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Abstract— We present a next-best-scan (NBS) planning ap-
proach for autonomous 3D modeling. The system successively
completes a 3D model from complex shaped objects by iter-
atively selecting a NBS based on previously acquired data.
For this purpose, new range data is accumulated in-the-
loop into a 3D surface (streaming reconstruction) and new
continuous scan paths along the estimated surface trend are
generated. Further, the space around the object is explored
using a probabilistic exploration approach that considers sensor
uncertainty. This allows for collision free path planning in
order to completely scan unknown objects. For each scan
path, the expected information gain is determined and the
best path is selected as NBS. The presented NBS approach
is tested with a laser striper system, attached to an industrial
robot. The results are compared to state-of-the-art next-best-
view methods. Our results show promising performance with
respect to completeness, quality and scan time.

I. INTRODUCTION

Accurate 3D models of real world objects are highly
required for many applications in the field of robotics and
beyond. This includes tasks such as object detection, grasp
planning, collision avoidance and navigation for robotic
systems, as well as digitization of cultural heritage artifacts,
rapid prototyping and reverse engineering. Today, the gener-
ation of 3D models is either performed manually by hand-
guided scanner systems or by simple automatic systems,
which feature a maximum of one or two degrees of freedom
(DOF), defined by a single-view or turntable system. The
latter acquire data by following a predetermined path and
do not consider previous scan data. Hence, these systems
either acquire part of the object or are restricted to objects
with simple, convex geometries, where the object does not
contain occluded areas with respect to the viewpoint of
the sensor. In contrast, hand-guided scanning allows for
acquiring arbitrary shapes. Here, the human operator utilizes
the visualization of the previously scanned parts to iteratively
complete the model. However, this can be a very tedious
and time consuming task for a human. Furthermore, the
completeness and quality of the final 3D model highly
depends on the skills of the operator.

An autonomous robotic 3D modeling system that is able
to completely scan objects with arbitrary shape would be
highly beneficial, as it eases the time consuming acquisition
and makes results more reproducible. Replacing the human
operator by an autonomous system requires continuous view
and path planning. The former plans new sensor views in
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Fig. 1. Left: The robot is moved along a continuous scan path while
the statue is scanned with the attached laser stripe profiler. Upper Right:
A triangle mesh is reconstructed in a real-time stream during the sensor
movement. Lower Right: The initially unknown space (gray) is updated
based on sensor data of the current scan.

order to fulfill the given task. The latter generates collision
free robot paths in order to acquire the planned views.

The planning of sensor views from measured data is
usually denoted as next-best-view (NBV) problem. Since
the 1980s, the NBV problem has been addressed by several
researchers [1] [2] [3] but still remains an open problem.
NBV usually relates to single view points as generated by
2D range sensors, which acquire 2D images of distance
values. However, 3D modeling is often performed by 1D
laser stripe profilers due to the higher measurement accuracy
of such systems. Some approaches use the last DOF of the
robot to generate a rotatory sweep that can be interpreted as
2D image. In contrast, we introduce the term next-best-scan
(NBS), which represents a continuous scan path with variable
length consisting of several views, as shown in figure 1.

This work focuses on the view planning aspect and the en-
vironment modeling. Our autonomous 3D modeling system
enables a robot to plan successive NBSs in order to obtain
a 3D surface model of an unknown, complex object with
a desired mesh quality. Simultaneously, the unknown space
around the object is explored, enabling a collision free path
planning of NBS trajectories. We use information gain as
measure to select a NBS, in order to explore the unknown
space and complete the object. Our approach is evaluated in
simulation and on an industrial robot.



