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Abstract—We present an active exploration strategy that

problem (e.g. scalability, consistency, data associatioloot

complements Pose SLAM [1] and optimal navigation in Pose perception), the selection of the adequate objective fonct

SLAM [2]. The method evaluates the utility of exploratory and
place revisiting sequences and chooses the one that minireg&z
overall map and path entropies. The technique considers tijac-
tories of similar path length taking marginal pose uncertanties

is determinant to define the quality of the map as well as
the strategy to cover efficiently the environment. Regaydin
the action selection, a key challenge is to trade off between

into account. An advantage of the proposed strategy with optimality and efficiency.

respect to competing approaches is that to evaluate infornteon

gain over the map, only a very coarse prior map estimate needs
to be computed. Its coarseness is independent and does not
jeopardize the Pose SLAM estimate. Moreover, a replanning

scheme is devised to detect significant localization imprevnent
during path execution. The approach is tested in simulation
in a common publicly available dataset comparing favorably
against frontier based exploration.

|. INTRODUCTION

We tackle the exploration problem for the case of Pose
SLAM [1], a delayed-state SLAM algorithm where only the
robot trajectory is estimated and where landmarks are only
used to produce relative constraints between robot poses. T
map in Pose SLAM only contains the trajectory of the robot
formed by collision free configurations. This map is also
perfectly suited to be used as a belief roadmap [9] and can
be directly employed to plan optimal paths that take into
account the localization uncertainty along the trajec{@iy

State of the art approaches to Simultaneous LocalizatiqR this work, we automate this roadmap construction from

and Mapping (SLAM) can now efficiently manage thousandscratch by selecting the appropriate actions to drive thetro
of landmarks [3]-[6]. Most of these techniques are passive kg as to maximize coverage and at the same time minimize
the sense that the robot only estimates the model of the enyixajization and map uncertainties.
ronment, but Wit.hout taking any decisions on its trajectory T guarantee coverage, an occupancy grid of the environ-
An active technique on the contrary, would also computgent js maintained. A significant advantage of the approach
_the appropria_te r_obot actions to reduce_ the uncertaintyna}bqS that this grid is only computed to hypothesize entropy
its own localization and the map, while at the same timeaqyction of candidate map posteriors, and that it can be
optimizing coverage [7, 8]. computed at a very coarse resolution since it is not used
A straightforward solution is to combine a classical explotg maintain neither the robot localization estimate, na th
ration method with a SLAM technique. However, classicakirycture of the environment. In a similar way to [10],
exploration methods focus on reducing the amount of unsegie technique evaluates two types of actions: exploratory
area disregarding the cumulative effect of localizatioiftdr actions and place revisiting actions. Action decisions are
leading the robot to accumulate more and more uncertainphade based on entropy reduction estimates. By maintaining
Thus, a solution to this problem should revisit known areag ppose SLAM estimate at run time, the technique allows to

from time to time, trading off coverage with accuracy.

replan trajectories online should significant change in the

Although action selection is the central issue in exploppse SLAM estimate be detected, something that would
ration for SLAM, there are also other issues that need t@ake the computed entropy reduction estimates obsolete.
be considered. For instance, we need to choose a SLAM|n section Il we relate the method to the state of the art in
method, an environment representation, a coverage sfrategxp|oration for SLAM. Section Il briefly summarizes Pose
and an objective function. Each one imposes different chag) Am. Next, the set of actions is described in Section 1V,
lenges. Besides the well-known challenges in the SLAMnd the computation of their utility is described in Section
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Replanning is covered in Section VI, and Section VII de-
scribes a set of experiments that validate the strategglliin
Section VIII gives some concluding remarks.

