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A Novel Application of Multivariable L1 Adaptive Control : from

Design to Real-Time Implementation on an Underwater Vehicle

Divine Maalouf1 Vincent Creuze1 and Ahmed Chemori1

Abstract— This paper presents the design and experimental
implementation of an L1 adaptive control on a tethered under-
water vehicle. This controller, well known for its fast adaptation
and its robusntess, is proposed to be applied for the first time in
the field of underwater vehicles control. This paper summarizes
the implementation and experimental results obtained on a
modified version of the AC-ROV underwater vehicle. Various
experimental scenarios are presented to illustrate the ability of
the L1adaptive law not only to successfully control pitch and
depth (even with strong modeling uncertainties), but also to be
efficient towards disturbances like waves or buoyancy changes.

I. INTRODUCTION

Underwater vehicles have gained an increased interest in

the last decades given the multiple of operations they can

perform in various fields. We are particularly interested in the

category of tethered vehicles also called Remotely Operated

Vehicles (ROV). Different challenges in autonomous control

of such systems arise from the inherent high nonlinearities

and time varying behavior of the vehicle’s dynamics sub-

jected to different hydrodynamic effects and disturbances.

To solve this problem, various control approaches to solve

this control problem can be found in the litterature. H∞
control was proposed and tested in simulation [1]. Various

chattering free sliding mode schemes have been proposed

for such systems to cope with big uncertainties and were

experimentally validated [2]. Intelligent control methods

applying reinforcement learning or artifical intelligence can

be found in [3][4] and [5] where simulation results are

provided and an experimental study was reported in [6].

Adaptive control schemes are seen to be very commun in

such applications [7][8][9]. The use of an adaptive controller

is motivated in particular by the presence of uncertainties in

the model parameters and their likelihood to change. The

salinity changes the buoyancy parameter; the addition of

sensors or the manipulation of objects changes the mass

parameters and the damping parameters are greatly affected

by the encounter of algae or moving obstacles. For similar

reasons, adaptive controllers have been used for system

identification and are highly appreciated within the aircaft

control community. However, despite their success in many

applications, they hold some drawbacks [10]. For instance,

in [11] an extensive study has been made to show that a

wide range of such controllers has been used with restrictive

assumptions and concluded that adaptive controllers exhibit

undesirable frequency characteristics. They also rely on
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the need of a persistancy in parameter excitation before

convergence which may lead to a bad transient behavior

[12]. Consequently, several attempts have been proposed to

overcome the shortcomings of these controllers. A large

adaptation gain leads to undesirable effects with the risk

of parameter divergence. That’s why most of the methods

suggest limiting this gain at the cost of a slower adaptation

and convergence [13]. The recently developped L1 adaptive

controller [14] eliminates the need of such a tradeoff since

it relies on an architecture where robustness and adaptation

are decoupled. It is based on the use of a low pass filter

in its feedback loop and is only limited by the hardware

capabilities since the adaptation gain can be increased as

much as needed to achieve a faster convergence given that

the boundedness of the parameters’ evolution is ensured by

the projection operator present in the adaptation law. The

proof of asymptotic stability of this controller is performed

through the small gain theorem [14]. This control scheme

is able to revisit the failures of other adaptive controllers

by maintaining its performance and robustness in situa-

tions where the other controllers cannot [15][16]. The L1

adaptive controller has been validated through simulations

and experiments mainly on aerial vehicles [17][18], but it

was also seen in other applications such as the control of

the acrobot [19] and the hysteris in smart materials [20].

The main contribution of this paper is the experimental

demonstration of a new application of this controller which

concerns depth and pitch control of an underwater vehicle.

To the best knowledge of the authors, this method has never

been applied yet to control of underwater vehicles. This paper

is organized as follows: in the second section we present the

dynamic modeling of the system, the third section shows the

theoretical aspect of this controller and its novel design for

implementation on underwater vehicles. The fourth section

presents the prototype and the experimental setup and in the

fifth section we analyze the experimental results. The paper

ends with some concluding remarks.

II. DM   S

By considering the inertial generalized forces, the hydrody-

namic effects, the gravity, and buoyancy contributions as well

as the effects of the actuators (thrusters), the dynamic model

of an underwater vehicle in matrix form, using the SNAME

notation and the representation proposed by Fossen [21] is

written as:

η̇ = J(η)ν (1)

Mν̇ +C(ν)ν + D(ν)ν + g(η) = τ + wd (2)



where ν = [u, v,w, p, q, r]T , η = [x, y, z, φ, ϑ, ψ]T are vectors

of velocities (in the body-fixed frame) and position/Euler

angles (in the earth-fixed frame) respectively (cf. Fig. 1).