II. RELATED WORK

According to Chen [4], active vision perception reached a
peak in 1998 and due to the emerging variety of applications
became very active again in the last 5 years. The term
active vision refers to the situation where the robot develops
strategies to place and configure the sensor. NBV algorithms
are utilized in a variety of applications such as exploration,
object modeling and inspection. Blaer [5] uses a mobile
robot to model a fort and church site. A voxelspace is
initialized with the state “unknown”. Then, viewpoints are
randomly sampled over a given 2D map and after a few initial
scans, the NBV is selected which covers the highest amount
of unknown voxels. Wong’s [6] method is similar only
in a different context: 3D modeling of small-scale objects
instead of huge sites. Here, 114 viewpoints are randomly
sampled over a sphere, which circumscribes the object, and
the NBV is selected which sees the most unknown voxels.
Wong additionally implements a surface normal and adaptive
method, which speeds up the process but do not improve the
model quality. Trummer [7] determines a covariance matrix
for every 3D point and chooses a NBV with the largest
directional uncertainty on a sphere. Several other non-model
based NBV methods also restrict the viewpoint space to a
sphere or cylinder. This reduces the actual 6DOF search
space to a 2DOF problem and makes it impossible to view
all the surfaces of objects with complex geometry.

Scott [3] summarizes and classifies existing non-model
based NBV methods as volumetric or surface-based. The
advantage of a volumetric model is that spatial information
is available and therefore occlusions can be avoided when
planning the NBV. However, if the object is complete in
the voxelspace, this does not necessarily indicate that the
surface model, which is often the desired output, is also
complete. Most general NBV algorithms try to minimize
the number of necessary views to fulfill the task. In the
context of 3D modeling, however, it is more important to
generate a 3D surface model with a certain quality. Since
our aim is a complete 3D surface model, but we also need
spatial information to be able to move the robot to the NBS,
we utilize both a surface and a volumetric model during
the NBS planning. Since most work in [3] neglect robotic
aspects, we want to inspect more recent research, which
applies a real sensor and robot. In table I, this research
is compared concerning aspects, which are fundamental for
fully autonomous 3D object modeling. An aspect is only
marked as considered (x) if it is used during the view
planning process, e.g. if a surface model is created in a
postprocessing step it is not marked as considered. Callieri
[8] and Larsson [9] both use a robot in combination with a
turntable to be able to reach the object all around. Turntables
need human interaction to grasp and position the object in
the center of the table. They are not available in a robot
environment, where the robot should learn and interact with
unknown objects. Furthermore, turntables cannot be applied
to cultural heritage objects, since the objects are usually
very large, located at museums and cannot be moved [10].

TABLE I
COMPARISON OF AUTONOMOUS 3D OBJECT MODELING SYSTEMS

Su
rf

ac
e

M
od

el

Vo
lu

m
et

ri
c

M
od

el

C
om

pl
ex

G
eo

m
et

ry

H
ol

e
D

et
ec

tio
n

6D
O

F
Se

ar
ch

Sp
ac

e

Se
ns

or
U

nc
er

ta
in

ty

Pa
th

Pl
an

ni
ng

E
xp

lo
ra

tio
n

Callieri x x x
Larsson x x x
Chen x x x x
Kriegel x x x x
Torabi x x x x
Our system x x x x x x x x

Callieri applies a stationary laser scanner which performs
a scan by moving the laser stripe itself. He uses marching
cubes to generate a final mesh and therefore ignores sensor
information for the mesh generation [11]. Larsson utilizes
a voxelspace for collision free path planning but only uses
the orthogonal cross-sections model for the NBV planning.
Sensor uncertainty is not considered. Chen [12] predicts
the surface trend of the unknown area of the object. This
curvature-based method mostly works for simple objects with
smooth surfaces but has difficulties with complex structures.
Kriegel [13] determines scan paths based on the surface trend
of the boundary regions in the triangle mesh. This method
performs well on statues with a few concave areas. Chen
and Kriegel both use a 6DOF viewpoint space, in which scan
paths are selected locally. Kriegel subsequently processes the
determined viewpoints by performing linear scans. The NBV
is simply selected dependent on its position in the initial
sensor field of view. There is no evaluation if the NBV will
result in the desired information. Furthermore, holes are not
handled and no reasonable termination criterion is described.
Torabi [14] aims at scanning all target points, which are
located at the border between seen and unknown regions.
She does not restrict the viewpoint space to one view sphere
but to 4 spheres and allows for different view orientations.
She also considers path planning and exploration based on an
octree and uses a point cloud, not explicitly a surface model,
to determine the target points. Although Torabi introduces a
model completion criterion, both workspace scenarios are
not sufficiently completed and even for a simple mug still
approx. 6 % of the target points could not be eliminated.