II. RELATED WORK

Exploration strategies driven by uncertainty reductioteda
back to the seminal work of Whaite [11] for the acquisition
of 3-D models of objects from range data. Within the context
of SLAM, it is the work of Feder et al. [12], who first
proposed a metric to evaluate uncertainty reduction as the
sum of the independent robot and landmark entropies with
an exploration horizon of one step to autonomously produce



occupancy maps. Bourgault et al. [13] alternatively prggbs  Registration of sensory data also produces relative motion
a utility function for exploration that trades off the potah  constraints, but now between non-consecutive poses.

reduction of vehicle localization uncertainty, measurad a
entropy over a feature-based map, and the information daine

over an occupancy grid. In contrast to these approachesyyhen establishing such a link, the update operation only
which independently consider the reduction of vehicle anghgdifies the diagonal blocks and & of the information
map entropies, Vidal et al., [8] tackled the issue of jointnatrix A and introduces new off-diagonal blocks at loca-
robot and map entropy reduction, taking into account rob@fons %, and ki. These links enforce graph connectivity, or
and map cross correlations for the Visual SLAM EKF casgoop closure in SLAM parlance, and revise the entire path
Action selection in SLAM can also be approached as agtate estimate, reducing overall uncertainty.
optimization problem using receding horizon strategies [7 To enforce sparseness in Pose SLAM, only the non redun-
14, 15]. Multi-step look ahead exploration in the contexfant poses and the highly informative links are added to the
of SLAM makes sense only for situations in which thegraph. A new pose is considered redundant when it is too
concatenation of prior estimates without measurement e\dtose to another pose already in the trajectory and not much
dence remain accurate for large motion sequences. Foyhiglformation is gained by linking this new pose to the map.
unstructured scenarios and poor odometry models, this jifowever, if the new pose allows to establish an informative
hardly the case. In this work we opt for a one step 100knk, both the link and the pose are added to the map.
ahead action selection strategy, but that considers toajes The information gain of a link, i.e., the difference in
of variable sizes. entropies on the entire map before and after the link is
One technique that tackles the problem of exploration igstablished, takes the form
SLAM as a one step look ahead entropy minimization prob- 1 ISl
lem makes use of Rao-Blackwellized particle filters [10]eTh Zix = =1In ik
technique extends the classical frontier-based exptorati 2[5y
method [16] to the full SLAM case. When using particlewhere 3, is the sensor registration covarian&;; is the
filters for exploration, only a very narrow action space cainnovation covariance
be evaluated due to the complexity in computing the expected S
information gain. The main bottleneck is the generation of ~ Si = X, + [H; Hy] [ ZT” 2”‘“ } H; H,]", (4)
the expected measurements that each action sequence would ik M
produce, which is generated by a ray-casting operationen tfl;, H are the Jacobians &f with respect to posesandk
map of each particle. In contrast, measurement predictiogyaluated at the state megmsand /i, 3;; is the marginal
in a Pose SLAM implementation, such as ours, can beovariance of posg andX;;, is the cross correlation between
computed much faster, having only one map posterior p@oses: and k. Links that provide information above a
action to evaluate, instead of the many that a particle filtéhresholdy are added to the graph, either to link previous
requires. Moreover, in [10], the cost of choosing a giverstates, or to connect a new pose with the map prior.
action is subtracted from the expected information gaimwit Thus, all decisions to update the graph, either by adding
a user selected weighting factor. In our approach, the cogtwore nodes or by closing loops, are taken in terms of the
of long action sequences is taken into consideration durirgyerall information gain.
the selection of goal candidates, using the same informatio

metrics that help us keep the robot localized during path
execution. Evaluating the effect of potential actions in the context

of SLAM is expensive since the posterior must be evaluated
1. POSESLAM for each candidate. Thus, to allow scalability, the exglora
strategy should consider only a limited set of actions. 0] [1
In Pose SLAM [1] a probabilistic estimate of the robotfor instance, actions are limited to long trajectories 0b tw
pose history is maintained as a sparse graph, with a caonitges: exploratory sequences and place re-visiting seesen
parametrizatiorp(x) = N ~1(n, A), using an information We take a similar approach and show how to compute these
filter, with information vectorn = A, and information actions in the context of Pose SLAM.
matrix A = X', This parametrization, compared to the ,
traditional Kalman form (mean: and covariances) has A Exploratory actions
the advantage of being exactly sparse [17]. Graph links Exploratory actions are computed by classical frontier-
indicate geometric relative constraints between roboegpos based exploration [16] and are intended to maximize cov-
and the density of the graph is rigorously controlled usingrage, that is, to drive the robot towards unknown regions.

