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Abstract— In this paper we introduce an adaptive control
scheme for robots with elastic joints (in particular for the DLR
medical robot) in order to increase the positioning accuracy
and the performance of control with respect to uncertainties
of the parameters of the robot dynamics. In order to design
control and analyze system stability a static friction model is
applied which describes Coulomb, viscose and load dependent
friction. A stability analysis is done for this adaptive control
scheme, allowing a Lyapunov based convergence analysis in the
context of the nonlinear robot dynamics. Experimental results
validate the practical efficiency of the approach.

Index Terms— Adaptive control, adaptive friction compensa-
tion, flexible joint robots

I. INTRODUCTION

Robots with high gear ratio aiming at low own weight and
high payload, as the DLR medical robot (Fig. 1, [1]), can
be modeled as robots with flexible joints. For these robots
the effects of joint friction can strongly influence the system
performance. On the other hand, the dynamic parameters
of the actuator including friction can strongly vary with
time or with temperature, motivating the adaptive control
development of this paper.

Different control strategies for elastic joint robots have
been developed in the literature. Some methods, such as feed-
back linearization [2], backstepping [3], or passivity based
adaptive control [3], [4] belong to the standard reference
and provide control solutions which apply for both regulation
and tracking. Singular perturbation controllers [5], [6] can be
easily implemented, but are valid only for limited elasticity
and lead to some limitations of the overall control bandwidth
due to their cascaded nature. Simpler control structures were
proposed, such as PD-controller [7] or SISO state feedback
controller [8] where for the latter the global asymptotic
stability of the closed loop system can be shown.

In order to deal with the strong joint coupling of the DLR
medical robot, in [9] a MIMO state feedback controller with
full state feedback (motor position, link side torque, as well
as their derivatives), gravity and friction compensation was
introduced. This controller was already successfully applied
to the DLR medical robot. The system stability is derived in
analogy to [7] and [8] with a Lyapunov approach.

For the controlled robot the friction compensation is a
very basic problem in motion control and therefore there is
a huge amount of research literature, out of which only a
small fraction can be cited here. The standard approaches
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are model based friction compensation with a static friction
model [10] or with a dynamic friction model [11]. Since the
parameters of friction strongly vary with temperature and
with time, model based friction compensation is quite inaccu-
rate. In addition the friction compensation performance with
the static friction model is bad with slow velocity because
of the chattering phenomena. On the other hand, standard
linear techniques such as integrators or disturbance observers
[12] are typically used in industrial robotics applications
and show good practical performance. For integrators, only
local convergence results have been achieved in robotics.
Adaptive control techniques in this case can improve control
performance with respect to parameter variations.

Most adaptive schemes for robots with flexible joints
assume that the link position is measured [13], [14], [15],
[16] and neglected effects of friction. In this paper an
adaptive control scheme is developed for the DLR medical
robot, that takes frictional effects into account. The resulting
adaptive controller is experimentally verified and compared
with the corresponding model based controller, or rather with
the MIMO state feedback controller. The experiments are
implemented at the coupled joints 2-3 of the DLR medical
robot.

The paper is organized as follows. Section II introduces
the robot model. In Sec. III a motion controller is designed
based on all known parameters of the robot while Sec. IV
summarizes the adaptive controller. Sections III and IV also
present the results of the convergence analysis. Sec. IV deter-
mines the parametric update law for the adaptive controller.
Finally, the obtained performance is verified by experimental
tests reported in Sec. V.

 

Fig. 1. Setup for using the DLR Medical robot.



