
Active Pose SLAM
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Abstract— We present an active exploration strategy that
complements Pose SLAM [1] and optimal navigation in Pose
SLAM [2]. The method evaluates the utility of exploratory and
place revisiting sequences and chooses the one that minimizes
overall map and path entropies. The technique considers trajec-
tories of similar path length taking marginal pose uncertainties
into account. An advantage of the proposed strategy with
respect to competing approaches is that to evaluate information
gain over the map, only a very coarse prior map estimate needs
to be computed. Its coarseness is independent and does not
jeopardize the Pose SLAM estimate. Moreover, a replanning
scheme is devised to detect significant localization improvement
during path execution. The approach is tested in simulations
in a common publicly available dataset comparing favorably
against frontier based exploration.

I. I NTRODUCTION

State of the art approaches to Simultaneous Localization
and Mapping (SLAM) can now efficiently manage thousands
of landmarks [3]–[6]. Most of these techniques are passive in
the sense that the robot only estimates the model of the envi-
ronment, but without taking any decisions on its trajectory.
An active technique on the contrary, would also compute
the appropriate robot actions to reduce the uncertainty about
its own localization and the map, while at the same time
optimizing coverage [7, 8].

A straightforward solution is to combine a classical explo-
ration method with a SLAM technique. However, classical
exploration methods focus on reducing the amount of unseen
area disregarding the cumulative effect of localization drift,
leading the robot to accumulate more and more uncertainty.
Thus, a solution to this problem should revisit known areas
from time to time, trading off coverage with accuracy.

Although action selection is the central issue in explo-
ration for SLAM, there are also other issues that need to
be considered. For instance, we need to choose a SLAM
method, an environment representation, a coverage strategy,
and an objective function. Each one imposes different chal-
lenges. Besides the well-known challenges in the SLAM
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problem (e.g. scalability, consistency, data association, robot
perception), the selection of the adequate objective function
is determinant to define the quality of the map as well as
the strategy to cover efficiently the environment. Regarding
the action selection, a key challenge is to trade off between
optimality and efficiency.

We tackle the exploration problem for the case of Pose
SLAM [1], a delayed-state SLAM algorithm where only the
robot trajectory is estimated and where landmarks are only
used to produce relative constraints between robot poses. The
map in Pose SLAM only contains the trajectory of the robot
formed by collision free configurations. This map is also
perfectly suited to be used as a belief roadmap [9] and can
be directly employed to plan optimal paths that take into
account the localization uncertainty along the trajectory[2].
In this work, we automate this roadmap construction from
scratch by selecting the appropriate actions to drive the robot
so as to maximize coverage and at the same time minimize
localization and map uncertainties.

To guarantee coverage, an occupancy grid of the environ-
ment is maintained. A significant advantage of the approach
is that this grid is only computed to hypothesize entropy
reduction of candidate map posteriors, and that it can be
computed at a very coarse resolution since it is not used
to maintain neither the robot localization estimate, nor the
structure of the environment. In a similar way to [10],
the technique evaluates two types of actions: exploratory
actions and place revisiting actions. Action decisions are
made based on entropy reduction estimates. By maintaining
a Pose SLAM estimate at run time, the technique allows to
replan trajectories online should significant change in the
Pose SLAM estimate be detected, something that would
make the computed entropy reduction estimates obsolete.

In Section II we relate the method to the state of the art in
exploration for SLAM. Section III briefly summarizes Pose
SLAM. Next, the set of actions is described in Section IV,
and the computation of their utility is described in SectionV.
Replanning is covered in Section VI, and Section VII de-
scribes a set of experiments that validate the strategy. Finally,
Section VIII gives some concluding remarks.

