
  

Abstract— The paper focuses on the stiffness modeling of 

parallel manipulators composed of non-perfect serial chains, 

whose geometrical parameters differ from the nominal ones. In 

these manipulators, there usually exist essential internal 

forces/torques that considerably affect the stiffness properties 

and also change the end-effector location. These internal load-

ings are caused by elastic deformations of the manipulator ele-

ments during assembling, while the geometrical errors in the 

chains are compensated for by applying appropriate forces. For 

this type of manipulators, a non-linear stiffness modeling tech-

nique is proposed that allows us to take into account inaccuracy 

in the chains and to aggregate their stiffness models for the case 

of both small and large deflections. Advantages of the developed 

technique and its ability to compute and compensate for the 

compliance errors caused by different factors are illustrated by 

an example that deals with parallel manipulators of the Orthog-

lide family. 

Keywords — non-linear stiffness modeling, parallel manipula-

tors, compliance errors, non-perfect manipulators. 

I. INTRODUCTION 

N modern industrial robotics, stiffness becomes one of the 

most important performance measures that defines poten-

tial accuracy of the manipulator. This problem has been the 

focus of numerous works [1-5], where different solutions for 

serial and parallel manipulators have been proposed assum-

ing that the manipulator geometry perfectly corresponds to 

the nominal one. However in practice, parallel manipulators 

are usually composed of non-perfect serial chains, whose 

geometrical parameters differ from the nominal values. It is 

evident that these manufacturing errors may generate essen-

tial internal forces and have effects on the manipulator stiff-

ness behavior. However, this problem has attracted very li-

mited attention in robotics.  

In general, there exist several stiffness modeling methods, 

which were analyzed in details in our previous works [6-8]. 
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For industrial applications, the most popular technique is 

based on the Virtual Joint Modeling (VJM) approach that 

was first introduced in robotics by Salisbury and Gosselin [9-

10] and has been further developed by a number of authors 

[11-14]. It extends the conventional rigid-body model of the 

robotic manipulator by adding virtual springs that take into 

account elastostatic properties of links and joints. In the first 

works, it was explicitly assumed that the main sources of 

elasticity are concentrated in actuated joints [9-10]. Corres-

pondingly, the links were assumed to be rigid and the VJM 

model included one-dimensional springs only. Recent mod-

ifications of this approach describes elastostatic properties of 

links using 6 6  non-diagonal stiffness matrices [7] that are 

computed taking into account the real shape of complex links 

[15]. Using this approach it is possible to obtain a rather 

general non-linear stiffness model for a serial chain [7] and 

to compute the Cartesian stiffness matrix even for singular 

configurations.  

For parallel robots [16], the VJM technique can be applied 

either in a straightforward way (by considering the static 

equilibrium equations for all chains simultaneously 

[10][17][18]) or by decomposing the manipulator into a set 

of separate serial chains, obtaining the stiffness models for 

all of them and further aggregation of these models in a unit-

ed one corresponding to the parallel manipulator. It is ob-

vious that the first approach, which incorporates a solution of 

high order non-linear matrix equations [19], is rather tedious 

to be applied to real life industrial problems. In contrast, the 

second approach relies on relatively simple techniques that 

are well developed for serial manipulators. The latter was 

partially implemented in [6][20], where the manipulator 

structure was assumed to be strictly parallel (i.e. without in-

ternal loops) and the kinematic chains where assembled in 

the same end-point. Under this assumption, the stiffness ma-

trix of the parallel manipulator can be computed via simple 

summation of the chain stiffness matrices. However, in more 

general (and practically important) cases where the kinemat-

ic chains are connected to different points of the end-

platform, this technique cannot be applied directly.  

Another limitation of existing results in this area is related 

to the assumption that the assembling does not produce any 

internal forces/torques. But in practice, numerous errors are 

accumulated in serial chains [21] and they cause non-

negligible internal forces in manipulator joints (even if the 

external force applied to the end-effector is equal to zero). 