II. MODELING OF THE MEDICAL ROBOT

A. Dynamics Model
The DLR medical robot (in Fig. 1) has n = 7 rotary

joints that exhibit considerable elasticity. Apart from the
first joint, the following three joint pairs are coupled with
differential gears. The following simplified dynamics of the
DLR medical robot with flexible joints [9] is described by

um = Jmθ̈m + TT τ + τfm (1)
τ = M(q)q̈ + C(q, q̇)q̇ + g(q) (2)

with

τ = K(Tθm − q). (3)

Therein, q ∈ Rn and θm ∈ Rn are the link and motor
angles, respectively. The elastic torque vector τ ∈ Rn is
determined by a the linear relationship τ = K(Tθm − q)
and is measured by strain gauge based torque sensors. The
joint stiffness matrix K ∈ Rnxn is symmetric and positive
definite and for the DLR medical robot has the following
structure

K = diag(K1,K2 3,K4 5,K6 7) (4)
with K1 ∈ R ,Ki = KT

i ∈ R2x2, ∀ i ∈ {2 3, 4 5, 6 7}.
The motor inertia matrix Jm ∈ Rnxn is diagonal as well.
M(q) ∈ Rnxn is the mass matrix, C(q, q̇) ∈ Rnxn the
centrifugal and Coriolis matrix, and g(q) ∈ Rn the gravity
vector of the rigid body model. The control input is the motor
torque um ∈ Rn. τfm ∈ Rn is the friction torque.

Due to the coupling of the joints through the differential
gear (see Fig. 2), motor coordinates, denoted by the subscript
m, have to be distinguished from the coordinates after the
gearbox (or, on the link side), written without subscripts.
For example, the motor position θm as well as the motor
inertia Jm are given in motor coordinates, while the joint
torque τ is measured after the gear, in link coordinates. Due
to the differential gears, the transformations between motor
and link coordinates for positions and torques are given by{

θ = Tθm
τm = TT τ

(5)

with T being the transformation matrix

T =


1 ... 0
T

... T
...

0 ... T

 , ∀ T =

[
0.5 0.5
−0.5 0.5

]
. (6)

Finally, in order to facilitate the controller design and the
stability analysis the following two properties are used

1) The matrix Ṁ(q)− 2C(q, q̇) is skew symmetric and

xT (Ṁ(q)− 2C(q, q̇))x = 0 ∀x, q, q̇ ∈ Rn.
2) The dynamic parameters of the rigid body can be

linearized and enable to write

M(q)q̈ + C(q, q̇)q̇ + g(q) = Yq(q, q̇, q̈)γq,

where γq ∈ Rm is the vector of the rigid body param-
eters and Yq ∈ Rnxm is the corresponding regressor
matrix of known functions.

B. Friction Model
In this paper a static friction model is chosen for the

control design and the stability analysis. In particular, we
consider the following standard friction model containing
Coulomb friction, load dependent friction and viscous fric-
tion. So the friction model is given by

τfm = (fc + µ | τm |)sign(θ̇m) + fv θ̇m (7)

with fc, fv and µ being the Coulomb, viscous and load
dependent coefficient matrices, respectively. τm is the joint
torque at the motor side. Furthermore the friction model can
be described by

τfm = Y (θ̇m, τm)γf (8)

with

γf = [fc11 , ..., fcnn
, µ11, ..., µnn,

fv11 , ..., fvnn
]T ∈ R3n

Y (θ̇m, τm) = [diag(sign(θ̇m)), diag(|τm|sign(θ̇m)),

diag(θ̇m)] ∈ Rnx3n

III. CONTROL DESIGN WITH ALL PARAMETERS KNOWN

In this paper the stiffness K of the robot may be assumed
to be known. So the link position q can be calculated by
q = Tθm−K−1τ , when the motor position θm and torque τ
are measured. For the controller design, the dynamics (1), (2)
is rewritten in terms of link coordinates (after the gearbox)
as

u = Jθ̈ +K(θ − q) + τf (9)
θ = K−1[M(q)q̈ + C(q, q̇)q̇ + g(q)] + q (10)

The following tensor transformations have been used
u = T−Tum
θ = Tθm
J = T−TJmT

−1

τf = T−T τfm.

(11)

Notice that J ∈ Rnxn, the motor inertia matrix written in
link coordinates, is positive definite and symmetric, but in
general not diagonal.

In order to control the robot to track the desired trajectory
qd, a joint motion controller is developed based on the rigid
body dynamics which generates the desired motor position
θd. Then, based on this desired motor position the suitable
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Fig. 2. Differential gear at the DLR Medical Robot.



control torque u is computed by a motor motion controller so
that the motor position can follow the desired motor position
θd, and thus the link position q will follow the desired link
position qd.

