; the robot will complete the heavy line
prior to the next trajectory evaluation.

Figure 4. Example of the randomly generated map used to test the algorithm

in an overall system replan every 10 sec. The robots were
also assumed to have a top speed of 1 m/s allowing 10 m
maximum between replans. To test the algorithm, 5 robots
were run on maps of 2000 × 2000 cells at 0.1 m per cell.
The results can be seen in Figure 5 displayed as the fraction
of the accessible space explored versus number of time steps.
In addition, a combined indoor/outdoor map was generated
to show the effect of logical area assignments and a hard
inter-robot distance constraint, as shown in Figure 6 and 7.

B. Real Robot Results: MAGIC2010 Challenge

This algorithm was put to use on the University of Penn-
sylvania’s team for the Multi-robot Autonomous Ground In-
ternational Challenge 2010 (MAGIC2010) held in Adelaide,
Australia in November 2010. For the main competition, a
team of robots were required to enter an area comprised of
indoor and outdoor environments, explore it, identify five
different types of Objects of Interest (OOI’s) and provide
a detailed map with the objects locations pinpointed. In
addition, for two types of objects, a specific sequence of

Figure 5. Exploration versus Time Step (10 second increments) for a 2000
by 2000 cell map at 0.1 m resolution and comprised of ~11% obstacle
cells. Solid line represents the average fraction of free cells that have been
detected while the error bars represent the maximum and minimum over the
five random maps.

Figure 6. Comparison between coverage rate with and without regions for
the case with no inter-robot distance constraints. When the robots are free
to wander they perform about the same in both cases.

Figure 7. With distance constraints there is a clear advantage to specifying
regions for exploration.
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Figure 8. One of the University of Pennsylvania’s MAGIC2010 robots.
The robots used two laser range scanners, an omni-directional camera, and
a panning camera to gather information about the environment. An on-board
Mac Mini provided computational power, and a 802.11 antenna provided the
data link with the ground control station (GCS). (Photo ©2010 Paul Vernaza)

actions had to be performed before a robot could move past
the OOI. Two of the OOI types were mobile, while the rest
were stationary. A second competition using a similar set of
rules, but without any mobile OOI’s and conducted entirely
indoors was also held.

In the main competition, the team took 2nd place. Unfor-
tunately, unrelated mapping issues prevented the gathering
of useful data regarding the exploration algorithm. However
for the second competition, the exploration algorithm was
able to completely map a space approximately 3600 square
meters with 5 robots in under 35 minutes, identifying 9
of 12 OOI’s in the process and garnering a first place for
the team. For this implementation the algorithm was given
five seconds total to process before having to provide an
assignment for each of the robots. Computation occurred on
a 2.80GHz quad-core i7 running Ubuntu 10.04. Eight threads
were spawned to evaluate the frontier cells and perform other
tasks concurrently. The playback of this event can be found
in the accompanying video.

IV. CONCLUSIONS AND FUTURE WORK

In this paper we have presented an extension of the
frontier-based approach to multi-robot exploration that allows
for the incorporation of multiple objective utility functions.
This extension enables us to adjust the exploration priorities

both for the individual robots and the group as a whole.
The algorithm was implemented on a team of five physical
robots that took the first place at the Old Ram Shed Challenge
and second place at the MAGIC2010 main competition, both
devoted to search and rescue operations.

Several of the steps of the algorithm can be performed
concurrently, however, the requirement to forward simulate
the paths is still the largest hold up in terms of being able to
guarantee optimal results. While some of this is due to the
inherent non-Markov properties of information gain, there
remains some optimizations that could be done in order to
process more possible frontier states during each planning
cycle. Additional work to remove or at least diminish the
central planning aspect remains to be done.
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