Furthermore, the kinematic chains of the robotic manipula-
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tors may include some additional elastic elements in the ac-

tuated or/and passive joints that are intended to increase the 

robot positioning accuracy or to improve the stiffness prop-

erties in certain workspace areas. For example, to eliminate 

the backlash, the gear trains may include spring-loaded scis-

sor elements that generate the internal forces, which must 

also be integrated in the stiffness model [22]. Similar forces 

may also arise in the parallel manipulators with antagonistic 

actuating [18]. Other examples include parallel manipulators 

with springs interposed in the passive joints in order to im-

prove stiffness in the singularity neighborhood.  

As follows from relevant studies performed by the au-

thors, the internal forces may essentially influence the mani-

pulator behavior (modify the stiffness matrix, change the 

end-effector location, etc.) and should be obviously taken 

into account in the stiffness model. However, most existing 

works ignore this issue.  

Thus, this paper focuses on the stiffness modeling of pa-

rallel manipulators with non-perfect serial chains. To address 

this problem, the remainder of the paper is organized as fol-

lows: Section II proposes stiffness modeling background, 

Section III deals with aggregation of stiffness models with-

out loading, Section IV extends aggregation technique for 

the case of loaded mode, Section V illustrates the developed 

technique by the example of Orthoglide manipulator and, 

finally, Section VI summarizes the main contributions. 

II. STIFFNESS MODELING BACKGROUND 

The stiffness modeling technique being developed in this 

work is based on our previous results [6][7], that deal with 

perfect manipulators. Let us present them briefly. 

For the considered manipulators, if the external loading is 

equal to zero, all kinematic chains can be aligned and 

matched in the same target point 
0

t . In the neighborhood of 

this point, for each ith kinematic chain the desired stiffness 

model is defined by the non-linear force-deflection relation  

 

0
( | )

i i
fF t t  (1) 

 

where t  denotes the end-effector location and 
i

F  is the cor-

responding external loading applied to the chain end-point. 

To obtain the function (.)
i

f , the following iterative proce-

dure can be used  
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where the subscript "i" denotes the serial chain number, the 

prime corresponds to the next iteration, ( , )
i i

q θ  defines the 

chain configuration that depends on the passive and virtual 

joint coordinates 
i

q  and 
i

θ  respectively, 
q

( , )J q θ  and 

θ
( , )J q θ  are corresponding Jacobian matrices computed for 

current configuration, 
0

θ  is preloading in the virtual joints, 

matrix 
θ

K  describes the joints stiffness properties, function 

( , )
i i i

t g q θ  defines the chain geometry.  

After linearization, for each given t , the Cartesian stiff-

ness matrices ( )

C

i
K  of all chains can be computed as 
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where the first term 0 ( ) F T 1

θ θ θ
( )

F

C


K J k J  corresponds to the 

classical formula defining the stiffness of the kinematic chain 

without passive joints in the loaded mode [14] and the 

second term takes into account the influence of the passive 

joints. Besides, the stiffness matrix 
C q

K  (defining a linear 

mapping of the end-point displacement δ t  to the deflections 

in the passive joints δq ) can be computed as 
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Here F 1

θ θ θθ
( )

F 
 k K H  and  

1 2

F

v v

T

1 2

2
   H g F v v  are 

the Hessian matrices with respect to combination of the pas-

sive and virtual joint coordinates ( , )q q , ( , )q θ , ( , )θ q , 

( , )θ θ . 

In addition, linearization provides the matrix 
Cθ

K  that de-

fines linear mappings of the end-point displacement δ t  to 

the virtual joint coordinates δθ   
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that is computed using the same intermediate variables. 

This approach allows us to obtain the non-linear force-

deflection relation for each serial chain as well as to compute 

the Cartesian stiffness matrices for any given target point 
0

t  

and given the end-point location t . However, it cannot be 

applied directly for parallel manipulators with non-perfect 

serial chains because it is implicitly assumed here that as-

sembling in the point 
0

t  does not require any forces applied 

to the chain end-point, i.e. 
0 0

( | )
i

f t t 0 . Thus, a dedicated 

technique, which is considered in this paper, is required.  

III. STIFFNESS MODELS AGGREGATION FOR SMALL LOADING 

If the external loading applied to the mobile platform of 

the parallel manipulator is small enough, and a linearization-

based approach is reasonable. Below, is briefly presented for 

the case of perfect kinematic chains [8] and then developed 

in more details for non-perfect chains.  

