
c©2012 IEEE Source code for the presented methods is now available at: http://www.cogsys.cs.uni-tuebingen.de/software/sparsestereo

A New Feature Detector and Stereo Matching Method for Accurate
High-Performance Sparse Stereo Matching

Konstantin Schauwecker∗, Reinhard Klette† and Andreas Zell∗
∗University of Tübingen, Wilhelm-Schickard-Institute, Dept. Cognitive Systems, Sand 1, 72076 Tübingen, Germany
†Computer Science Department, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand

Abstract— Hardware platforms with limited processing
power are often incapable of running dense stereo analysis
algorithms at acceptable speed. Sparse algorithms provide an
alternative but generally lack in accuracy. To overcome this
predicament, we present an efficient sparse stereo analysis
algorithm that applies a dense consistency check, leading
to accurate matching results. We further improve matching
accuracy by introducing a new feature detector based on
FAST, which exhibits a less clustered feature distribution.
The new feature detector leads to a superior performance of
our stereo analysis algorithm. Performance evaluation shows
that the proposed stereo matching system achieves processing
rates above 200 frames per second on a commodity dual core
CPU, and faster than video frame-rate processing on a low-
performance embedded platform. The stereo matching results
prove to be superior to those obtained with ordinary sparse
matching algorithms.

I. INTRODUCTION
Intelligent systems that react on their spatial environ-

ment, and possibly also interact with it, require accurate 3-
dimensional perception in general. Examples of such systems
are augmented reality systems, mobile robots, or advanced
driver-assistance systems. Environment perception may be
implemented by means of multiple cameras and stereo vision
techniques. This option only requires low-cost hardware
compared to more expensive sensors such as LIDARs, but
these techniques are, in general, more demanding in terms
of algorithmic complexity or power consumption.

Current dense stereo matching algorithms are typically too
slow for processing input imagery at video frame rate on
today’s hardware. Exceptions are efficient algorithms such as
semi-global matching (SGM), which is capable of real-time
video processing when run on a GPU [1] or purpose-designed
FPGA [2]. Unfortunately, powerful GPUs or FPGAs are
often not present on available hardware platforms.

We are interested in small mobile robots such as au-
tonomous micro air-vehicles (MAV) with a very limited
payload, or hand-held augmented reality devices. In such
cases, not only processing power is limited, but also power
consumption is crucial. Furthermore, stereo vision is just
a low-level vision task and should not consume all the
processing power available, but leave sufficient resources for
higher-level operations. Thus, there is still a need for efficient
stereo matching algorithms for small intelligent systems.

One way to achieve faster processing rates is to use sparse
or feature-based stereo algorithms, which did not receive
much attention in recent years. Although they provide much
less information than dense algorithms, this information can

be sufficient for a set of applications. For example, visual
SLAM algorithms such as in [3] rely on mapping a sparse
set of features. A sparse stereo matching algorithm would
hence integrate well into common visual SLAM approaches.

The problem with usual sparse stereo matching algorithms
is, however, that their results are of a lower quality com-
pared to current dense algorithms. This is because sparse
algorithms only consider few pixels when deciding about
matching feature pairs. In contrast, this paper proposes a
new algorithm that matches a sparse set of feature points
but considers a dense set of pixels for finding matches. We
also introduce a new feature detector that provides superior
results when used for stereo matching, and which might also
improve accuracy for other feature-based vision tasks.

The stereo matching system we propose has been suc-
cessfully used for the creation of an autonomous quadrotor
MAV that was presented in [4]. This MAV performs on-board
stereo matching and visual odometry in real-time to estimate
its current pose. Given the limited on-board processing re-
sources, such an MAV would not have been possible without
an efficient sparse stereo matching algorithm.

II. RELATED WORK

Throughout the 1980s, sparse stereo matching algorithms
have been an active field of research. With improved perfor-
mance of dense algorithms in recent years, interest in sparse
methods decreased and nowadays they only receive very little
attention. Much of the early work on sparse stereo matching
has been summarized in [5].

One very simple and fast dense algorithmic approach is
block matching. For a recent example of a very fast imple-
mentation based on this method, with comparisons to other
real-time algorithms, see [6]. The reported implementation
processes approximately 63 frames per second on a CPU, on
test data of 320 × 240 resolution, and for only 16 disparity
levels.