A. Joint Motion Controller
Let λq be a positive definite and diagonal matrix, and

define  eq = qd − q
vq = q̇d + λqeq
sq = vq − q̇ = ėq + λqeq.

(12)

The designed motor position θd is generated by using the
rigid body dynamics [17]

θd = K−1[M(q)v̇q + C(q, q̇)vq + g(q)]

+ K−1Kqsq + q (13)

where the matrix Kq is positive definite and diagonal.
Substituting (13) into equation (10) we obtain the closed-

loop rigid-body dynamics

eθ = θd − θ
= K−1[M(q)ṡq + C(q, q̇)sq] +K−1Kqsq. (14)

B. Motor Motion Controller
Further let us define the tracking errors of motor side

eθ = θd − θ
vθ = θ̇d + λθeθ
sθ = vθ − θ̇ = ėθ + λθeθ.

(15)

with λθ being a positive definite and diagonal matrix.
To ensure that the motor position θ converges to the

designed motor position θd, a computed torque like control
law is chosen as

u = Jv̇θ +K(θ − q) +Kθsθ + τf (θ̇m, τm) (16)

with the friction torque (11) being τf = T−T τfm(θ̇m, τm)
and Kθ being a positive definite and diagonal matrix.

Then, substituting (16) into (9), we have the closed-loop
of the motor dynamics

Jṡθ +Kθsθ = 0. (17)

C. Stability Analysis
For stability analysis the following Lyapunov function

candidate was used

V1 =
1

2
sq
TM(q)sq +

1

2
sθ
TJsθ + eθ

TKθλθeθ. (18)

This Lyapunov function contains in addition to the motor
and link side kinetic energy also the potential energy related
the motor motion controller, and is always positive definite.

The derivative of the Lyapunov function V1 along the
system trajectories using the equations (17), (15), (14) leads
to

V̇1 = sq
TM(q)ṡq +

1

2
sq
T Ṁ(q)sq

+ sθ
TJṡθ + 2ėTθKθλθeθ

= sq
TKeθ − sqTKqsq − eθTλθTKθλθeθ − ėTθKθ ėθ

= −
[
sq
T eθ

T
]
H

[
sq
eθ

]
− ėTθKθ ėθ (19)

with the Hessian-matrix

H =

[
Kq − 1

2K

− 1
2K λθ

TKθλθ

]
Then, the function V̇1 is negative definite when the

Hessian-matrix H is positive definite or the following con-
dition

λθ
TKθλθ >

1

4
KTK−1q K (20)

is fulfilled.
Therefore, the system is stable in the sense of the Lya-

punov theory because of the functions V1 > 0 and V̇1 < 0.
From the closed-loop dynamics (17) and (14), ṡθ and ṡq
are bounded. Since sθ and sq are bounded and are also
uniformly continuous functions, it follows that V̇1 is bounded
and uniformly continuous function. Therefore,

lim
t→∞

sθ = 0, and lim
t→∞

sq = 0

and eθ → 0, ėθ → 0, eq → 0, and ėq → 0 as t → 0.
Therefore the system is globally asymptotically stable.

IV. ADAPTIVE CONTROL DESIGN

A. Adaptive Joint Motion Controller
For unknown parameters the adaptive control law of the

designed motor position θd is chosen by

θd = K−1[M̂(q)v̇q + Ĉ(q, q̇)vq + ĝ(q)]

+ K−1Kqsq + q

= K−1Yq(q, q̇, vq, v̇q)γ̂q +K−1Kqsq + q (21)

where M̂(q), Ĉ(q, q̇) and ĝ(q) are adapted parameters. Sub-
stituting (21) into equation (10), leads to the closed-loop rigid
body dynamics

eθ = θd − θ
= − K−1Yq(q, q̇, vq, v̇q)γ̃q (22)

+ K−1[M(q)ṡq + C(q, q̇)sq] +K−1Kqsq.

where γq, γ̂q are the dynamic parameters of the rigid body
model and their estimates respectively, and γ̃q = γq − γ̂q .
B. Adaptive Motor Motion Controller

The following adaptive control law for the motor motion
control based on the robot dynamics with the static friction
model (7) is chosen

u = Ĵ v̇θ +K(θ − q) +Kθsθ

+ T−T [(f̂c + µ̂|τm|)sign(vm) + f̂vvm] (23)

≡ Ĵ v̇θ +K(θ − q) +Kθsθ + T−TYf (vm, τm)γ̂f

with vm = T−1vθ and γ̂f being the estimates of the friction
parameters.