Zik = h(z;, o) = 6T; B T (2)

; ®)

IV. ACTION SET

information measures. As in our case we do not have access to an explicit metric
In Pose SLAM, state transitions result from the composirepresentation of the obstacles we have to generate it. How-
tion of motion commands,, to previous poses, ever, the necessary data is implicitly encoded in the Pose

SLAM posterior. Moreover, as this metric representation
g = f(xp_1,up) = Tp—1 S uy. (1) is not needed for the estimation process (i.e. the SLAM
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Fig. 1. The Pose SLAM posterior is used to render an occupamay, which is used to generate candidate paths. (a) Pose ShApM (b) Gridmap
and frontiers (red cells). (c) Candidate paths and thelities.

process), as long as we can find frontiers and plan a pah Place re-visiting actions
to those frontiers we are free to build this map as coarse as|n conrast to exploratory actions, place re-visiting @

possible. are intended to improve localization of the robot, which
translates into a decrease in entropy. In [10] a topological
In the implementation reported here, the Pose SLAMnap is built to search for loop closures. In our case, the
algorithm stores the laser scans corresponding to eacteof those SLAM map readily provides this topological structure.
nodes in the pose graph. It is possible to use these scansTige search for loop closure candidates in our case uses
render an occupancy grid [18] for goal selection. Our premishe very same mechanisms of data association introduced
of maximum likelihood navigation suggests that the map wilin Pose SLAM [1], and hence, takes explicitly into account
not significantly change during path traversal, but onlynupothe uncertainty in localization when computing the diseanc
completing a path or should replanning be triggered due tsetween poses. The objective is to select the set of poses
large map shift at loop closure. This situation prevents uglose to a distancé from the current pose, and to choose
from online map rendering, since its computation is onlfrom these the one that maximizes information gain for the
needed at those events in time. Fig. 1(a) shows a Pose SLAMtire network.
map. Frame (b) and (c) in the same figure show the renderedrirst, we compute a distribution of the squared distance in
occupancy probability(m) for the grid mapm at the mean pelief space from the current posg to each other pose;

prior, with a resolution of 2@20 cm. in the map
_ 2
Once we have computed the occupancy grid map, we pa = ok = pill, ()
extract frontiers and plan a path from the last robot pose to o2 —H [ i Xk ] H' (6)
. . d — tid I d*
reach them. Following [16], frontiers are the set of fredscel ik kk

that have at least one neighboring unknown cell. Once we we do not want to consider neither loop closures that
have identified the set of frontier cells we apply connecteghake the robot return large paths nor those that connect only
component labeling to detect connected regions of frontigs nearby neighbors. The probability of pose being at a

cells. Then, for each frontier region of size larger tharquared distancé with a threshold to posez;, is
a threshold, we obtain its center of mass and compute a

d+v
path from the last robot pose to that point. Path planning pa = i N (g, o2) . @)
was implemented by looking for the shortest path within a d—v
probabilistic roadmap (PRM) [19]. The parameter! sets the mean squared distance to con-

sider and the parametersets the window search size. Small
Moreover, the marginal pose posterior was hypothesizeglues indicate that we want to consider loops strictly at
through the Pose SLAM engine for each of the simulated squared distance from the current location, whereas
trajectories, and only those trajectories with an entrog@am large values would be more permissive. This probability,
sure below a given threshold were chosen as safe exploratésy a Gaussian distribution is easily evaluated with thererr
routes. This effectively limits the length of exploratorgtps
to a cumulative open loop uncertainty threshold. Fig. 1(b lwith a slight abuse in notatiory; refers here only to ther and y
. . . . omponents oft;, and 3;; to the marginal elements &f;;, leaving the
shows in red all frontier regions. Of these, actions 1 and g

- rientation terms out. The Jacobidd, is simply 2[(u; — px)", (e —
frame (c), were considered safe to reach. 1i)'].



function (r r ). If the probability of being within the range  For a mapm with cell sizel, the entropy is computed
(d —v,d +v) (in belief space) is above a given thresholdwith
the pose is added to the set of loop closure candidates. 9