In this work we extend the boundary method [13], in
order to generate scan path candidates from the last scan and
then select a NBS with the most information gain from all
candidates. We address all the issues stated in table I. In [13],
path planning is performed on a bounding box which the
human needs to initialize around the object. We assume that
the location of the object is only known approximately and
therefore explore the workspace while scanning the unknown
object. Exploration is required since the scan path is not
mapped on a sphere, but adapted to the surface contour.
Therefore, the robot must move very close to the object.



III. AUTONOMOUS 3D MODELING SYSTEM

In this section the different steps in order to autonomously
generate a 3D model of an unknown object, which are shown
in figure 2, are described. A 3D scan is performed by moving
the robot along a continuous scan path and obtaining laser
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Fig. 2. Overview of the process to autonomously create a 3D model

range data, which is synchronized with the robot poses. The
initial scan path is a linear path, which is predefined and in
free space. Based on the range images, a triangle mesh is
reconstructed in a real-time stream [11] and a probabilistic
space is updated with Bayes’ Rule [15]. The system exits
if an estimated mesh coverage, which can be manually
customized depending on the application, is obtained. If it
significantly differs when compared to the last scan, scan
path candidates are generated based on the boundary trend.
Else, if the coverage is similar but the desired coverage has
not been reached, all holes in the mesh are detected and
scan paths which should view the holes are generated. This
is only performed once. The criterion we used to estimate
the object coverage is described in detail in III-F. Also a
maximum scan number for hole detection and system abort
is applied in case the mesh coverage is not reached.

After taking only scan paths into account that allow
for collision-free path planning, the one with the highest
information gain is selected as NBS. The remaining scan
paths will be reused for the determination of the subsequent
NBSs. Also, based on the space, a collision free path is
planned and a subsequent scan is performed.

A. Boundary Search

The Boundary Search generates scan path candidates,
which view the estimated surface trend beside the detected
boundaries. We use the boundary scan estimator from [13],

since it is a fast method to generate reasonable scan paths
based on the triangle mesh. The method generates continuous
scan paths for the detected boundaries from the current
triangle mesh based on the estimated surface trend. The scan
paths view the center of the estimated surface, which is
beside the scanned region, at an perpendicular angle and
have an adjustable overlap with previous scan data. The
benefits of using the boundary search in comparison to a
sphere search space are that overlap is already considered
and NBSs will be beside the known region. This leads to a
short robot movement from the current NBS to a subsequent
NBS. Also the scan path candidates are not predefined but
estimated from the current sensor information and therefore
are adapted to the object contour. A major advantage is that
the search space is not restricted, which allows for better
modeling results, since the distance and grazing angle of the
sensor to object are also not restricted and regions which
cannot be seen from a sphere can also be viewed.

B. Hole Detection

After the surface model is assumed to be fairly complete,
holes in the mesh are detected and for these, scan paths are
estimated. This is the case if the mesh coverage for two
subsequent NBSs is similar but the desired coverage has not
been reached. The scan paths from the boundary search are
not optimal if only a few holes remain, since they usually
view a bigger region than necessary and might not be able to
view a complete hole due to occlusion. Therefore, when the
mesh is fairly complete, the remaining scan paths from the
boundary search are discarded and for each hole an adequate
scan path is calculated.

Holes are detected by iterating over all edges of the trian-
gle mesh and finding a closed loop of border edges. A border
edge is an edge to which a triangle is only assigned on one
side and on the other side there is nothing. For each border
edge, neighboring border edges are successively searched,
which together form a path of edges. This path is considered
to be a hole if the path is closed. Then, for each hole, the
center and normal is determined as suggested by Loriot [16].
A scan path is determined along the largest expansion of
the hole. Additionally, for holes with similar center position
and orientation, a combined scan path is determined. Of
course, one could close the holes in a postprocessing step.
However, this would distort the real object contour and is
not acceptable for accurate 3D modeling. After the mesh is
fairly complete, we only perform the hole detection once and
scan holes until the desired coverage is reached. Thereby, real
holes are only scanned once.