A. Stiffness model aggregation for perfect chains  

In this case, it is assumed that all the chains can be assem-

bled in the target point 
0

t  without any external loading that 

may be expressed as 
0 0

( | )
i

f t t 0 . So, for the parallel ma-

nipulator, the desired force-deflection relation can be written 

as 
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Fig. 1.  Transformation of VJM models of typical parallel manipulator 
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where the total Cartesian stiffness matrix 
C

K  is computed 

using the chain aggregation formula 

 

T 1
( ) ( ) ( )

С С

1

m

i i i

v v

i

 



 K J K J  (7) 

 

which integrates the Cartesian stiffness matrices ( )

С

i
K  of all 

m chains taking into account the difference between the ref-

erence point of the end-platform and the end-points of the 

chains (where the chains are connected to the mobile plat-

form, Fig. 1). The latter is expressed via the Jacobians ( )i

v
J   
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where 
3

I  is 3 3  identity matrix, ( )v  is a skew-symmetric 

matrix corresponding to the vector v , vector 
i

v  defines dis-

tance from the leg end-point to the end-effector reference 

point (see Fig.1). 

Further, linear relations between the end-platform dis-

placement 
0

t t  and variations δ δ,
i i

q θ  in the joint coordi-

nates of the chains may be presented as 
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where, the joint sensitivity matrices 
Cq C

( ) ( )

θ
,

i i
K K  are computed 

from (4) and  (5) assuming that F 0  and by neglecting all 

Hessians (here, the matrices 
Cq C

( ) ( )

θ
,

i i
K K  are expressed with 

respect to the chain end-points). 

B. Stiffness model aggregation for non-perfect chains 

If the kinematic chains are non-perfect, the corresponding 

force-deflection relation (1) is shifted with respect to the 

point 
0

t , i.e. 
0 0

( | )
i

f t t 0 . So, the manipulator assembling 

in this point requires application of some non-zero forces 
i

F  

that generally do not compensate each other. Corresponding-

ly, the end-platform location differs from 
0

t  if the external 

force applied to the end-platform is equal to zero. Let us de-

note this difference as  t  and revise the above matrix equa-

tions (6)-(9) assuming that, without the external loading, the 

chain end-point is shifted by 
i

ε  with respect to 
0

t  (it can be 

also expressed as 
0 0

( | )
i i

f  t ε t 0 ).  

Using these notations, the desired stiffness model can be 

described by the following expressions 
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Fig. 2 Transformation of characteristic points of serial chains in assembling 

of non-perfect parallel manipulator; (
i

A ,
i

A   - end-point locations of serial 

chain before assembling for perfect and non-perfect manipulators respec-

tively, 
i

A    - end-point location of serial chain after assembling for non-

perfect manipulator) 
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where the vectors  t , 
i

 t  should be computed using the 

assumptions presented above.  

To find these additional parameters of the stiffness model, 

let us apply the energy based approach which allows us to 

express the potential energy of the parallel manipulator as  
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where ( , )   t p φ  is displacement (position and orienta-

tion) of the reference point, ( )

C

i
K  is the Cartesian stiffness 

matrix of the ith chain, and 
i

ε  is the vector that integrates 

influence of all geometrical errors at the reference point.  

It is obvious that after assembling, the considered mechan-

ical system will occupy the most advantageous configuration 

with respect to the potential energy. It means that the desired 

vector  t  can be found from the expression / 0E  t , 

which allows us to evaluate the end-platform deflection 
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and the end-platform location after assembling 0
   t t t . 

Hence, for each separate kinematic chain, the end-frame def-

lections 
i i

 Δt t ε  due to assembling is expressed as 
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and the corresponding loading applied to the end-point (due 

to interaction with other non-perfect chains) is 
( )

C
·

i

i i
F K Δt . 