II. RELATED WORK

Exploration strategies driven by uncertainty reduction date
back to the seminal work of Whaite [11] for the acquisition
of 3-D models of objects from range data. Within the context
of SLAM, it is the work of Feder et al. [12], who first
proposed a metric to evaluate uncertainty reduction as the
sum of the independent robot and landmark entropies with
an exploration horizon of one step to autonomously produce



occupancy maps. Bourgault et al. [13] alternatively proposed
a utility function for exploration that trades off the potential
reduction of vehicle localization uncertainty, measured as
entropy over a feature-based map, and the information gained
over an occupancy grid. In contrast to these approaches,
which independently consider the reduction of vehicle and
map entropies, Vidal et al., [8] tackled the issue of joint
robot and map entropy reduction, taking into account robot
and map cross correlations for the Visual SLAM EKF case.

Action selection in SLAM can also be approached as an
optimization problem using receding horizon strategies [7,
14, 15]. Multi-step look ahead exploration in the context
of SLAM makes sense only for situations in which the
concatenation of prior estimates without measurement evi-
dence remain accurate for large motion sequences. For highly
unstructured scenarios and poor odometry models, this is
hardly the case. In this work we opt for a one step look
ahead action selection strategy, but that considers trajectories
of variable sizes.

One technique that tackles the problem of exploration in
SLAM as a one step look ahead entropy minimization prob-
lem makes use of Rao-Blackwellized particle filters [10]. The
technique extends the classical frontier-based exploration
method [16] to the full SLAM case. When using particle
filters for exploration, only a very narrow action space can
be evaluated due to the complexity in computing the expected
information gain. The main bottleneck is the generation of
the expected measurements that each action sequence would
produce, which is generated by a ray-casting operation in the
map of each particle. In contrast, measurement predictions
in a Pose SLAM implementation, such as ours, can be
computed much faster, having only one map posterior per
action to evaluate, instead of the many that a particle filter
requires. Moreover, in [10], the cost of choosing a given
action is subtracted from the expected information gain with
a user selected weighting factor. In our approach, the cost
of long action sequences is taken into consideration during
the selection of goal candidates, using the same information
metrics that help us keep the robot localized during path
execution.

III. POSE SLAM

In Pose SLAM [1] a probabilistic estimate of the robot
pose history is maintained as a sparse graph, with a canonical
parametrizationp(x) = N−1(η,Λ), using an information
filter, with information vectorη = Λµ, and information
matrix Λ = Σ

−1. This parametrization, compared to the
traditional Kalman form (meanµ and covarianceΣ) has
the advantage of being exactly sparse [17]. Graph links
indicate geometric relative constraints between robot poses,
and the density of the graph is rigorously controlled using
information measures.

In Pose SLAM, state transitions result from the composi-
tion of motion commandsuk to previous poses,

xk = f(xk−1, uk) = xk−1 ⊕ uk. (1)

Registration of sensory data also produces relative motion
constraints, but now between non-consecutive poses.

zik = h(xi, xk) = ⊖xi ⊕ xk. (2)

When establishing such a link, the update operation only
modifies the diagonal blocksi and k of the information
matrix Λ and introduces new off-diagonal blocks at loca-
tions ik, andki. These links enforce graph connectivity, or
loop closure in SLAM parlance, and revise the entire path
state estimate, reducing overall uncertainty.

To enforce sparseness in Pose SLAM, only the non redun-
dant poses and the highly informative links are added to the
graph. A new pose is considered redundant when it is too
close to another pose already in the trajectory and not much
information is gained by linking this new pose to the map.
However, if the new pose allows to establish an informative
link, both the link and the pose are added to the map.

The information gain of a link, i.e., the difference in
entropies on the entire map before and after the link is
established, takes the form

Iik =
1

2
ln

|Sik|

|Σy|
, (3)

whereΣy is the sensor registration covariance,Sik is the
innovation covariance

Sik = Σy + [Hi Hk]

[

Σii Σik

Σ
⊤
ik Σkk

]

[Hi Hk]
⊤, (4)

Hi, Hk are the Jacobians ofh with respect to posesi andk
evaluated at the state meansµi andµk, Σii is the marginal
covariance of posei, andΣik is the cross correlation between
poses i and k. Links that provide information above a
thresholdγ are added to the graph, either to link previous
states, or to connect a new pose with the map prior.

Thus, all decisions to update the graph, either by adding
more nodes or by closing loops, are taken in terms of the
overall information gain.