J(η) ∈ R6×6 is the Jacobian transformation matrix mapping

the body-fixed frame to the earth-fixed one. The model

matrices M, C, and D denote inertia (including added mass),

Coriolis-centripetal (including added mass), and damping

respectively, while g is a vector of gravitational/buoyancy

forces. τ is the vector of control inputs and wd the vector of

external disturbances. In the case of our study, the vehicle

used has a slow dynamics, and hence it will be moving at

velocities low enough to make the Coriolis terms negligible

(C(ν) ≈ 0).

Sea Surface

Fig. 1: View of the AC-ROV reference frames (xiyizi: earth-

fixed frame, xbybzb: body-fixed frame).

Equation (2) describes the dynamics of the system in six

degrees of freedom taking into account the three translations

and three orientations. The input vector τ ∈ R6 considers

six actions on the system to fully control it. The presented

formulation of the robot’s dynamics is expressed in the body

frame and can be transformed to the earth frame by using

the kinematic transformations of the state variables and the

model parameters as shown below:

η̇ = J(η)ν

η̈ = J(η)ν̇ + J̇(η)ν

M∗(η) = J−T (η) M J−1(η)

D∗(ν, η) = J−T (η) D(ν) J−1(η)

g∗(η) = J−T (η) g(η)

τ∗ = J−T (η) τ

w∗
d
= J−T (η) wd

(3)

Equation (2) can therefore be expressed in the earth frame

as:

M∗(η)η̈ + D∗(ν, η)η̇ + g∗(η) = τ∗ + w∗d (4)

In this paper, we are studying the dynamics of the vehicle in

its translational motion along the z axis and its orientation

with respect to the pitch angle. Therefore, we will get

M∗(η),D∗(η) ∈ R2×2 and g∗, τ∗,w∗
d
∈ R2.

τ∗ is the control input expressed in the earth frame in Newton

and is given by:

τ∗ = J−T T Ku (5)

where u ∈ R2 is the vector of control inputs expressed in volts

(as depicted on Fig.1, we have two vertical thrusters acting

simultaneously on the two degrees of freedom of interest),

K is the force coefficient in Newton.Volt−1. T ∈ R2×2 is

the actuators’ configuration matrix, taking into account the

position and orientation of the thrusters.

III. P F  P S

Our objective is to perform depth and pitch control of a

highly nonlinear system with unknown and varying model

parameters in presence of disturbances. For this purpose, a

robust adaptive controller will be proposed. In this section,

the state space representation extracted from the dynamical

model (4) will be used for the design of the L1 adaptive

controller implemented for the first time on an underwater

vehicle.

A. Problem Formulation

We consider the following class of systems [14]:

ẋ1(t) = x2(t) x1(0) = x10

ẋ2(t) = A2x2(t) + f2(t, x(t)) + B2ωu x2(0) = x20

y(t) = Cx(t)

(6)

where x1 ∈ R
n and x2 ∈ R

n are the states of the system

forming the complete state vector: x(t) = [x1(t), x2(t)]T . A2

is a known n × n matrix and B2 ∈ R
n×m is a constant full

rank matrix. u(t) ∈ Rm is the control input vector (m ≤ n)

and ω ∈ Rm×m is the uncertainty on the input gain. C ∈ Rm×n

is a known full rank constant matrix, y ∈ Rm is the measured

output and f2 is an unknown nonlinear function. In a more

compact matrix form, the system (6) becomes:

ẋ = Ax + f + Bmωu (7)

with A =

[

0n×n In

0n×n A2

]

, f =

[

0n×1

f2

]

and Bm =

[

0n×m

B2

]

Applying the same formalism as equation (6), the state space

representation of the studied dynamics is extracted from the

dynamic model (4) and given by:
[

η̇1

η̇2

]

=

[

02×2 I2

02×2
−D∗

M∗

] [

η1

η2

]

−

[

02×1
g∗

M∗
−

w∗
d

M∗

]

+

[

02×2
1

M∗

]

ωτ∗

(8)

where η1 = [z, ϑ]T and η2 = [ż, ϑ̇]T . τ∗ is expressed in

Newton and ω is the uncertainty on the input gain. In this

case ω ∈ R2×2 is considered to be a diagonal matrix.