Accordingly, the loadings in the virtual joints 
T

θ θ

( ) ( )
·

i i

i
τ J F  

can be computed as 
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It is worth mentioning that here 
1 i

m

i 
 F 0 , since there is 

no external loading applied to the platform reference point 

after the assembling. Besides, it is possible to compute rele-

vant deflections of the virtual and passive joint coordinates 

of the chains caused by the assembling 
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Thus, the above expressions allow us to evaluate the end-

platform deflection and internal forces/torques caused by as-

sembling of kinematic chains with geometrical errors. How-

ever, the total manipulator Cartesian stiffness matrix 
C

K  is 

the same as in Section III.A, since the geometrical errors are 

assumed to be small enough. 

IV. STIFFNESS MODELS AGGREGATION FOR HIGH LOADING 

If the external loading is rather high, the manipulator stiff-

ness model is essentially non-linear and the above presented 

techniques cannot be applied directly. However, some basic 

ideas from Section III can also be adopted here.  

A. Stiffness model of parallel manipulator 

Let us focus first on the aggregation of stiffness models of 

separate serial chains into the stiffness model of the whole 

parallel manipulator in the loaded mode. To solve this prob-

lem, it is necessary to obtain the non-linear force-deflection 

relation, which takes into account elastostatic properties of 

all kinematic chains, and to compute corresponding Carte-

sian stiffness matrix.  

Let us assume that, for the perfect kinematic chains, their 

end-points may be aligned and matched in the same target 

point 
0

t , which corresponds to the desired end-platform lo-

cation. This point is assumed to be known and allows us to 

compute (from the inverse kinematic model) the actuator and 

passive joint coordinates defining nominal configurations of 

the chains 
0 0

, )(
i i

q θ . It is also assumed that the stiffness 

models of all kinematic chains have been already obtained 

using techniques proposed in Sections II and are presented in 

the form of non-linear force-deflection relations 

0
( | )

i i
fF t t  corresponding to the target point 

0
t .  

It is evident that the external loading F  changes the end-

platform location 
0

t , hence it is reasonable to consider the 

set of locations t  in the neighborhood of target one. Under 

the above assumptions, for any given point t  (from neigh-

borhood of 
0

t ), it is possible to compute both the forces 
i

F  

and corresponding equilibrium configurations ( , )
i i

q θ . Then, 

in accordance with the superposition principle, the desired 

non-linear force-deflection relation for the whole parallel 

manipulator can be found by straightforward summation of 

all partial forces 
i

F , i.e.  
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where F  denotes the total external loading applied to the 

end-platform. Corresponding curves can be obtained by mul-

tiple repetition of the above described procedures for differ-

ent values of the end-platform location t . 

Furthermore, for each given t , the stiffness matrices ( )

C

i
K  

of all kinematic chains can be computed using expression (3) 

So, the Cartesian stiffness matrix 
C

K  of the whole parallel 

manipulator is the sum  
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However, the matrices ( )

Cq

i
K  and )

Cθ

( i
K  defining the "sensitivi-

ty" of the chain joint coordinates ( , )
i i

q θ  to the end-platform 

displacement cannot be aggregated in this way. They should 

be computed separately to evaluate forces/torques in the 

joints/links T

θ θ

( ) ( )
·

i i

i
τ J F , where )

θ

( i
J  is Jacobian matrix of i-

th kinematic chain with respect to virtual joint coordinates 

(see equations (4) and (5)). 

It is worth mentioning that it was implicitly assumed 

above that the manipulator assembling is equivalent to the 

aligning and matching of the chain end-frames. To deal with 

a more general case, when the chains are connected to the 

different points of the platform, it is necessary to slightly 

modify the chain geometrical models and to re-compute the 

forces/torques and the stiffness matrices by adding a virtual 

rigid link connecting the end-point of the chain and the ref-

erence point of the platform. After relevant transformations, 

the presented technique above can be applied straightfor-

wardly, using equations (7) and (9).  

Besides, in contrast to Section III, here there are no evi-

dent differences in stiffness models aggregation of perfect 

and non-perfect kinematic chains. In the last case, the chain 

geometrical errors 
i

ε  are implicitly included in the force-

deflection relations 
0

( | )
i i

fF t t  in such a way that 

0 0
( | )

i i
f  t ε t 0 . As a result, the end-platform cannot be 

located in the target point 
0

t  without external loading, i.e. 
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 t t 0 . Moreover, without external loading, the 

end-platform location 
ε

t  differs from the target one 
0

t  by 

the vector  t  that can be computed as  
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Relevant numerical routines is presented below.  