Current global or semi-global dense stereo matching algo-
rithms generally provide better results than block matching,
but require significantly more computation time on a standard
CPU. While it is possible to speed-up such algorithms on
FPGAs or GPUs, as has been demonstrated for SGM in [2],
[1], software implementations like e.g. the one published in
[7] are still far too slow for processing at video frame rate.

The described situation is our motivation to reconsider
sparse stereo matching. Much progress has been achieved in
the computer vision community since sparse stereo matching

has been neglected, and some of these findings (e.g. feature
detectors) can be used to build a modern sparse stereo
matching system.

For an evaluation of relevant state-of-the-art feature detec-
tion algorithms we refer to [8]. This evaluation shows that
complex methods such as SIFT [9] or SURF [10] deliver
‘very good’ detection results, but those methods are also very
costly in terms of computation speed. The fastest examined
algorithm was the FAST feature detector published in [11].
This method even outperformed the Harris corner detector
[12] that was popular in earlier applications.

FAST compares the image intensity at a given pixel to
the intensities of the pixels on a corresponding circumcircle.
A feature is detected if a contiguous arc is found that is
significantly brighter or darker than the center pixel. To
minimize the number of comparison operations, this arc is
detected with the help of a decision tree, generated by a
machine learning algorithm. A more efficient implementation
of this detector was published in [13], which uses two diverse
decision trees for homogeneous and heterogeneous image
regions, and switches between both trees according to the
previously observed pixel configuration.

Other work, relevant to the methods being presented,
include the census transform [14], which is a non-parametric
image transformation. In this transformation, every pixel is
replaced by a bit-string combining the comparison results of
the intensity of a pixel with those intensities in its neigh-
borhood (i.e. a local window). Using the census transform
for pre-processing prior to stereo matching can significantly
improve the matching robustness [15].

Another technique that is important for our research is
the left-right consistency check [16], which is used in many
modern stereo matching algorithms. This method aims at the
elimination of false matches that usually occur at occlusions,
which are detected by first matching the left image to the
right image, and then repeating the matching process in
opposite direction. In results that are not consistent, at least
one of both values is false, and they are suppressed.

III. FEATURE DETECTION

A. Adaptive Threshold

Before focusing on sparse stereo matching, we choose
an adequate feature-detection algorithm. As our aim is to
design a high-performance stereo matching method, selecting
FAST seems to be a natural choice. However, results of
this algorithm are not ideal for a stereo vision system. We
observed that FAST tends to detect many features in high-
contrast areas, but only few in image areas with less contrast.
This can lead to a situation where many features are clustered
in a relatively small area; for an example, see Fig. 2a.

This behavior is undesirable for applications such as
vision-based navigation, as it can cause obstacles to be
missed if they do not provide sufficient contrast for feature
detection. To make this effect less severe, we propose to
extend the FAST algorithm by using an adaptive threshold,
such that the detection-threshold for features in low-contrast
areas is smaller than for features in high-contrast areas.

Fig. 1: Pixels used for feature detection. Grey pixels in the
middle are averaged and compared to the circumcircle.

The main advantage of FAST is its high speed; its
extension has to guarantee that the performance of the
original algorithm is not drastically changed. Applying a
local contrast measure before running FAST could reduce
the performance by an order of magnitude or more.

To solve this problem we employ a two-stage process:
First, we run a FAST detector sped-up with SSE instruc-
tions, without non-maximum suppression and a low constant
threshold tc. This leads to the detection of many features, as
shown in Fig. 2b. For each detected feature, we calculate
an adaptive threshold and rerun the FAST detection. Only if
a feature point passes both detection steps, it is considered
valid. A non-maximum suppression can then be applied.

We define the adaptive threshold ta to be the product of
image contrast and adaptivity factor a > 0. Rather than
using the common root-mean-square contrast as measure, we
use a simplified version based on absolute differences that
avoids the computation of a square root. The formula for the
threshold computation is given in Eq. (1), where p is a pixel
from the local neighborhood Ni of feature point i, Ip the
intensity at p, and Ī the average intensity of all pixels in Ni.
As local neighborhood we choose the 16 pixels on the circle
of radius 3 used by FAST

ta =
a

|Ni|
∑
p∈Ni

|Ip − Ī| (1)

B. Averaged Center

For the original FAST detector, the pixel with the highest
impact on feature detection is the central pixel that is com-
pared to all pixels on the circumcircle. Noise for this pixel’s
intensity can either impede the detection of obvious features
or cause the detection of false or insignificant features. To
reduce this effect in our detector, we compare pixels on the
circumcircle to the average of five pixels at the circle center;
see Fig. 1. Only performing this average calculation for the
features selected by the first stage is faster than applying a
similar smoothing method to the entire image.