Substituting (23) into equation (9) and utilizing equations
(8), (11), (15) yield the closed-loop motor dynamics

Jṡθ +Kθsθ + T−T [Yf (vm, τm)− Yf (θ̇m, τm)]γf =

Yθ(v̇θ)γ̃θ + T−TYf (vm, τm)γ̃f (24)

where γ̃f = γf − γ̂f , and J̃ = J − Ĵ , and where

γ̃θ = [J̃11, J̃22, ..., J̃nn]T ∈ Rn

Yθ(v̇θ) = diag(v̇θ1 , v̇θ2 , ..., v̇θn) ∈ Rnxn.



C. Stability Analysis

Stability analysis of the closed-loop dynamics (22) and
(24) can be shown by considering the following Lyapunov
function candidate

V = V1 +
1

2
γ̃Tq Γ−1q γ̃q +

1

2
γ̃Tθ Γ−1θ γ̃θ +

1

2
γ̃Tf Γ−1f γ̃f (25)

where Γq,Γθ and Γf are positive definite and diagonal ma-
trices. So this Lyapunov function is always positive definite.

The derivative of the Lyapunov function V along the
system trajectories and utilizing equations (22), (24) is given

V̇ = sq
TM(q)ṡq +

1

2
sq
T Ṁ(q)sq + 2ėTθKθλθeθ

+ sθ
TJṡθ + ˙̃γq

T
Γ−1q γ̃q + ˙̃γθ

T
Γ−1θ γ̃θ + ˙̃γf

T
Γ−1f γ̃f

= sq
TKeθ − sqTKqsq − ėTθKθ ėθ − eθTλθTKθλθeθ

+ [sq
TYq(q, q̇, vq, v̇q) + ˙̃γq

T
Γ−1q ]γ̃q

+ [sθ
TYθ(v̇θ) + ˙̃γθ

T
Γ−1θ ]γ̃θ

+ [sθ
TT−TYf (vm, τm) + ˙̃γf

T
Γ−1f ]γ̃f

− sθ
TT−T [Yf (θ̇m, τm) + Yf (vm, τm)]γf (26)

≡ V̇1 + V̇2 + V̇3

with

V̇1 = sq
TKeθ − sqTKqsq − ėTθKθ ėθ − eθTλθTKθλθeθ

V̇2 = [sq
TYq(q, q̇, vq, v̇q) + ˙̃γq

T
Γ−1q ]γ̃q

+ [sθ
TYθ(v̇θ) + ˙̃γθ

T
Γ−1θ ]γ̃θ

+ [sθ
TT−TYf (vm, τm) + ˙̃γf

T
Γ−1f ]γ̃f

V̇3 = − sθ
TT−T [Yf (vm, τm)− Yf (θ̇m, τm)]γf . (27)

From section (III) the function V̇1 is positive definite when
the condition (20) is fulfilled.

Since the parameter vectors γq, γθ and γf are constant, the
update laws for the estimated robot parameters are chosen

˙̂γq = ΓTq Yq(q, q̇, vq, v̇q)
T sq

˙̂γθ = ΓTθ Yθ(v̇θ)
T sθ

˙̂γf = ΓTf Yf (vm, τm)TT−1sθ.