Corresponding internal forces 
i

F  defining the chain inter-

nal loadings due to the geometrical errors can be computed 

by simple substitution 
0

t t  to the partial force deflection 

relations 
0 0

( | )
i i

f  tF t t . It is obvious that the sum of 

the 
i

F  is equal to zero but they produce forces/torques in the 

links and joints if the parallel manipulator is over-

constrained. 

Hence, the developed aggregation technique allows us to 

obtain the non-linear force-deflection relation for a parallel 

manipulator in the loaded mode as well as to compute Carte-



  

sian stiffness matrices for any given target point 
0

t  and giv-

en set of the end-point locations { }t . This technique is sum-

marized in Fig. 3. 
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Fig. 3 Aggregation of serial chains stiffness models technique 

 

B. Compliance model of parallel manipulator   

The non-linear force-deflection relation (17) allows us to 

evaluate the external force/torque F  required to locate the 

manipulator at any given point t  (assuming that the actuated 

coordinates are computed for the end-platform location 
0

t  

corresponding to the unloaded configuration). However in 

practice, it is often necessary to determine the end platform 

resistance to the external loading, i.e. to compute the deflec-

tion caused by the force F  applied to the end-platform. The 

desired value can be found from the non-linear compliance 

model that in a general case is expressed as  

 
1

0
( | )f


t F t  (20) 

 

and is defined by the inverse function 1
(...)f

  which for pa-

rallel manipulators usually exists (due to the over-

constrained structure). In contrast, for serial chains with pas-

sive joints, the function 1
(...)f

  cannot be computed since 

the corresponding Cartesian stiffness matrix ( )

C

i
K  is singular. 

It is obvious that in a general case, the function 1
(...)f

  

cannot be expressed analytically. Hence, a dedicated itera-

tive procedure, which is able to solve the non-linear equation 

(17) for t  (assuming that F  is given) is required. It is pro-

posed here to apply a modification of Newton-Raphson 

technique which iteratively updates the desired value t  in 

accordance with the expression  

 

    C 0 0

1
| |f


    t t K t t F t t  (21) 

 

where t  corresponds to the next iteration,  0C
|K t t  is the 

Cartesian stiffness matrix computed in the point t , and 
0

t  

denotes the unloaded location of the end-platform. For this 

iterative scheme, 
0

t  can be also used as the initial value of 

t . Similar to previous sub-section, within each iterative 

loop, corresponding configurations ( , )
i i

q θ , the loadings 
i

F  

and stiffness matrices ( )

C

i
K  for each kinematic chain are 

computed using equations (2), and (3) respectively,  

As follows from the relevant study, convergence of this 

iterative procedure is good enough if the function (...)f  is 

smooth and non-singular in the neighborhood of 
0

t . If it is 

required to improve convergence, it is possible to modify the 

force F  from iteration to iteration in accordance with the 

expression · F F , where a scalar variable   is monoton-

ically increasing from 0 up to 1. The stopping criterion can 

be expressed in a straightforward way as  0 F
| εf F t t , 

where 
F

ε  is the desired accuracy. A more detailed presenta-

tion of the developed iterative routines is given in Fig. 4 . 
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Fig. 4 Procedure for obtaining deflection-force relation for loaded parallel 

manipulator 

 

C. Compliance error compensation technique  

To compensate for this undeterred end-platform displace-

ment, the target point should be modified in such a way that, 

under the loading F , the end-platform is located in the de-

sired point 
0

t . This requirement can be expressed using the 

stiffness model  in the following way 

 

 (F)

0 0
|fF t t  (22) 

 

where (F)

0
t  denotes the modified target location. Hence, the 

problem is reduced to the solution of the nonlinear equation 

(22) for (F)

0
t , while F  and 

0
t  are assumed to be given. It is 

worth mentioning that this equation completely differs from 

the equation 
0

( | )fF t t , where the unknown variable is t . 