We combine the use of the mean with the adaptive thresh-
olding. For the rest of this paper we refer to the resulting
algorithm as extended FAST or exFAST. An example for the
performance of this algorithm is given in Fig. 2c.

IV. STEREO MATCHING

Our sparse stereo matching algorithm is based on the
census transform for which we use a 5 × 5 window. Com-
pared to simpler methods like the commonly used sum-of-

(a) FAST (b) First Stage (c) exFAST

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0 50 100 150 200 250 300 350 400

A
v
e
ra

g
e
 C

lu
s
te

re
d
n
e
s
s
 s

Average Number of Features

exFAST
FAST
Harris

FAST with adaptive threshold
FAST with averaged center

(d) Clusteredness

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 50 100 150 200 250 300 350 400

A
v
e
ra

g
e
 R

e
p
e
a
ta

b
ili

ty

Average Number of Features

exFAST
FAST
Harris

FAST with adaptive threshold
FAST with averaged center

(e) Repeatability

Fig. 2: (a–c) Examples for feature detection results, (d) feature clusteredness, and (e) repeatability evaluation.

absolute-differences, the census transform provides superior
robustness. This comes at the price of higher computational
costs. For reducing the performance impact, we implemented
an optimized version using SSE instructions.

Non-maxima suppression of the detected features, as com-
monly applied in feature detection, is only performed for
the left image. By not just retaining the maxima in the right
image, we receive more features to which the features in the
left image can be matched. Experiments have shown that this
method drastically increases the number of correct matches.

For every detected feature, we consider a window centered
at the feature location. We match the census bit-strings of
each window in the left image (the reference image) with
appropriate windows in the right image that are on the same
epipolar line and within the valid disparity range. The result
of a window-matching operation is a cost value that specifies
the dissimilarity of both windows.

In case of the census transform, this cost is computed
by aggregating the bitwise Hamming distance between the
census bit-strings in both windows. To perform this step
efficiently, we use the 64-bit POPCNT instruction from the
SSE4 instruction set, which allows us to simultaneously
process two census bit-strings. Thus, we require a window
with an even width, which is why we chose a size of 6× 5.

On the embedded platform included in our performance
evaluation, however, the 64-bit POPCNT instruction is slower
than four 16-bit lookups in a precomputed table. For this
platform we hence use a lookup table based approach that
uses the more preferred uneven window size 5× 5.

We retain the window pair with the lowest cost as the most
likely match. In a next step, we perform a left-right consis-
tency check. Rather than simply repeating stereo matching in
the opposite direction, we have chosen a different approach,
which further improves accuracy. For a given feature in the
left image, we take the best matching window in the right
image and perform a dense consistency check. This means
that we evaluate all pixel positions in the left image that are
on the epipolar line and within the valid disparity range.

We do not have to perform this consistency check with
the same resolution as the preceding window matching. For
example, we can only consider every other pixel, and thus
almost halve the total number of matching operations.

For filtering-out matches with a high uncertainty, we
impose a uniqueness constraint. The matching cost for a
selected feature pair has to be smaller than the cost for the
next best match times a uniqueness factor u. This relation is
expressed in Eq. (2), where C is the set of matching costs for
all feature pairs with minimum element cmin, and c∗ = cmin

is the cost of the best match:

c∗ < u ·min {C \ {cmin}} (2)

We combine this uniqueness constraint with the left-right
consistency check. Rather than evaluating whether there exist
any matches with a cost c < cmin, we instead evaluate
whether there are any matches with c < u · cmin. This
method ensures dense uniqueness for nearly no additional
computation costs. However, the uniqueness is enforced in
the right-to-left matching direction rather than in the left-to-
right direction used for stereo matching. Due to the speed
benefit of this approach we accept this limitation.

Because we only consider a sparse set of features in
the right image, we can improve the performance of image
rectification. Rather than performing a full rectification of
the input image, as usually applied for dense algorithms, we
only require the rectification of matched feature points. This
strategy can, however, not be applied to the left image in the
dense consistency check. For this step, we pre-compute the
progression of epipolar curves in the unrectified left image,
and then traverse them during the consistency check.