The output vector is given by:

y =

[

1 0 0 0

0 1 0 0

] [

η1

η2

]

=

[

z

ϑ

]

(9)

B. Proposed Solution: L1 Adaptive Controller

To control the system (8)-(9), an L1 adaptive controller is

proposed. The choice of this controller is motivated by its

architecture based on a decoupling between adaptation and

robustness. High adaptation gains can be chosen securing

a fast convergence with a smooth transient response. This

architecture described in [14] is shown in the block diagram

of Fig. 2. Block 1 is the studied system extracted from (6)

with Am being a chosen Hurwitz matrix determining the
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ẋ(t) = Am x(t) + Bm(ω(t)ua(t)

+θ(t)||x(t)||L∞ + σ(t))

y(t) = Cx(t)

˙̂x(t) = Am x̂(t) + Bm(ω̂(t)ua(t)
+θ̂(t)||x(t)||L∞ + σ̂(t))

ŷ(t) = Cx̂(t)

˙̂θ(t)=ΓPro j(θ̂(t),−(x̃T (t)PBm)T ||x(t)||L∞)
˙̂σ(t)=ΓPro j(σ̂(t),−(x̃T (t)PBm)T )
˙̂ω(t)=ΓPro j(ω̂(t),−(x̃T (t)PBm)T uT

a (t))

η̂l = ω̂(t)ua(t)

+θ̂||x(t)||L∞
+σ̂

5

1

2

3

4

x

x̂

x̃

Fig. 2: Block Diagram of the closed-loop L1 adaptive

controller.

desired closed-loop dynamics and calculated using a gain

km: Am = A − Bm km with A being the state matrix and Bm

the input matrix of the open-loop system (8). The unknown

linear function f2 has been decomposed into a parameter state

dependent part θ(t)||x(t)||L∞ , being ||x(t)||L∞ the infinity norm

of the state x at time t, and a nonlinear part σ, which accounts

for the external disturbances. The L1 controller’s architecture

is delimited with dashed lines in Fig. 2. It is composed of 3

main stages. The prediction stage (block 2), where the states

of the system as well as the outputs are calculated at every

iteration using the parameters’ estimation. The adaptation

stage (block 3) uses the error x̃ between the measured states

and the estimated ones to adapt the parameters using a

projection method in order to ensure their boundedness. The

parameter P shown in the block 3 is the solution of the

algebraic Lyapunov equation: AT
mP + PAT

m = −Q for any

arbitrary symmetric matrix Q = QT > 0. Γ is the adaptation

gain. The last stage (blocks 4 and 5) pertains to the design

and implementation of the control’s input filter. D(s) is an

m × m strictly proper transfer function leading to a stable

closed-loop filter: C(s) =
ωkD(s)

Im+ωkD(s)
. k is a positive feedback

gain and kg = −(CA−1
m Bm)−1 is a feedforward prefilter applied

to the reference signal r(t).

The control law for our system becomes:

ua(s) = −kD(s)(η̂l(s) − kgr) with η̂l the output of block 4.

To account for the transformation of the state matrix A into

Am, the complete control input becomes: u = ua + um with

um = −kmx(t). To ensure stability, the feedback gain k and

the filter D(s) must be carefully chosen in order to fulfill

the L1 norm condition. The reader can refer to [14] for the

detailed complete proof of stability.

C. Implementation of the Controller on the Modified AC-

ROV Prototype

We wish to control the AC-ROV in depth and pitch based

on the dynamics (8). For this purpose, the matrix A is

converted into Am with a chosen gain km fulfilling the

stability requirements [14], with Am ∈ R
4×4 and Bm ∈ R

4×2.

The parameters’ vector θ̂ ∈ R2 is initialized to zero and

represents the uncertainties on the damping coefficient and

is given by: θ̂ =
[

∆(−D∗z ) , ∆(−D∗
ϑ
)
]T

. The parameter σ

∈ R2 is a lumped parameter including the gravitational

and buoyancy forces as well as the external disturbances

σ̂ =
[

−g∗z + w∗
dz
, −g∗

ϑ
+ w∗

dϑ

]T
. The parameter ω ∈ R2×2 will

not be adapted for this study as we have a precise knowledge

of the motors’ features. As expressed in equation (9), the

system’s outputs are z and ϑ. The control input is computed

in the earth frame and should be transformed into the robot

frame as: u = K−1T−1JT (ua + um) ∈ R2, with ua and um as

explained in the previous section. The gains for depth control

are chosen as Γz = 100000 and kz = 0.15 being the adaptation

gain and the feedback gain respectively. For the pitch angle,

the gains are Γϑ = 1300 and kϑ = 1.2. The filtering process

was ensured by the choice of D(s) = 1.4
s

. It is worth to be

noted that the gains must ensure the L1 norm condition, but

have to be tuned empirically since there is no systematic

method to chose them.