IV. A CTION SET

Evaluating the effect of potential actions in the context
of SLAM is expensive since the posterior must be evaluated
for each candidate. Thus, to allow scalability, the exploration
strategy should consider only a limited set of actions. In [10]
for instance, actions are limited to long trajectories of two
types: exploratory sequences and place re-visiting sequences.
We take a similar approach and show how to compute these
actions in the context of Pose SLAM.

A. Exploratory actions

Exploratory actions are computed by classical frontier-
based exploration [16] and are intended to maximize cov-
erage, that is, to drive the robot towards unknown regions.
As in our case we do not have access to an explicit metric
representation of the obstacles we have to generate it. How-
ever, the necessary data is implicitly encoded in the Pose
SLAM posterior. Moreover, as this metric representation
is not needed for the estimation process (i.e. the SLAM
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Fig. 1. The Pose SLAM posterior is used to render an occupancymap, which is used to generate candidate paths. (a) Pose SLAMmap. (b) Gridmap
and frontiers (red cells). (c) Candidate paths and their utilities.

process), as long as we can find frontiers and plan a path
to those frontiers we are free to build this map as coarse as
possible.

In the implementation reported here, the Pose SLAM
algorithm stores the laser scans corresponding to each of the
nodes in the pose graph. It is possible to use these scans to
render an occupancy grid [18] for goal selection. Our premise
of maximum likelihood navigation suggests that the map will
not significantly change during path traversal, but only upon
completing a path or should replanning be triggered due to
large map shift at loop closure. This situation prevents us
from online map rendering, since its computation is only
needed at those events in time. Fig. 1(a) shows a Pose SLAM
map. Frame (b) and (c) in the same figure show the rendered
occupancy probabilityp(m) for the grid mapm at the mean
prior, with a resolution of 20×20 cm.

Once we have computed the occupancy grid map, we
extract frontiers and plan a path from the last robot pose to
reach them. Following [16], frontiers are the set of free cells
that have at least one neighboring unknown cell. Once we
have identified the set of frontier cells we apply connected
component labeling to detect connected regions of frontier
cells. Then, for each frontier region of size larger than
a threshold, we obtain its center of mass and compute a
path from the last robot pose to that point. Path planning
was implemented by looking for the shortest path within a
probabilistic roadmap (PRM) [19].

Moreover, the marginal pose posterior was hypothesized
through the Pose SLAM engine for each of the simulated
trajectories, and only those trajectories with an entropy mea-
sure below a given threshold were chosen as safe exploratory
routes. This effectively limits the length of exploratory paths
to a cumulative open loop uncertainty threshold. Fig. 1(b)
shows in red all frontier regions. Of these, actions 1 and 2,
frame (c), were considered safe to reach.

B. Place re-visiting actions

In contrast to exploratory actions, place re-visiting actions
are intended to improve localization of the robot, which
translates into a decrease in entropy. In [10] a topological
map is built to search for loop closures. In our case, the
Pose SLAM map readily provides this topological structure.
The search for loop closure candidates in our case uses
the very same mechanisms of data association introduced
in Pose SLAM [1], and hence, takes explicitly into account
the uncertainty in localization when computing the distance
between poses. The objective is to select the set of poses
close to a distanced from the current pose, and to choose
from these the one that maximizes information gain for the
entire network.

First, we compute a distribution of the squared distance in
belief space from the current posexk to each other posexi

in the map1

µd = ‖µk − µi‖
2, (5)

σ2
d = Hd

[

Σii Σik

Σ
⊤
ik Σkk

]

H
⊤
d . (6)

We do not want to consider neither loop closures that
make the robot return large paths nor those that connect only
to nearby neighbors. The probability of posexi being at a
squared distanced with a thresholdv to posexk is

pd =

∫ d+v

d−v

N (µd, σ
2
d) . (7)

The parameterd sets the mean squared distance to con-
sider and the parameterv sets the window search size. Small
values indicate that we want to consider loops strictly at
a squared distanced from the current location, whereas
large values would be more permissive. This probability,
for a Gaussian distribution is easily evaluated with the error

1With a slight abuse in notation,µi refers here only to thex and y

components ofµi, andΣii to the marginal elements ofΣii, leaving the
orientation terms out. The JacobianHd is simply 2[(µi − µk)

⊤
, (µk −

µi)
⊤].



function (errf). If the probability of being within the range
(d − v, d + v) (in belief space) is above a given threshold,
the pose is added to the set of loop closure candidates.