C. Voxelspace Update

A voxelspace is the 3D-equivalent of an occupancy grid.
Each cell or “voxel” of the space holds a scalar state, repre-
senting whether there is an obstacle in the cell or not. Such
a space is useful for entropy-based exploration and collision
avoidance algorithms. The probabilistic space used in this
work has been introduced by Suppa [15]. He gives a detailed
survey of 3D-mapping methods and their application in the



context of robot work cell exploration. Similar mapping
methods in 2D have been studied extensively before [17].
Here, only the most important features are recapitulated.

1) Update Rules: The voxelspace is built incrementally.
After each depth-measurement the space is updated. This can
be done in various ways such as Fuzzy-, Dempster-Shafer-,
Naı̈ve- and Bayes-update. The Fuzzy-Update is based on
the application of t-Conorms for generalized set unions.
Dempster-Shafer utilizes a generalized probability-theory
and belief-functions for a Bayesian-like update, whereas
Bayes-update is carried out following plain probability the-
ory. In this paper we follow Suppa’s choice to use Bayes-
update, as we have nearly the same task to fulfill.

2) Measurement Model: For mapping, forward and in-
verse sensor models are used. Each measurement beam
induces a state of occupation/freedom for the hit cells. These
induced states are combined with the cell’s current states and
stored as their new states. When using Bayes-update, the
states represent a transformation of the likelihood quotient
and can be interpreted as a measure for the cell’s probability
to be occupied.

3) Exploration using information gain: Some exploration
strategies are based on the calculation of expected informa-
tion gain (IG). Information or entropy of a sensor view is the
sum of weighted probabilities of all cells in the view. As the
cell states can be interpreted as measures for probabilities,
the implementation is straight forward. It has been shown
[15] that the expected IG can be estimated by the current
information in the view without great bias.

D. Next-Best-Scan Selection

For each scan path candidate, which is either generated
during the Boundary Search or the Hole Detection, the IG
is determined and used as measure to select a NBS. Several
other NBV methods select a NBV by counting the amount
of unknown voxels which are seen from a viewpoint (see
section II). Thereby sensor uncertainty is not considered
and only the first intersected unknown voxel of the beam is
observed. Since exploration is fundamental for our system,
we choose IG as measure to select a NBS. IG is also suitable
for object modeling. If the unknown space of the object is
scanned, then the mesh is completed. IG can be used for
both, exploration and object modeling.

The entropy for a single voxel based on the probability p,
which represents the probability of the voxel to be occupied,
is computed as follows:

Hvoxel(p) = − p log(p)︸ ︷︷ ︸
occupied

− (1 − p) log(1 − p)︸ ︷︷ ︸
free

(1)

The total information gain of one scan path is calculated
by casting a ray onto the probabilistic space for each sensor
beam, going through every intersected voxel until an oc-
cupied voxel is reached and summing up Hvoxel(p) of all
intersected voxels:

IGscan =
∑

beams

∑
voxels

Hvoxel(p) (2)

If for a voxel p = 95%, we assume that this voxel is
occupied. Therefore all further voxels along the ray are
occluded and their entropy is not considered. The IGscan

is determined for each scan path from the stack. Finally, the
scan path with the highest expected IG represents the NBS.

E. Path Planning

In order to be able to safely move the robot, collision
free path planning is performed based on rapidly-exploring
random trees [18] and probabilistic roadmaps [19].

Some scan paths may not be reachable by the robot or
the space may not be free yet. Since our approach does not
restrict the search space and thus scan paths are generated
which can be very close to the object, collision avoidance
and robot reachability are factors which are very relevant.
Therefore, based on the probabilistic voxelspace, which is
updated after each laser scan, we plan a collision free path
to the start position of the NBS and along the complete
continuous scan path. It is mandatory that the Voxelspace
Update frees as much unknown space as possible to allow
for collision free path planning for as many scan paths as
possible. If the NBS is not reachable by the robot, it is either
discarded, if it goes through an obstacle, or kept for later
iterations, if it intersects with unknown space. Then another
NBS is selected from the stack. If only part of the scan path
is reachable, then a NBS for this part is performed.