IV. E S

A. Modified AC-ROV experimental platform

The AC-ROV submarine (cf. Fig. 1) is an underactuated

vehicle, the propulsion system of which consists of six

thrusters driven by DC motors and acting on five degrees

of freedom. Motors 1, 2, 3 and 4 control simultaneously

translations along x and y axes and rotation around the z

axis (yaw). Motors 5 and 6 control depth and pitch. Roll

is left uncontrolled but remains naturally stable thanks to

the positive metacentric distance. The robot weighs 3kg

and has a rectangular shape with 203mm height, 152mm

length and 146mm width. For measurements purposes, our

prototype is equipped with various sensors. A 6-DOF IMU

(Inertial Measurement Unit) measures roll, pitch, and yaw

along with their respective velocities and a pressure sensor

allows depth measurement. To pre-process and transmit the

sensors’ data to the PC, a microcontroller board is used.

Once the control law has been computed by the control PC,

the control inputs are transmitted to the power stage. Then,

6 PWM modulated signals are sent to the motors of the

AC-ROV through the 40-meter long tether. Fig. 3 shows a

schematic view summarizing the various components of the

vehicle’s hardware and their interactions.

B. Conditions of the Experiments

The experiments have been performed in a 5m3 pool. The

tether has been sufficiently unrolled to avoid inducing addi-

tional drag into the dynamics of the vehicle. The feedback

gains have been tuned for the nominal conditions and kept

unchanged for the other experiments despite some eventual

changes in the model or its environment in order to evaluate

the robustness of the proposed controller. The noisy data

of depth measurement are filtered using a second order

Butterworth filter. The information concerning the velocity

in the z direction is estimated by an alpha-beta observer. Fig.

4 gives an overview of the whole used experimental test-bed.



Fig. 3: Schematic view of the hardware architecture of AC-

ROV prototype.
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Fig. 4: View of the AC-ROV experimental test-bed:

1© Control PC, 2© Power input, 3© Emergency stop button, 4©

Video in, 5© Tether plug, 6© Ethernet plug, 7© Video Capture,

8© Tether, 9© AC-ROV.

V. R T E

A. Experimental scenarios

The experiments presented in this section result from the

application of the proposed controller detailed in section 3,

to the underwater vehicle testbed described in section 4. We

will start by giving an overview of the different performed

scenarios, then we will analyze the obtained results for

each scenario. The vehicle’s depth is regulated to reach

0.5m when starting from a static surface position. The pitch

angle is controlled to follow a varying trajectory starting

from 0◦ and changing to 15◦ at 35 seconds. The evolution

of the control inputs, generated by the thrusters controlling

the movements along the z axis and the pitch angle are

also plotted for each scenario as well as θ and σ being

respectively the estimated parameters and the disturbances

pertaining to each degree of freedom.

Three experimental scenarios were performed, namely:

Scenario 1: Control in Nominal Conditions.

The objective of this scenario is to control depth and pitch

angle of the AC-ROV without any external disturbance. The

gains for each controller have been tuned to accomodate this

case and were kept unchanged for the other experiments.

Scenario 2: Robustness towards parameters’uncertainty:

Change in Buoyancy.

The model of the vehicle has been changed by the addition

of a rectangular piece of polyester introducing a change of

buoyancy of approximately 0.32N (which represents a +32%

increase of the flottability). The objective of this scenario is

to see whether the proposed controller is sufficiently robust

to compensate this uncertainty and keep the performance of

the controlled closed-loop system. Such a disturbance may

occur for instance when the robot navigates in environments

with strong salinity changes (e.g undersea fresh water

spring) or when the payload of the robot is changed (e.g

additional sensors).

Scenario 3: Persistent External Disturbance Rejection:

Waves.

Waves were generated manually by periodically disturbing

the surface of the pool, which created waves of

approximately 15cm amplitude.

The obtained results for these three scenarios are presented

and discussed in the following.

B. Scenario 1: Control in Nominal Conditions (results)

Fig. 5 displays the evolution of the controlled vehicle’s depth

and pitch angle. The desired depth is reached smoothly in

around 40 seconds. A similar response is observed for the

pitch angle, except that the convergence time is longer (65

seconds). The small initial oscillations of ϑ will be present in

all the scenarios and they are caused by the differences in the

starting torques (due to dry friction) of the thrusters 5 and 6.