It means that here the compliance model does not allow us to 

compute the modified target point 
(F)

0
t  straightforwardly, 

while the linear compensation technique directly operates 

with Cartesian compliance matrix.  

To solve equation (22) for 
(F)

0
t , a similar numerical tech-

nique can be applied. It yields the following iterative scheme 

 

 (F) (F) 1 (F)

0 0 0 0
( | )· f


  t t t F t  (23) 

where the prime corresponds to the next iteration, (0,1)   

is the scalar parameter ensuring the convergence.  



  

In the case where it is required to compensate for two 

types of errors (caused by the external loading F  and inac-

curacy in the serial chains), the second source of errors can 

be taken into account by changing of target location 
0 i

Δt  for 

each kinematic chain 
0 0i i
   Δt Δt t ε , where 


 t  is the 

end-platform deflections due to assembling of non-perfect 

kinematic chains and 
i

ε  is shifting of the end-point location 

of i
th

 kinematic chain because of geometrical errors. More 

detailed presentation of the developed iterative routines is 

given in Fig, 5 . 
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Fig. 5 Procedure for compensation of compliance errors in parallel manipu-

lator 

Hence, using the proposed computational techniques, it is 

possible to compensate for the main part compliance errors 

by properly adjusting the reference trajectory that is used as 

an input for the robotic controller.  

V. APPLICATION EXAMPLES  

A. Aggregation non-perfect serial chains without loading 

Let us illustrate the developed stiffness model aggregation 

technique by examples that deal with assembling of Orthog-

lide parallel translational manipulators with geometrical er-

rors in kinematic chains (Fig. 6) [23]. Let us assume that the 

manipulators have geometrical errors in the kinematic 

chains, which have effects on the end-point location and pro-

voke internal loadings in the joints. 

Taking into account the shape of the manipulator work-

space, let us focus on the stiffness analysis of these manipu-

lators in five characteristic points: isotropic point Q0, two 

limit points Q1 and Q2. with symmetrical configuration and 

two limit points Q3 and Q4. with non-symmetrical configura-

tion [6][7]. Let us estimate the end-effector location and in-

ternal deflections/loadings caused by the geometrical errors 

in the chains. The stiffness matrices of the chains in the 

points Q0...Q4 have been computed using the technique pro-

posed in Section III.A. 

For illustration purposes, let us investigate two types of 

geometrical errors 

Case A:  Each actuator of the manipulator has a position 

error 1 mm in actuator location;  

Case B:  Each actuator of the manipulator has an angular 

error 1° in actuator location.  

In case A, as it follows from the chains geometry, the deflec-

tions of the chain end-points before assembling are 0

i i
ε ε . 

In case B, the values 
i

ε  were computed using the geometric-

al model with non-perfect chains: 

(a) Photo

Q1

Q2

Q0

Q3

Q4

(b) CAD-model  

Fig. 6 Photo and CAD  models of Orthoglide manipulator 

Further, substituting deflections 
i

ε  and corresponding 

chain stiffness matrices ( )

C

i
K  into formulas (13) - (16), were 

computed the assembling-induced values of the end-platform 

displacement, the internal forces/torques and the relevant 

displacements in virtual and passive joints. The main results 

of this study are summarized in Tables 1–2, where m ax
q  is 

the maximum rotational displacement of passive joints, 
max max

p φ
,   are maximum displacement of translational and 

rotational virtual springs respectively, max max

p φ
,   are maxi-

mum torques in translational and rotational virtual joints re-

spectively, max
M  is the maximum moment in the chains, 

caused by assembling of a parallel manipulator with the non-

perfect kinematic chains.  