Next, from this set of loop closure candidates we select thid (mfu, 2) =~ ; (p(e) Inp(c) +(1=p(c)) In(1=p(c)))-
one that provides the largest information gain, computed wi e (11)

Eq. 3. Continuing with the example in Fig. 1 (c), it is action To compute this posterior, we must hypothesize about un-
3 the loop closure sequence that fulfills this condition. Iknown ray casting measurements. We take the same approach
contrast to the active loop closing technique used in [1#, t as in [10], where statistics about the change in entropy are
technique discussed here accounts for the uncertaintyein tiomputed as a function of the number of unclassified cells
trajectory, and is therefore more robust to localizatiowe:  covered by a hypothetical laser beam. When an unknown cell
Finally, a path to the loop closure candidate is computeid hit, its probability contribution to Eq. 11 is taken frofrig
using the same approach as with the exploration candidategatistic.

Fortunately, and unlike with particle filters, we only have
one map prior in which to simulate observations, instead of

Once we have computed a set of candidate paths, w@ing so for each map particle. Moreover, given that state
need to calculate their utility and select the one with latge €stimation is not dependent on this map, it can be computed
reward. Our utility function is the expected informatioriga at a very coarse resolution, with the consequent advantages
i.e, the decrease in entropy for the posterior. in computational cost. Another advantage of our approach

Just as in [10], we can approximate the full entropy of théh contrast to the particle filter implementation is that we

trajectory and map as the sum of the individual entropie&lo not need to arbitrarily weight the cost to reach the goal
That is, the joint entropy of a trajectory = z;.y and a as this might bias the exploration behavior. Instead, the tw

mapm, given a set of motion commands= ug.y_; and a techniques discussed in Section IV guarantee that all paths

V. UTILITY OF ACTIONS

set of observations = z;.y is in the set are of similar length (either by thresholding on
open loop uncertainty during exploration, or by searching
H(z,mlu,z) = H(x|u,z)+/p(a:|u,z)H(m|a:,u,z)dx for loop closures close to a distanedefrom the current
z pose). Nonetheless, high costs in path execution mean large
~ H(z|u,2)+ H(mlu, 2). (8)  probabilities of becoming lost. For this reason, we enforce

The entropy of the path in Pose SLAM, being a multivari-a replanning strategy should unforeseen loop closure occur

ate Gaussian, is given b during path execution.
159 y Given that all actions are evaluated departing from the

H(z|u, z) = In((2me) /2 |5)), (9) same prior, selecting the action or paththat maximizes
information gain is exactly the same as selecting the path th
wheren is the dimension of the whole state vector. minimizes the entropy of the joint posterigr’, m’) given

Unfortunately, the evaluation of Eq. 9 has a drawback. Athe pathu and upon traversing the hypothetical pathand
noted in [20], the covariance might easily become ill definebservingz and hypothesizing about ray casted unexplored
with full correlated confidence and one or more eigenvalueslls >’
near 0. This happens for instance when two poses become
fully correlated, shrinking the probability distributi@hong a
linear combination of states, while no information is gaine For the candidate paths and utilities shown in Figure 1(c),
in other dimensions. actions 1 and 2 are exploratory, whereas action 3 closes a

To overcome this situation, we approximate the entroplpop. Action 1 only reduces uncertainty about the environ-
of the trajectory without taking into account the corredati ment as it drives the vehicle to an unknown region. Action
between poses, but averaging instead over the individuglonly reduces path uncertainty bringing the robot back to
marginals [10] a known location. Our action selection mechanism chooses

path 2, which reduces uncertainty about the environment

N . . .
H(zlu, z) ~ %Zln((%e)‘"'“)IEnIL (10) while keeping the robot well localized.
i=1 VI. REPLANNING

where n/ is the dimension of the individual pose vector. When planning long paths we might need to predict many
Another option would be to use an a-optimal measure afbservations ahead of time and, most likely, these predfisti
information for the path such as the trace ¥f [20]. In  will differ substantially from the actual observations ainied

our experiments we have experienced better results with thden the action is executed. The most evident case is when
average form than the aggregated measure (trace) when usieel robot closes a large loop during path execution. The
in combination with the map entropy as in Eq 8. The maipath and map estimates will change considerably and the
reason is that the effect of path length is averaged in thie firgredicted gain at the end of the path might not be relevant
case. This is a reasonable choice since we have already sedthymore, or even worse, the rest of the path candidate might
for a range of path lengths as discussed in Sec. IV-B. be willing to drive the robot to a collision.