F. Termination

It is difficult to find a reasonable termination criterion
if the object is unknown and no ground truth is given.
Torabi [14] points out that most previous NBV methods
lack a termination criterion, which considers the actual object
shape coverage. They abort if a maximum number of views
is reached [7], if the model does not change significantly
anymore after a scan [6] or if all air points [9] or boundaries
[13] have been scanned once. Torabi suggests that the model
is complete if no boundaries in the point cloud remain.
However, even if the object is complete within the point
cloud or voxelspace, the surface model can still consist of
several holes. A triangle for the mesh cannot be generated if
no neighborhood point can be found within a certain radius.
Thus, an object shape coverage criterion based on the point
cloud or voxelspace model is not reasonable. We suggest a
mesh completeness

ĉm = 1 − nborder

ntotal
(3)

based on the boundaries in the surface model. The quo-
tient of the number of border edges nborder by the total
number of edges ntotal describes the percentage of mesh
areas which have not been filled yet. The edge length is
approximately constant due to the meshing parameters. ĉm
only describes the completeness of the current triangle mesh
and only estimates the actual object coverage, which cannot
be determined since no ground truth is given. However, it
is a measure to determine if an object is 100% complete,
which is the case when no border edges (no holes) remain
in the surface model. The user can input a desired value for



ĉm and the 3D modeling system will abort, if it is achieved.
If the desired completeness is chosen too high and cannot
be reached, due to the sensor characteristics and the object
shape, the method will abort after a predefined scan number.

IV. EXPERIMENTS

In this section, the autonomous 3D modeling system,
which is described in section III, is compared with other
NBV methods and then its performance is evaluated on an
industrial robot.

A. Test Environment and Simulation

As shown in [13], objects with a size of about 30cm ×
20cm × 30cm, can be completely scanned within the
workspace of a Kuka KR16 industrial robot. We use a similar
setup with the difference that the controller is a KRC4 and a
probabilistic space is initialized with the state “unknown”
around the approximate object position. The DLR Laser
Stripe Profiler (LSP) of the DLR 3D Modeler [20], which
measures 224 depth points per stripe at a frame rate of 25
Hz, is attached to the flange of the industrial robot (see
figure 1). The robot has a maximum absolute positioning
error of only a few millimeter. When using the LSP or any
other triangulation-based sensor, it is crucial that the space
is not just freed when nothing is measured. If the LSP does
not return any measurements, there could still be an obstacle
closer to the LSP than its depth of field (150mm to 500mm).

We choose to perform the comparison of different NBV
approaches in simulation, since then the methods are not
restricted to the robot workspace and we can focus on
evaluating the object coverage of different NBV approaches.
Based on the sensor model of the LSP, every beam for a
scan path is determined. A depth measurement is simulated
by determining the intersection of a beam with the triangle
mesh of the test object. A distance dependent sensor noise
is also applied to the simulated depth measurements.

As test object, we choose a putto statue with a height
of approx. 500mm, since it has a very complex geometry
with several small indentations, which make view planning
difficult. It took a human almost an hour to scan the complete
object using a commercial 3D scanner mounted on a passive
measuring arm. This ground truth mesh of the putto statue,
which consists of 208126 triangles, is used for simulation
and for measuring the quality of the model generated by the
robot.

B. Comparison in Simulation

There is a number of accepted criteria for evaluating view
planning algorithms. Scott [3] proposes the following three
measures: view plan quality (quality of the reconstruction),
view plan efficiency (total path the sensor is moved, number
of views) and view plan computational efficiency (complex-
ity and time). Munkelt [21] points to these measures and
also criticizes that the complexity of most used test objects
is rather low and that only few authors take the reconstruction
accuracy into account. He suggests to measure the quality of
a NBV planning algorithm by coverage, average error and

average distance of neighboring points. Since we perform
our evaluation with the sensor model of the same sensor
and use the same parameters to generate a mesh [11], the
average distance of neighboring points and average error was
the same for our experiments. Therefore, we use number of
scans ns, total scan path length ls, average time for NBS
selection t̄n and object coverage co for our evaluation. The
object coverage co is determined by searching for coordinate
correspondences between the generated mesh and the ground
truth. co is the quotient of correspondences divided by the
actual number of coordinates.