These results show that in the Case A (Table 1), the geo-

metrical errors in the kinematic chains do not cause any in-

ternal loading. However, they provoke the shift of the end-

platform location up to 2.02 mm (point Q2). Corresponding 

changes in passive joint coordinates are about 0.42̊ 

(point Q2) 

In contrast, in the Case B, the geometrical errors in the ki-

nematic chains of Orthoglide (Table 2) cause essential inter-

nal loadings. For instance, in point Q1 the torque applied to 

the end-point of the chain can reach up to 8.91 N·m . This 

loading induces displacements up to 0.41mm  and 0.62
  for 

translational and rotational virtual springs respectively. It 

should be noted that the loadings for rotational virtual 

springs are up to 11.96 N·m , but for translational virtual 

springs they are equal to zero (in spite of non-zero deflec-

tions in them). Nevertheless, this result is reasonable due to 

the non-diagonal structure of the matrices 
( )

C

i
K  representing 

couplings between rotational and translational deflections. 

Variations in the passive joint coordinates can reach up to 

0.67
  (Point Q3). For the end-platform, this case study gives 

the positional deflection up to 1.31 mm (Point Q3) and the 



  

rotational deflection up to 0.62
  (Point Q1). It is obvious 

that the total sum of all internal loadings is equal to zero 

 
Table 1. Assembling of Orthoglide manipulator with non-perfect chains: 

loadings and displacements for the Case A (  1 2 3
, , , 0, 0, 0

T

   t , 

1
F 0 , 

2
F 0 , 

3
F 0 ) 

Point 
Displacement  

of end-point  t  

Deflections and loadings  

in joints and links 

Q0 1 2 3
1mm;      max

0.18q 
  

Q1 1 2 3
0.50 mm      max

0.14q 
  

Q2 1 2 3
2.02 mm;      max

0.42q 
  

Q3 
1 2

3

0.73 mm;

mm0.27

 

 

 
 max

0.20q 
  

Q4 
1 2

3

0.56 mm;

mm1.28

 

 

 
 max

0.26q 
  

max max max max

p φ p φ
0; 0; 0; 0        

 
Table 2. Assembling of Orthoglide manipulator with non-perfect chains: 

loadings and displacements for the case B (  1 2 3 1 2 3
, , , , ,

T

      t , 

1
F 0 , 

2
F 0 , 

3
F 0 ) 

Point 
Displacement  

of end-point  t  

Deflections and loadings  

in joints and links 

Q0 
1 2 3

1 2 3

0 mm;

0. 3 ;0

  

  

  

  


 

m ax

m ax m ax

m ax

p φ

m ax m ax

p φ

·m ; 0.31

0.05 m

2.09 N

m ; 0.94

0; 2.09 N ·m

M q

 

 

 

 









  

Q1 
1 2 3

1 2 3

0.41 mm

. ;

;

0 62

  

  

  

   


 

m ax m ax

m ax m ax

p φ

m ax m ax

p φ

·m ; 0.63

0.54 m m

8.91

; 1.74

0

N

; 11.96 N ·m

M q

 

 

 













  

Q2 
1 2 3

1 2 3

0.96 mm;

.21 ;0

  

  

   

  


 

max max

max max

p φ

max max

p φ

·m ; 0.52

0.14 m

1.48 N

m ; 0.80

0; 1.75 N ·m

M q

 

 

 

 









  

Q3 
1 1

2 2

3 3

0.91 mm; 0.19

1.31 mm; 0.49

0.58 mm; 0.44

 

 

 

   

  

 







 

max

max max

max

p φ

max max

p φ

·m ; 0.67

0.99 m

4.33 N

m ; 1.49

0; . ·mN4 84

M q

 

 

 

 









  

Q4 
1 1

2 2

3 3

0.93 mm; 0.33

0.10 mm; 0.22

0.25 mm; 0.31

 

 

 

 

  

   







 

m ax m ax

m ax m ax

p φ

m ax m ax

p φ

·m ; 0.59

0.62 m

2.98 N

m ; 1.30

0; 4.0 N ·m

M q

 

 

 

 

 




  

B. Aggregation non-perfect serial chains under loading 

Now let us consider the chain stiffness model aggregation 

of Orthoglide manipulator under external loading caused by 

groove milling.. According to [24], such technological 

process causes forces 215
r

F N ; 10
t

F N  ; 

25
z

F N  . The tool length 100h m m  leads to torques at 

the manipulator end-effector 1 ·,
x

M mN and 

, 21.5 ·
y

mM N . It is assumed that the manipulator has two 

sources of inaccuracy: 

(i) the assembling errors in the kinematic chains causing 

internal forces and relevant deflections in joints and 

links due to manipulator over-constrained structure; 

(ii) the external loading 217 NF  caused by the cut-

ting force, which generates essential compliance def-

lections causing non-desirable end-platform dis-

placement. 