(28)

This makes the function V̇2 equal to zero.
Further, setting fs = (fc + µ|τm|) (and always fs > 0)

and from equations (8), (11) and (15) the function V̇3 can
be rewritten as

V̇3 = −(vm − θ̇m)T [ fssign(vm) + fvvm

−fssign(θ̇m)− fv θ̇m]

=

n∑
i=1

−fvi(vmi − θ̇mi)
2 − fsi [|vmi | − vmisign(θ̇mi)]

− fsi [|θ̇mi
| − θ̇mi

sign(vmi
)] ≤ 0

and is always negative definite.
Thus, the Lyapunov function V is positive definite and V̇

is negative definite with the conditions (20) and the adaptive
law (28). The system is also stable in sense of the Lyapunov

theory. Further, the errors sθ and sq are uniformly and
continuously. Therefore

lim
t→∞

eθ = 0, lim
t→∞

ėθ = 0, lim
t→∞

eq = 0, and lim
t→∞

ėq = 0.

The system is also globally asymptotically stable.

V. EXPERIMENTS

In this section the results of two experiments with the
controllers of Sec. III and Sec. IV are compared for the
coupled joints 2-3 of the DLR medical robot, with

T =

[
−0.5 0.5
−0.5 −0.5

]
.

Both axes are controlled to track a desired periodic trajectory
(see Fig. 3) with a desired velocity of [ 10, 14] (deg/s).
The following gain parameters are chosen in the experiments
λq = diag(25, 25), λθ = diag(25, 25), Kq = diag(20, 20),
Kθ = diag(20, 20), Γq = diag(10, 10, 10, 10), Γθ =
diag(10, 10) and Γf = diag(30, 30, 30, 30, 30, 30).

In the first experiment, the model based controller with
known parameters according to Sec. III is applied in order
to show the behavior in terms of the tracking errors. In
this experiment it has been assumed that the real friction
parameters used for the controller have been identified with
a deviation under 5%. Figure 4 shows the position errors
of both joints. Another experiment with the model based
controller shows that this controlled system is very sensitive
with respect to uncertainties of the parameters. So for 30%
error of the friction parameters the system becomes unstable.

For the case of the adaptive controller according to Sec. IV
the same desired trajectory is used. The initial values of
the estimated friction parameters are 80% of the identified
friction value fcinit = [8.8, 6.8] Nm, µinit = [0.35, 0.06],
and fvinit = [7.0, 10.8] Nms/rad. The estimates of the static
friction parameters are shown in Fig. 6, Fig. 7, and Fig. 8.
The position errors of both joints are shown in Fig. 5.

It can be observed from the tracking errors that the adap-
tive controller with friction compensation is considerably
superior in performance with respect to the model based
controller. Those tracking errors were improved significantly
due to the adaption.

Further, this result is compared with the case of MIMO
state feedback controller [9] which has the linear control law

u = KP eθ −KD θ̇ +KTK
−1(g(qd)− τ)−KSK

−1τ̇

+ g(qd) (29)

with symmetric positive definite control gain matrices
KP , KD, KT and KS . The motor position errors of this
MIMO state feedback controller without friction compensa-
tion (Fig. 9) are worse than the adaptive controller. However
the MIMO state feedback controller can achieve a better
dynamic behavior that can be shown in a single period of
the measured link torques (Fig. 10 and Fig. 11) concerning
smaller noise and superior damping in the reversal points of
the trajectory. The reason is that the adaptive control scheme
use link position, velocity as well as acceleration which the
MIMO state feedback controller ignores the acceleration.

For the case of interacting with the environment the adap-
tive control scheme is not longer suited due to the chattering
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Fig. 4. Tracking link and motor position errors with the computed torque
scheme.

phenomena near zero velocity. Then a compensation with
the dynamic friction model or with a friction observer [12]
is proposed.

VI. CONCLUSIONS

In this paper we have proposed an adaptive scheme with
friction compensation that can be used in order to enhance
the robot accuracy. The friction model used in this paper
is static, containing Coulomb, viscous and load dependant
effects. The static friction parameters are estimated online
because of their time variance. Finally, global asymptotic
stability of the adaptive controller has been proven. Exper-
imental results validate the approach for the DLR medical
robot.
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Fig. 9. Tracking motor position errors with the MIMO state feedback
controller.
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Fig. 10. Measured link torque of the adaptive control scheme.
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Fig. 11. Measured link torque of the MIMO state feedback control scheme.