V. EVALUATION

A. Feature Detector Performance

The main contribution of our exFAST detector is an
adaptive threshold aimed at detecting more points in low-
contrast image regions. At the same time, less points should
be detected in high-contrast regions where FAST tends to
detect many points within short distance to each other. Thus,
the distribution of detected features should be less clustered.

To evaluate the effect of our adaptive threshold we require
a metric for quantifying the clusteredness of a feature dis-
tribution. For this purpose, we divide an input image into
a regular grid of 10 × 10 rectangular cells and determine
the fractional amount of points that are within each cell’s
boundary. We use the standard deviation of those fractions as

 0

 1

 2

 3

 4

 5

 500 1000 1500 2000 2500 3000

A
v
e
ra

g
e
 B

a
d
 M

a
tc

h
e
s
 P

e
rc

e
n
ta

g
e
 /
 %

Average Number of Matched Features

exFAST
FAST
Harris

u = 0.5

(a) Stereo matching accuracy

 0.011

 0.012

 0.013

 0.014

 0.015

 0.016

 0.017

 0.018

 0.019

 0.02

 0.021

 500 1000 1500 2000 2500 3000 3500

A
v
e
ra

g
e
 C

lu
s
te

re
d
n
e
s
s
 s

Average Number of Matched Features

exFAST
FAST
Harris

u = 0.5

(b) Clusteredness of stereo matching results

 0

 1

 2

 3

 4

 5

 1 2 3 4 5

A
v
e
ra

g
e
 B

a
d
 M

a
tc

h
e
s
 P

e
rc

e
n
ta

g
e
 /
 %

Consistency / Uniqueness Check Step Width w

exFAST 0.5
exFAST 1.0
exFAST 1.5

(c) Consistency check step width vs. accuracy

 0

 5

 10

 15

 20

 25

 300 600 900 1200 1500 1800 2100 2400 2700 3000

A
v
e
ra

g
e
 B

a
d
 M

a
tc

h
e
s
 P

e
rc

e
n
ta

g
e
 /
 %

Average Number of Matched Features

Dense Consistency
Block Matching

Dense Right
Sparse

(d) Accuracy of different stereo-analysis methods

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1A
v
e
ra

g
e
 N

u
m

b
e
r

o
f
W

in
d
o
w

 M
a
tc

h
in

g
 O

p
e
ra

ti
o
n
s

Uniqueness Factor u

Dense Consistency; w=2
Dense Consistency; w=1

Dense Right
Sparse

(e) Matching operations by stereo-analysis method (f) Stereo matching result

Fig. 3: (a–e) Stereo matching evaluation and (f) example of a result for the used test dataset.

our clusteredness measure s. If feature points are uniformly
distributed, each cell roughly covers the same amount of
points and s will be small, while highly clustered distribu-
tions should lead to large values for s.

With this metric, we performed a comparison of exFAST
against the implementations of the Harris detector and FAST
of the OpenCV library.1 We also included a FAST algorithm
with only an adaptive threshold and one with only the
averaged center proposed in Secs. III-A and III-B. This
allows us to individually judge the contribution of each
extension. Results of this evaluation are shown in Fig. 2d.

We varied the threshold for the Harris detector, FAST
and FAST with averaged center, and the adaptivity factor
a for exFAST and FAST with adaptive threshold. For the
latter two, we chose a constant threshold tc of 10 which,
to our opinion, provides a good trade-off between speed
and clusteredness. The chosen dataset are the unconstrained
motion pattern sequences of the feature detection evaluation
data set published in [8].

Our results show that exFAST achieves by far the lowest
clusteredness scores, while the Harris detector is slightly
more clustered than FAST. However, with decreasing a
and increasing feature count, this difference reduces and
eventually becomes 0. Because we employ an ordinary FAST
detector with threshold tc as the first detection step, the
results of exFAST become more and more similar to FAST
when reducing a.

1See http://opencv.willowgarage.com

Our results further show that the reduced clusteredness can
be credited to the adaptive threshold, as FAST with adaptive
threshold performs almost identically. Although FAST with
averaged center also provides a reduction in clusteredness,
this effect seems insignificant for the combined approach.