a* = argmin H(x',m'|u +a,z + 2). (12)
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Fig. 2. Three points in time during the exploration procesistime step 26 (frames a and d), the robot has the followirducéon in entropy: Action
1 =1.1121 nats, Action 2 =1.2378 nats, and Action 3 #.7111 nats. At time step 39 (frames b and e) Action 1 #534 nats, Action 2 =1.4252 nats,
and Action 3 =1.1171 nats. Finally, at time step 52 (frames c and f), Action 1.8482 nats, Action 2 =2.0334 nats, and Action 3 9.7042 nats. The
actions chosen are 2, 1, and 2, respectively.

One clear alternative is to use a receding horizon to pladjag(0.05m,0.05m,0.0017rad)?>. Laser scans were simu-
but such continuous replanning is prohibitively expengive lated by ray casting over a ground truth gridmap of the
computational terms, especially for large or finely graine@nvironment using the true robot path. The initial uncettai
maps. We opt to re-plan only when it is worth doing so. Onef the robot pose was set t&; = diag(0.1m, 0.1m,
way to know when it is wise to replan is by anticipating large).09 rad)?. Nearby poses were detected withat 2.5 nats.
deformations in the map. This occurs only if large informa-
tion gains are fed to the pose network. Fortunately, these ca_ Exploration
be anticipated with the information gain in Eq. 3. That is,
we replan if during path execution this value becomes large The algorithm was executed with the aforementioned
for any loop closure, making our predictions obsolete. conditions and the effects of the exploration strategy were

recorded. Fig. 2 shows the obtained maps at three points in
VII. EXPERIMENTS time. At each iteration, using the Pose SLAM prior (top row),

In order to evaluate the exploration strategy presented angridmap is rendered (bottom row) and used to compute the
this paper we simulated a robot exploring the widely usedext exploration path. For instance, at time step 26 (fraanes
cave-like two-dimensional environment available from][21 and d), the algorithm chooses Action 2, leading the robot to
scaled to a resolution &0 m x 20 m. We present results of explore a region to reduce map entropy. Then, at time step 39,
the evolution of the exploration method, the effects ofaepl the PRM planner does not find a path to the nearest frontier.
ning, and a comparison with frontier based exploration [16]The free cells to reach it form a narrow hallway which cannot

In the reported setting, robot motion was simu-be safely traversed. Instead, the path planner selecthemot
lated with an odometric sensor with noise covarianc&ontier. Eventually, the algorithm chooses Action 1 bessau
3., = diag(0.1m,0.1m,0.0026rad)?>. Moreover, a laser along this path the robot observes more unknown cells with
range finder sensor was simulated to establish links b#ie consequent larger reduction in map entropy. Finally, at
tween any two poses closer thah3m in = and y, time step 52, the more conservative Action 2 is selected this
and +0.52rad in orientation. Relative motion constraintstime since it reduces both the path and map entropies. Fig. 3
were measured using the iterative closest point algshows the path and map entropy evolution for the execution
rithm. Measurement noise covariance was fixed¥3t =  of the entire exploration sequence.
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B. Replanning

The exploration strategy can be improved with a r -
planning scheme. Replanning is triggered when we dei °
significant change between the entire Pose SLAM prior ¢
posterior upon loop closure. It is an indicator of significa -
shift in the map estimate and the scheme is devised to anu.,” ~ ° °© " & ° = * " 7 7 ’

pate those changes. In the reported experiments, reptaisnin (© (d)
triggered upon loop closure with information content geeat
than4 nats. Fig. 4. Exploration with and without replanning. (a) PoseASL map