Next, from this set of loop closure candidates we select the
one that provides the largest information gain, computed with
Eq. 3. Continuing with the example in Fig. 1 (c), it is action
3 the loop closure sequence that fulfills this condition. In
contrast to the active loop closing technique used in [10], the
technique discussed here accounts for the uncertainty in the
trajectory, and is therefore more robust to localization errors.
Finally, a path to the loop closure candidate is computed
using the same approach as with the exploration candidates.

V. UTILITY OF ACTIONS

Once we have computed a set of candidate paths, we
need to calculate their utility and select the one with largest
reward. Our utility function is the expected information gain,
i.e, the decrease in entropy for the posterior.

Just as in [10], we can approximate the full entropy of the
trajectory and map as the sum of the individual entropies.
That is, the joint entropy of a trajectoryx = x1:N and a
mapm, given a set of motion commandsu = u0:N−1 and a
set of observationsz = z1:N is

H(x,m|u, z) = H(x|u, z) +

∫

x

p(x|u, z)H(m|x, u, z)dx

≈ H(x|u, z) +H(m|u, z). (8)

The entropy of the path in Pose SLAM, being a multivari-
ate Gaussian, is given by

H(x|u, z) = ln((2πe)(n/2)|Σ|), (9)

wheren is the dimension of the whole state vector.
Unfortunately, the evaluation of Eq. 9 has a drawback. As

noted in [20], the covariance might easily become ill defined,
with full correlated confidence and one or more eigenvalues
near 0. This happens for instance when two poses become
fully correlated, shrinking the probability distributionalong a
linear combination of states, while no information is gained
in other dimensions.

To overcome this situation, we approximate the entropy
of the trajectory without taking into account the correlation
between poses, but averaging instead over the individual
marginals [10]

H(x|u, z) ≈
1

N

N
∑

i=1

ln((2πe)(n
′/2)|Σii|), (10)

where n′ is the dimension of the individual pose vector.
Another option would be to use an a-optimal measure of
information for the path such as the trace ofΣ [20]. In
our experiments we have experienced better results with the
average form than the aggregated measure (trace) when used
in combination with the map entropy as in Eq 8. The main
reason is that the effect of path length is averaged in the first
case. This is a reasonable choice since we have already settle
for a range of path lengths as discussed in Sec. IV-B.

For a mapm with cell size l, the entropy is computed
with

H(m|u, z) = −l2
∑

c∈m

(p(c) ln p(c)+(1−p(c)) ln(1−p(c))).

(11)
To compute this posterior, we must hypothesize about un-

known ray casting measurements. We take the same approach
as in [10], where statistics about the change in entropy are
computed as a function of the number of unclassified cells
covered by a hypothetical laser beam. When an unknown cell
is hit, its probability contribution to Eq. 11 is taken from this
statistic.

Fortunately, and unlike with particle filters, we only have
one map prior in which to simulate observations, instead of
doing so for each map particle. Moreover, given that state
estimation is not dependent on this map, it can be computed
at a very coarse resolution, with the consequent advantages
in computational cost. Another advantage of our approach
in contrast to the particle filter implementation is that we
do not need to arbitrarily weight the cost to reach the goal
as this might bias the exploration behavior. Instead, the two
techniques discussed in Section IV guarantee that all paths
in the set are of similar length (either by thresholding on
open loop uncertainty during exploration, or by searching
for loop closures close to a distanced from the current
pose). Nonetheless, high costs in path execution mean large
probabilities of becoming lost. For this reason, we enforce
a replanning strategy should unforeseen loop closure occur
during path execution.