We further evaluated the repeatability of matched features
for consecutive frames of the used evaluation sequences. For
the used evaluation measure, see [8]. In simplified notation,
we define this measure as follows:

repeatability =
| {(xa ∈ Si, xb ∈ Sj) | d(xa, xb) < ε} |

|Sj |
(3)

where Si and Sj are the sets of points detected in frames i
and j, d is the distance between two points when projected
into the reference view, and ε is set to 2 pixels.

The repeatability evaluation results are shown in Fig. 2e.
The diagram reveals that the adaptive threshold causes a
significant repeatability reduction, while averaged centers
yield a slight repeatability increase, which matches our
assumption from Sec. III-B. In fact, FAST with averaged
center ensures a higher repeatability than the Harris detector
for large thresholds. Although the adaptive threshold causes
exFAST to achieve the lowest repeatability, we show in the
following section that it performs best for stereo matching.

B. Combined Feature Detection and Stereo Matching

For evaluating the stereo matching performance we chose
the 2006 Middlebury College dataset [17]. Compared to the
datasets from 2001 and 2003 of the same institution, which

are frequently used for evaluating dense stereo algorithms,
the 2006 dataset is more challenging. This dataset contains
more stereo pairs, encompasses a larger disparity range and
features stereo pairs with untextured or repetitively textured
image regions. As a comparison to previous results of dense
algorithms is dispensable, using the 2006 dataset is preferred.
We use the semi-resolution version of the dataset in order
to obtain image resolutions that are closer to the VGA
resolution commonly used for real-time vision applications.
An example for the performance of our stereo matching
system on this dataset is given in Fig. 3f.

As criterion for evaluating the stereo matching accuracy,
we use the percentage of bad matches. A matched feature
pair is considered a bad match if the disparity deviation from
the ground truth exceeds 1 pixel, which is in accordance with
the threshold commonly used for evaluating dense algorithms
[18]. However, as the ground truth resolution of the used
stereo pairs is only 0.5 pixel, the number of bad matches
that we determine might be exaggerated.

The average bad-matches percentage that we receive with
our stereo matching method for three different parameteriza-
tions of each tested feature detector are shown in Fig. 3a. We
chose the parameters such that the algorithms detect similar
numbers of features. For exFAST we used the adaptivity
values {0.5, 1.0, 1.5} and for FAST and Harris detector we
used the thresholds {12, 15, 20} and {2 · 10−6, 5 · 10−6, 1.5 ·
10−5}. For each parameterized feature detector we varied
the uniqueness factor u of the stereo matching algorithm.

Our results show that the proposed stereo matching
method provides a significantly higher accuracy with ex-
FAST compared to FAST or Harris detector. At the same
time, exFAST causes the least clustered distribution of suc-
cessfully matched feature pairs, while the results for the
Harris detector show the highest clustering; see Fig. 3b. This
matches our findings form the previous section. Furthermore,
our diagrams reveal that the uniqueness factor u provides
a trade-off between the number of successfully matched
features, bad matches percentage and clusteredness. As pa-
rameter for our stereo matching method we chose a value of
u = 0.5, which we consider to be a good compromise.

Using exFAST causes the most accurate results, even
though the detected features have the lowest repeatability.
This observation appears to be contradicting. We believe that
this behavior can be explained as follows: If features tend to
be clustered, we receive regions with a high feature-detection
probability. When evaluating two consecutive frames, there
is a high probability that a feature from a dense feature area
in one frame will have a close neighbor when mapped to
the other frame. We therefore conclude that the repeatability
measure is biased towards clustered feature distributions.

For stereo matching we expect to see the opposite effect.
Because the detected features from a clustered area are from
the same image region, their pixel neighborhood is likely to
appear similar. For accurate stereo matching, however, we
prefer features with a unique appearance, which are more
likely to occur if the features originate form different sections
of an input image. Thus, we expect stereo matching to be

biased towards unclustered feature distributions.
As mentioned in Sec. IV, we can perform the consistency

and uniqueness check with larger steps and thus improve
the computational performance. In Fig. 3c we evaluate the
effect of varying step-width w. As expected, the accuracy
decreases with increasing step-width, and computation time
decreases as well. This illustrates another trade-off between
performance and accuracy.