Similar to the previous example, it is assumed that the first 

source of inaccuracy can be caused by translational (Case A) 

and rotational (Case B) errors in the actuator locations.  

Let us consider the case study when Orthoglide performs 

milling from the point Q2 to Q5(-73.65, 126.35, -73.65) fol-

lowing the straight line. Simulation results for two error 

sources for the Case A and Case B are presented in Fig 7 and 

Fig. 8 respectively. They include the target trajectories, dis-

placements caused by the cutting forces and non-perfect 

geometry as well as total compliance errors and the dis-

placement evaluated using the superposition principle. The 

results are presented for the displacements in x- and z-

directions. 
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Fig. 7. Case A: Displacements caused different sources of inaccuracy dur-

ing milling along the straight line from point Q2 to Q4 using Orthoglide 

manipulator: (1) target trajectory, (2) displacements caused by cutting 

forces, (3) displacements caused by non-perfect geometry, (4) total compli-

ance error, (5) displacements obtained using superposition principle.   
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Fig. 8. Case B: Displacements caused different sources of inaccuracy dur-

ing milling along the straight line from point Q2 to Q4 using Orthoglide 

manipulator: (1) target trajectory, (2) displacements caused by cutting 

forces, (3) displacements caused by non-perfect geometry, (4) total compli-

ance error, (5) displacements obtained using superposition principle. 

 

The obtained results show that, due to the cutting force, 

the end-platform displacement in the x-direction with respect 

to the target trajectory may reach up to 0.4 mm  and its varia-

tions are insignificant (compared to the errors caused by in-

accuracy in the serial chains). In particular, in Case A, the 

errors in the x-direction induced by cutting forces and inac-

curacy in serial chains have the same direction, and, conse-

quently total error is close to 2.5 mm in the point Q2 and 



  

about 0.8 mm in the vicinity of the point Q4. In contrast, in 

the Case B, the compliance errors in the x-direction induced 

by the cutting forces and inaccuracy in the serial chains have 

different signs, so the total error in the loaded mode is less 

than in the unloaded one. This error varies from -0.6 mm to 

0.1 mm along the trajectory and even reduced to zero when 

the y-coordinate is about 80 mm. In the z-direction, the er-

rors caused by the assembling of non-perfect serial chains is 

much higher (from 0.5 mm to 2.1 mm for the Case A and 

from -1 mm to 1 mm in the Case B). To compensate for 

these errors the technique presented in sub-section IV.C can 

be applied.  

VI. CONCLUSIONS  

This paper presents the non-linear stiffness modeling 

technique for parallel manipulators composed of non-perfect 

serial chains, whose geometry differ from the nominal one 

and where essential internal forces/torques are generated. 

This technique is based on the developed aggregation proce-

dure that combines the chain stiffness models and produces 

the relevant force-deflection relation, the aggregated Carte-

sian stiffness matrix and also allows us to evaluate changes 

in the reference point location caused by inaccuracy in kine-

matic chains. In addition, expressions for computing of the 

internal deflections and forces/torques in joints are proposed. 

The developed technique can be applied to both over-

constrained and under-constrained manipulators, and is suit-

able for the cases of both small and large deflections.  

The advantages of the developed technique are illustrated 

by an example that deals with the over-constrained parallel 

manipulator of the Orthoglide architecture. It demonstrates 

the technique ability to evaluate the end-effector deflections 

caused by conventional sources (cutting forces/torques ap-

plied to the end-effector that arise while workpiece 

processing) and also induced by inaccuracy in serial chains 

of the parallel manipulator. Relevant plots that illustrate in-

fluence of different error sources on the manipulator position 

accuracy are presented. 

In future, the proposed technique will be integrated in a 

software toolbox that can be used for parallel manipulators 

of complex architecture and applied to the industrial problem 

of the compliance error compensation in robotic machining 

cells.  
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