Given that all actions are evaluated departing from the
same prior, selecting the action or patha that maximizes
information gain is exactly the same as selecting the path that
minimizes the entropy of the joint posterior(x′,m′) given
the pathu and upon traversing the hypothetical patha, and
observingz and hypothesizing about ray casted unexplored
cells z′

a∗ = argminH(x′,m′|u+ a, z + z′). (12)

For the candidate paths and utilities shown in Figure 1(c),
actions 1 and 2 are exploratory, whereas action 3 closes a
loop. Action 1 only reduces uncertainty about the environ-
ment as it drives the vehicle to an unknown region. Action
3 only reduces path uncertainty bringing the robot back to
a known location. Our action selection mechanism chooses
path 2, which reduces uncertainty about the environment
while keeping the robot well localized.

VI. REPLANNING

When planning long paths we might need to predict many
observations ahead of time and, most likely, these predictions
will differ substantially from the actual observations obtained
when the action is executed. The most evident case is when
the robot closes a large loop during path execution. The
path and map estimates will change considerably and the
predicted gain at the end of the path might not be relevant
anymore, or even worse, the rest of the path candidate might
be willing to drive the robot to a collision.
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Fig. 2. Three points in time during the exploration process.At time step 26 (frames a and d), the robot has the following reduction in entropy: Action
1 = 1.1121 nats, Action 2 =1.2378 nats, and Action 3 =0.7111 nats. At time step 39 (frames b and e) Action 1 =1.7534 nats, Action 2 =1.4252 nats,
and Action 3 =1.1171 nats. Finally, at time step 52 (frames c and f), Action 1 =1.8482 nats, Action 2 =2.0334 nats, and Action 3 =1.7042 nats. The
actions chosen are 2, 1, and 2, respectively.

One clear alternative is to use a receding horizon to plan,
but such continuous replanning is prohibitively expensivein
computational terms, especially for large or finely grained
maps. We opt to re-plan only when it is worth doing so. One
way to know when it is wise to replan is by anticipating large
deformations in the map. This occurs only if large informa-
tion gains are fed to the pose network. Fortunately, these can
be anticipated with the information gain in Eq. 3. That is,
we replan if during path execution this value becomes large
for any loop closure, making our predictions obsolete.

VII. E XPERIMENTS

In order to evaluate the exploration strategy presented in
this paper we simulated a robot exploring the widely used
cave-like two-dimensional environment available from [21],
scaled to a resolution of20m× 20m. We present results of
the evolution of the exploration method, the effects of replan-
ning, and a comparison with frontier based exploration [16].

In the reported setting, robot motion was simu-
lated with an odometric sensor with noise covariance
Σu = diag(0.1m,0.1m,0.0026 rad)2. Moreover, a laser
range finder sensor was simulated to establish links be-
tween any two poses closer than±3m in x and y,
and ±0.52 rad in orientation. Relative motion constraints
were measured using the iterative closest point algo-
rithm. Measurement noise covariance was fixed atΣy =

diag(0.05m,0.05m,0.0017 rad)2. Laser scans were simu-
lated by ray casting over a ground truth gridmap of the
environment using the true robot path. The initial uncertainty
of the robot pose was set toΣ0 = diag(0.1m, 0.1m,
0.09 rad)2. Nearby poses were detected withγ at 2.5nats.

A. Exploration

The algorithm was executed with the aforementioned
conditions and the effects of the exploration strategy were
recorded. Fig. 2 shows the obtained maps at three points in
time. At each iteration, using the Pose SLAM prior (top row),
a gridmap is rendered (bottom row) and used to compute the
next exploration path. For instance, at time step 26 (framesa
and d), the algorithm chooses Action 2, leading the robot to
explore a region to reduce map entropy. Then, at time step 39,
the PRM planner does not find a path to the nearest frontier.
The free cells to reach it form a narrow hallway which cannot
be safely traversed. Instead, the path planner selects another
frontier. Eventually, the algorithm chooses Action 1 because
along this path the robot observes more unknown cells with
the consequent larger reduction in map entropy. Finally, at
time step 52, the more conservative Action 2 is selected this
time since it reduces both the path and map entropies. Fig. 3
shows the path and map entropy evolution for the execution
of the entire exploration sequence.
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B. Replanning

The exploration strategy can be improved with a re-
planning scheme. Replanning is triggered when we detect
significant change between the entire Pose SLAM prior and
posterior upon loop closure. It is an indicator of significant
shift in the map estimate and the scheme is devised to antici-
pate those changes. In the reported experiments, replanning is
triggered upon loop closure with information content greater
than4nats.