C. Comparison to Other Stereo Matching Methods

In Fig. 3d, the accuracy of our proposed stereo method
(Dense Consistency) is compared to three alternative al-
gorithms. The feature detector used for this experiment is
exFAST with a = 1.0. The three additional algorithms are a
plain sparse algorithm (Sparse) that just matches the features
found in both images, an algorithm that densely matches
features from the left image to the valid disparity range in
the right image (Dense Right), and a dense block matching
algorithm (Block Matching), for which we only evaluate the
points found by the feature detector.

All algorithms use the same matching method, which is
the census window we discussed in Sec. IV. Furthermore,
all algorithms apply our consistency and uniqueness check
with varying u. Except for Dense Consistency, only costs
calculated during stereo matching are used for this check.

The given results show that Dense Consistency and Block
Matching greatly outperform Sparse and Dense Right. Dense
Consistency does not perform as well as Block Matching, but
for lower feature counts (caused by smaller u), this difference
becomes negligible.

Algorithm Sparse performs the worst, which was expected
as this algorithm processes the least matching operations. As
a surprise, Dense Right also performs poorly, even though
it generally requires more matching operations than Dense
Consistency. The key difference between both algorithms
is that Dense Consistency examines the entire image range
relevant for the consistency check. Dense Right, however,
only considers the image locations for which a score has
previously been calculated. We can hence conclude that
dense processing is more relevant during the consistency
check than for the initial matching stage.

For judging the performance of each algorithm, we com-
pared the average number of matching operations in Fig. 3e.
For Dense Consistency, the number of matching operations
depends on the uniqueness value u, as low values of u
allow for an early rejection of wrong matches. For the
other algorithms, the number of matching operations remains
constant. Block Matching has been omitted in this diagram,
as it requires 3.8·107 matching operations, which is far more
than for any other algorithm.

We included two versions of the proposed Dense Con-
sistency algorithm in this evaluation, of which one uses
a consistency and uniqueness check with a step-width of
w = 1, and the other one uses w = 2. Our results show
that the increased step-width almost halves the number of
required matching operations.

Architecture One Core Two Cores
Regular PC (Intel i5 dual core, 3.3 GHz) 151 fps 206 fps
Single Board PC (Intel Core 2 Duo, 1.8 GHz) 64 fps 82 fps

TABLE I: Processing rates on different architectures.

D. Real World Performance Evaluation

To judge the performance of our stereo matching system,
we performed an evaluation on an unrectified stereo sequence
with VGA resolution. The parameters we chose for process-
ing the sequence are: adaptivity a = 1.0, uniqueness u = 0.7,
consistency check step width w = 2, and maximum disparity
dmax = 70. We chose the higher value for u, as real-world
features tend to have a less unique appearance. The sequence
consists of 400 stereo pairs and we successfully match 692
features with the regular and 683 features with the embedded
implementation on average.

We processed this sequence on a computer having an Intel
i5 dual core CPU with 3.3 GHz. We ran a sequential version
of our stereo system and one that utilizes both cores by
means of parallel programming techniques. As the intention
of our work is to enable stereo matching for small low-power
embedded systems like e.g. small mobile robots, we also ran
our performance evaluation on a Kontron microETXExpress-
PC, which is a single board computer complying to the
COM Express Standard. This computer has a size of just
95 × 95 mm and features an Intel Core 2 Duo CPU with
1.8 GHz.

Table I shows results obtained on both architectures. When
using both cores on the regular PC, we achieve an average
processing rate of 206 frames per second, but even when run
on just one core of the low-performance embedded hardware,
the average processing rate is still far above usual video
frame rates. This should leave sufficient processing resources
for high-level vision tasks.

VI. CONCLUSIONS

The paper reports about two main contributions. First,
we presented a new feature detector based on the FAST
algorithm. The distribution of features detected with this
method is evidently less clustered than for plain FAST or
the Harris detector, as shown by our evaluation. Although our
algorithm performs worse than FAST or the Harris detector
for common repeatability measures, its performance was
clearly superior in a combined feature detection and stereo
matching system.

The performance of our algorithm might also be superior
for other feature-based vision tasks. What our evaluation
shows is that repeatability is not necessarily a sufficient mea-
sure for quantifying the performance of a feature detector.
Rather, it should also be taken into account how unique the
matched features are, and how well a given feature detector
performs for the intended application.

The second contribution of our research is a new stereo
matching algorithm that performs a dense consistency check.
Our algorithm proved to be highly efficient and provides
good matching results. Compared to other algorithms that

provide a sparse set of stereo correspondences, our algo-
rithm produces significantly fewer false matches and it can
compete in accuracy with a dense block matching algorithm.