We compare the performance of a surface-based boundary
search method B [13], a standard sphere-based method S
[6] and three methods, which select a NBS based on our
IG measure. The methods based on IG differ concerning
the scan path generation: a constant sphere search space
S/IG, a boundary search B/IG and a combination of boundary
search and hole detection BH/IG. The approaches B and S
do not consider exploration of the workspace as the other
approaches do, which discard scan paths that are in collision.
For all experiments, the parameters for the boundary search
were fixed (see [13]). For both sphere-based methods, the
sphere consists of 121 viewpoints similar to Wong, who uses
114 viewpoints.

The results of the different modeling approaches did not
change much after several reruns. For the octree we choose a
resolution of 5mm. For all three IG approaches, we choose a
desired mesh completeness ĉm of 98.75% as abort criterion.
A higher ĉm is desirable but not possible, since S/IG could
not reach a higher ĉm and the same value should be used
for comparison. B aborts if no boundaries remain and S if
the number of unknown voxels after two consecutive scans
is similar. As can be seen in table II, the object coverage co

TABLE II
RESULTS OF AUTONOMOUS 3D MODELING OF THE PUTTO STATUE

ns ls [m] t̄n [s] co [%]
B 16 8.1 0.8 95.7
S 15 9.8 15.7 90.0
S/IG 24 17.6 16.0 97.0
B/IG 11 5.7 9.5 98.1
BH/IG 11 4.4 7.1 99.0

ns = number of scans
ls = total scan path length
t̄n = average time for NBS selection
co = object coverage

is very high for all methods. However, the last few percent
contain the details of the object and cost the major amount of
time. For objects with complex geometry, it takes a human
less time to scan the first 90% than the last 10 %. B results in
a good object coverage and has the lowest time. However, the
scan path is large and it lacks a measurable abort criterion.
The model quality values of the S method are the worst.
The quality of S/IG is a lot better since the surface-based
abort criterion is used and not only the unknown voxels
of the volumetric model are counted. However, it requires



24 scans for this quality. The scan paths and average times
for both sphere-based approaches are very high. Our BH/IG
method achieves the best model quality. With hole detection,
the total scan path length is shorter and less time is spent than
without. This is because the scan paths for holes are usually
only along a small part of the complete object expansion. As
stated in section II, for accurate 3D modeling of unknown
objects, the most important factor is the quality of the surface
model, here object coverage co. Therefore, in table III we
only compare co of the S/IG and BH/IG approach after a
certain amount of scans without applying an abort criterion.

TABLE III
OBJECT COVERAGE co IN % OF S/IG AND BH/IG AFTER n SCANS

after scan n 5 10 15 20 25 30
S/IG 74.0 92.9 96.0 96.6 97.0 97.2
BH/IG 80.1 97.9 99.2 99.6 99.8 99.8

Fig. 3. The object coverage of the triangle meshes of the putto statue after
5, 15 and 30 scans (from left to right) are shown for S/IG (top) and BH/IG
(bottom). BH/IG completes the mesh a lot better and contains less holes in
each case.

The resulting triangle meshes after 5, 15 and 30 scans can
be seen in figure 3. For BH/IG, after scan number 8, holes
in the mesh are detected and all further scans are based on a

NBS, which is selected from a stack of scan paths viewing
holes. BH/IG achieves a higher object coverage than S/IG
in every case. After 5 scans, for S/IG part of the head and
statue base are missing. The table shows that BH/IG can
achieve a high object coverage co very quickly. It reaches
a co of 97.9% after 10 scans which the S/IG does not even
accomplish after 30 scans. The reason for this is that scan
paths of BH/IG are based on boundaries and holes and these
are determined based on the contour and coverage of the
acquired surface model, whereas the paths of S/IG are very
general and not adapted to the scan data. After 15 scans,
the meshes do not change much. The final mesh of S/IG
has a larger hole in the base area and a few holes on the
back side. The triangle mesh of the BH/IG method after 30
scans, contains only two small holes which are not visible
in figure 3, but apart from that is complete.