Figure 4 shows a comparison of the exploration results
with and without replanning. A slight drop in map entropy
is observed when replanning is considered, from147.89nats
to 146.23nats for experimental runs of the same duration of
180 time steps. While the changes in the final map are subtle
(some different regions covered, and slight improvement of
entropy reduction), the changes in the localization estimates
are more evident. Fig. 5 shows the overall path entropy
evolution during the entire duration of the experiment. We
have noticed that the replanning strategy not only helps
reduce overall map uncertainty, but also enforces better robot
localization, maintaining full path entropy bounded to about
9.5nats. The figure also shows how without replanning, the
exploration strategy eagerly seeks path uncertainty reduction
by finalizing loop closure paths to their end even when a loop
closure has already been asserted prior to their completion
(first 20 time steps) paying this greed in localization soon
after.

C. Comparison with frontier-based exploration

Next, we compare our method against pure frontier-based
exploration using the same environment and specifications
employed in the aforementioned experiments. Frontier-based
exploration always drives the robot to the closest frontier
disregarding uncertainty in the map and its localization. In
our implementation analyzed frontiers are limited to a size
larger than 9 cells. See Fig. 6. One can note that, although
this greedy scheme eventually covers all the environment, the
resulting map and path contain severe localization errors,as
the robot barely closes three loops, which are not enough to
correct the drift, causing it to end up with a final map entropy
of 152.62nats. In contrast, the Active Pose SLAM approach
presented in this paper also covers the whole environment
in the same number of time steps, yielding a slightly lower
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final map entropy of146.23nats for the same experimental
setting (see Fig. 4c-d), thus better satisfying the competing
objectives of coverage and accuracy.

VIII. C ONCLUSION

In this paper we presented an active exploration strategy
tightly integrated with Pose SLAM. The work is inspired
in the action selection mechanisms reported in [10]. The
approach needs only to compute map entropy at the Pose
SLAM mean instead of at each map particle. Furthermore,
the resolution of the gridmap used is independent of the Pose
SLAM estimate, and it can be as coarse as needed. These
two issues allow efficient computation of the information
gain objective function used to evaluate candidate exploration
paths, with the end result of a scalable solution to the
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Fig. 6. Frontier-based exploration. The final map entropy isonly reduced
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problem.
The mechanism to evaluate place revisiting actions is

simple and is tightly integrated within Pose SLAM. The
selection of loop closure candidates takes into account
path uncertainty and benefits from the marginal estimates
maintained within Pose SLAM. The exploration strategy
detects significant changes in the state estimate to interrupt
the execution of large loop closure trajectories and triggers
replanning. The end result is improved map and localization
entropy reduction.

In the same way that replanning can be triggered upon
unexpected loop closing with the consequent reduction of
path uncertainty above4nats, it could be possible to trigger
replanning upon unexpected significant improvement of map
entropy before completing an exploratory trajectory. Take
for instance frame e in Fig 2. Passing near point 2 in the
path to point 1 might increase map coverage significantly
above than the current map prior, and hence, continuing
exploration towards point 1 might not be the right thing
to do, especially since odometric error accumulates during
open loop traverse. To account for this, we need a way
to evaluate overall map entropy at a higher frame rate,
perhaps by only measuring information gain over the cells
that become covered during path execution. The fact that
entropy reduction in the path can be computed online and at
high frame rate is thanks to the use of Pose SLAM as the
estimation workhorse, but unfortunately, in Pose SLAM, the
map posterior is marginalized out and needs to be computed
to evaluate exploration candidates. Doing so at a high frame
rate is left as future work.
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