By performance evaluation we have shown that our stereo
matching system is fast enough for real-time stereo matching
on a CPU. We were even able to achieve faster than video-
frame-rate processing speed on a small embedded single
board computer. Using less demanding parameterizations, the
processing time could even be improved. Thus, our stereo
matching system facilitates the application of stereo vision on
platforms for which current dense stereo matching algorithms
are infeasible.

REFERENCES

[1] I. Haller and S. Nedevschi, “GPU Optimization of the SGM Stereo
Algorithm,” in IEEE International Conference on Intelligent Computer
Communication and Processing (ICCP), 2010, pp. 197–202.

[2] S. K. Gehrig, F. Eberli, and T. Meyer, “A Real-Time Low-Power
Stereo Vision Engine Using Semi-Global Matching,” Computer Vision
Systems, vol. 5815, pp. 134–143, 2009.

[3] G. Klein and D. Murray, “Parallel Tracking and Mapping for Small AR
Workspaces,” in IEEE and ACM International Symposium on Mixed
and Augmented Reality (ISMAR), 2007, pp. 1–10.

[4] K. Schauwecker, N. R. Ke, S. A. Scherer, and A. Zell, “Markerless
Visual Control of a Quad-Rotor Micro Aerial Vehicle by Means of On-
Board Stereo Processing,” in Autonomous Mobile System Conference
(AMS). Springer, 2012, forthcoming.

[5] U. R. Dhond and J. K. Aggarwal, “Structure from Stereo – A Review,”
IEEE Transactions on Systems, Man and Cybernetics, vol. 19, no. 6,
pp. 1489–1510, 1989.

[6] M. Humenberger, C. Zinner, M. Weber, W. Kubinger, and M. Vincze,
“A Fast Stereo Matching Algorithm Suitable for Embedded Real-
Time Systems,” Computer Vision and Image Understanding, vol. 114,
no. 11, pp. 1180–1202, 2010.

[7] S. K. Gehrig and C. Rabe, “Real-Time Semi-Global Matching on
the CPU,” in IEEE Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW), 2010, pp. 85–92.

[8] S. Gauglitz, T. Höllerer, and M. Turk, “Evaluation of Interest Point
Detectors and Feature Descriptors for Visual Tracking,” International
Journal of Computer Vision, vol. 94, no. 3, pp. 1–26, 2011.

[9] D. Lowe, “Object Recognition from Local Scale-Invariant Features,”
in IEEE International Conference on Computer Vision (ICCV), 1999,
p. 1150.

[10] H. Bay, T. Tuytelaars, and L. Van Gool, “SURF: Speeded Up Robust
Features,” in European Conference on Computer Vision (ECCV).
Springer, 2006, pp. 404–417.

[11] E. Rosten and T. Drummond, “Machine Learning for High-Speed
Corner Detection,” in European Conference on Computer Vision
(ECCV). Springer, 2006, pp. 430–443.

[12] C. Harris and M. Stephens, “A Combined Corner and Edge Detector,”
in Alvey Vision Conference, vol. 15, 1988, p. 50.

[13] E. Mair, G. Hager, D. Burschka, M. Suppa, and G. Hirzinger, “Adap-
tive and Generic Corner Detection Based on the Accelerated Segment
Test,” in European Conference on Computer Vision (ECCV). Springer,
2010, pp. 183–196.

[14] R. Zabih and J. Woodfill, “Non-Parametric Local Transforms for Com-
puting Visual Correspondence,” in European Conference on Computer
Vision (ECCV), vol. 801. Springer, 1994, pp. 151–158.

[15] H. Hirschmüller and D. Scharstein, “Evaluation of Stereo Matching
Costs on Images with Radiometric Differences,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 31, no. 9, pp. 1582–
1599, 2008.

[16] C. Chang, S. Chatterjee, and P. R. Kube, “On an Analysis of Static
Occlusion in Stereo Vision,” in IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 1991, pp. 722–723.

[17] D. Scharstein and C. Pal, “Learning Conditional Random Fields
for Stereo,” in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2007, pp. 1–8.

[18] D. Scharstein and R. Szeliski, “A Taxonomy and Evaluation of Dense
Two-Frame Stereo Correspondence Algorithms,” International Journal
of Computer Vision, vol. 47, no. 1, pp. 7–42, 2002.