These results show that by using a local method to
determine possible scan path candidates, the completeness
of the resulting 3D model can be improved in comparison
to applying a sphere search space.

C. Real Experiments

The performance of our suggested autonomous 3D model-
ing method BH/IG, which proved to generate the best model
results when compared to other methods, is evaluated on a
Kuka KR16 industrial robot and in a real environment (see
subsection IV-A). The putto statue is located on a small table,
which allows for viewing the object from several positions
around the object. However, not all scan paths could be
reached. The total time for 3D modeling of the putto statue
was approx. 25 minutes, which is comparable to the time
it would take a human to scan the object. This includes
the time for moving the robot while scanning, updating the
voxelspace, selecting a NBS, determining a collision free
path and moving the robot to the start pose of the NBS.
Moving the robot and updating the space required most of
the time. During scanning, the robot was moved slowly on
purpose, in order to obtain a high point density. In future,
the space update can be further optimized by parallelization.
The system terminated after 23 scans. Figure 4 shows the
resulting mesh, which consists of 138887 triangles, and
voxelspace, which was updated with Bayes’ Rule. The aver-
age edge length of the mesh was 3mm, which corresponds
to the voxelspace, which has a resolution of 5mm. Black
voxels in the figure refer to the state “free”, whereas white
refers to “occupied”. The voxelspace does not contain any
holes, whereas the mesh consists of a few smaller holes in
the region of the arms and legs. The holes remain due to
the workspace of the robot and the sensor characteristics.
The ground truth, which was used during the simulation,
is registered and compared with the generated mesh, in
order to evaluate the model quality. The object coverage
co was 96.8% and the coordinate root mean square error
was 1.72mm. These first results of our autonomous 3D
modeling system, are promising concerning model quality
and acquisition time.



Fig. 4. The resulting triangle mesh and voxelspace were generated with
a laser stripe profiler attached to an industrial robot . The mesh contains a
few small holes (red marks) but still has a high object coverage of 96.8%.

V. CONCLUSIONS AND FUTURE WORK

We have presented an autonomous 3D object modeling
system, which iteratively searches for possible scan paths in
the local surface model and selects a next-best-scan (NBS) in
the volumetric model. We focus on maximizing the quality
of the 3D model instead of minimizing the number of
views. Our system explores the unknown environment and
simultaneously generates a 3D model of an unknown object
with a desired surface completeness, which is an estimate
of the actual object coverage. A probabilistic octree is used
to select a NBS with the highest expected information gain
and also to avoid collisions in the robot workspace. The
implementation is compared with other NBV approaches and
evaluated on an industrial robot with a laser stripe profiler.
Our local search method, which allows for a 6DOF search
space, is compared to a global sphere search space (2DOF),
which is often used in NBV approaches. The results show
that for objects with complex geometry or occlusions, a
local scan path search improves the performance and mesh
quality in comparison to simply initializing a sphere search
space. Furthermore, a 3D surface model with high quality is
autonomously generated on the robot.

Currently the NBS is selected with the aim to maximize
information to reduce unknown area. In future, we want to
improve the quality of the previously scanned areas, which
lack a sufficient point density or completeness. Therefore,
adequate quality factors, which represent the actual quality of
the surface model, could be used to select a NBS, in addition
to the IG measure. This would ensure that the workspace is
explored but also the information of the previously scanned
data is improved. Furthermore, due to the linear scan paths,
many occlusions occur and the angle between measurement
beam and surface normal is often not optimal. This leads to
a model of improvable quality. In order to cope with this

problem, we will perform a better adaption of the scan path
to surface trend normals. This could be realized by a spline
trajectory of the robot, which moves along the object contour.
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