. . . and (b) gridmap made without replanning, with a final map aytrof
Figure 4 shows a comparison of the eXplorat'on reSun§47.89 nats. (c) Pose SLAM map and (d) gridmap made with replanning,

with and without replanning. A slight drop in map entropywith a final map entropy 0146.23 nats.
is observed when replanning is considered, frbifi.89 nats

to 146.23 nats for experimental runs of the same duration of
180 time steps. While the changes in the final map are subtle
(some different regions covered, and slight improvement of
entropy reduction), the changes in the localization eséma
are more evident. Fig. 5 shows the overall path entropy
evolution during the entire duration of the experiment. We
have noticed that the replanning strategy not only helps SO

reduce overall map uncertainty, but also enforces bettmtro
localization, maintaining full path entropy bounded to abo o
9.5 nats. The figure also shows how without replanning, the
exploration strategy eagerly seeks path uncertainty temuc &) g r & R
by finalizing loop closure paths to their end even when a loop

cl_osure hf"‘s already beer\ assgrted pnqr to theflr c.ompletlglré. 5.  Path entropy evolution with replanning (continudiree) and
(first 20 time steps) paying this greed in localization S00Rjthout replanning (dashed line).

after.
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C. Comparison with frontier-based exploration final map entropy ofl46.23 nats for the same experimental
Next, we compare our method against pure frontier-baségtting (see Fig. 4c-d), thus better satisfying the competi
exploration using the same environment and specificatio@®jectives of coverage and accuracy.
employed in the aforementioned experiments. Frontieethas
exploration always drives the robot to the closest frontier
disregarding uncertainty in the map and its localization. | In this paper we presented an active exploration strategy
our implementation analyzed frontiers are limited to a sizéghtly integrated with Pose SLAM. The work is inspired
larger than 9 cells. See Fig. 6. One can note that, althou@h the action selection mechanisms reported in [10]. The
this greedy scheme eventually covers all the environmieat, tapproach needs only to compute map entropy at the Pose
resulting map and path contain severe localization erews, SLAM mean instead of at each map particle. Furthermore,
the robot barely closes three loops, which are not enough tioe resolution of the gridmap used is independent of the Pose
correct the drift, causing it to end up with a final map entropysLAM estimate, and it can be as coarse as needed. These
of 152.62 nats. In contrast, the Active Pose SLAM approachwo issues allow efficient computation of the information
presented in this paper also covers the whole environmeggin objective function used to evaluate candidate exptora
in the same number of time steps, yielding a slightly lowepaths, with the end result of a scalable solution to the

VIIl. CONCLUSION
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Fig. 6. Frontier-based exploration. The final map entropgnly reduced [10]

to 152.62 nats. Contrary to the proposed approach, this technique e

evaluate the need for loop closure and as a consequenceg fmsaization

errors are evident at the end of the trajectory. [11]
[12]

problem.

The mechanism to evaluate place revisiting actions is
simple and is tightly integrated within Pose SLAM. Thel13]
selection of loop closure candidates takes into account
path uncertainty and benefits from the marginal estimatés!]
maintained within Pose SLAM. The exploration strategy
detects significant changes in the state estimate to ipterry; s
the execution of large loop closure trajectories and trigge
replanning. The end result is improved map and localizatiof®!
entropy reduction. [17]

In the same way that replanning can be triggered upon
unexpected loop closing with the consequent reduction ?IS]
path uncertainty abovénats, it could be possible to trigger
replanning upon unexpected significant improvement of mdp9]
entropy before completing an exploratory trajectory. Take
for instance frame e in Fig 2. Passing near point 2 in thgg
path to point 1 might increase map coverage significantly
above than the current map prior, and hence, continuir{ﬁ1
exploration towards point 1 might not be the right thing
to do, especially since odometric error accumulates during
open loop traverse. To account for this, we need a way
to evaluate overall map entropy at a higher frame rate,
perhaps by only measuring information gain over the cells
that become covered during path execution. The fact that
entropy reduction in the path can be computed online and at
high frame rate is thanks to the use of Pose SLAM as the
estimation workhorse, but unfortunately, in Pose SLAM, the
map posterior is marginalized out and needs to be computed
to evaluate exploration candidates. Doing so at a high frame
rate is left as future work.
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