These latters reach steady state forces of −0.18N and −0.66N

respectively. Their plots displayed in Fig. 5b converge to

their final values with neither oscillation, nor overshoot,

despite the lack of knowledge of our model parameters. The

parameters vectors θ̂ and σ̂ initialized to 0 and depicted

in Fig. 5c converge to the following steady state values:

[θ̂z θ̂ϑ]T = [−8 − 2.25]T and [σ̂z σ̂ϑ]T = [−48 − 5]T . It

can be noticed that unlike nonlinear state feedback adaptive

controller the L1 controller ensures a fast convergence even

without any a priori estimate of the unknown parameters.

C. Scenario 2: Robustness Towards Parameters Uncertainty:

Change in Buoyancy (results)

Like in the previous scenario, parameters are expected to

converge to new values to compensate for this change in

order for the controlled degrees of freedom to be steered to

their desired trajectories. The depth response (cf. Fig. 6a)

converges in 40 seconds as well; it is seen to exhibit the

same behavior observed in the nominal conditions (cf. Fig.

5a). The same convergence time is also conserved for the

pitch angle. Although the buoyancy change has hardly no

effect on the responses, interesting changes can be observed



in the control inputs and the parameters. The forces needed

at steady state are −0.12N and −0.75N, and are seen to

be different than the nominal scenario since more force

is now required to immerse the vehicle. The parameters

converge to the following values: [θ̂z θ̂ϑ]T = [−8 − 2]T and

[σ̂z σ̂ϑ]T = [−65 − 6]T . It was expected that vector θ̂ does

not vary since it holds the parameters of damping that were

kept unchanged with this modification, which only affected

the buoyancy force present in vector σ̂. This force has an

important impact on the motion along the z axis which can

be observed through the change in the parameter σ̂z (from

-48 to -65). The main interest of this scenario is to highlight

the fact that due to its large adaptation gain, the convergence

time of the L1 controller remains nearly constant even with

a strong model change.

D. Scenario 3: Persistant External Disturbance Rejection:

Waves (results)

The obtained results for this scenario are depicted in Fig. 7.

Fig. 7a shows the system response in presence of waves. The

depth is not seen to be affected by this persistant disturbance

while varying oscillations of approximately 5◦of amplitude

around the regulated pitch angle are observed in the response

of ϑ. This can be explained by the different dynamics of each

degree of freedom. The translation around the z axis is less

sensitive to external disturbances than the pitch angle due

to the robot’s inertia. Oscillations of approximately 0.07N

are also observed in the control input but they are more

significant in θ̂ϑ and σ̂ϑ which explains the maintained

oscillations of the pitch reponse. z converged to the desired

depth of 0.5m in 40 seconds with θ̂z = −14.5 and σ̂z = −60.

The parameters damping were changed with respect to their

nominal conditions and this change is reflected in the steady

state value of θ̂z that was −8 in the nominal case and becomes

−14.5 in presence of waves. The induced disturbances along

the z axis caused by the waves are incorporated in σ̂z that

varied from −48 in the nominal conditions to −60 in this

present scenario.

VI. C  FW

This paper deals with the problem of depth and pitch control

of an underwater vehicle (a multivariable system with cou-

pled high nonlinear dynamics). The proposed solution lies in

the design and implementation of an L1 adaptive controller,

novel in the field of underwater robotics. This controller was

tested in nominal case and in other scenarios to evaluate

its robustness towards parameters’ uncertainties as well as

its capability of rejection of external disturbances. The L1

adaptive controller was observed to ensure a smooth con-

vergence to the desired trajectory in the two studied degrees

of freedom and compensate for the external disturbances as

well as the change in buoyancy. Our future work will include

the control of the remaning degrees of freedom of the robot.
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(c) Time history of the evolution of the pa-

rameters θ̂ = [θ̂z θ̂ϑ]
T

and the nonlinear terms
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Fig. 5: Control in nominal case: plots of (a) the system outputs (z and ϑ), (b) the control inputs, and (c) parameters θ̂ and

σ̂.
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and the nonlinear terms
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Fig. 6: Robustness towards parameters uncertainty: change in buoyancy: plots of (a) the system outputs (z anf ϑ) are

very similar to the nominal case. The change of buoyancy is observed through the plots of the control inputs (b) and the

controlled parameters θ̂ and σ̂ (c) .
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Fig. 7: Persistant external disturbances rejection (waves): only the pitch angle was affected by the waves while the depth

response has the same behavior as in the nominal case (a). The introduction of this external disturbance is reflected in the

oscillations of the control inputs (b) and the controlled parameters (c).


