
Musical Abstractions in Distributed Multi-Robot Systems

Aaron Albin , Gil Weinberg , and Magnus Egerstedt

Abstract— In this paper, we connect local properties in
a mobile planar multi-robot team to the task of creating
decentralized real time algorithmic music. Using a non-
linear formation control law inspired by the consensus
equation, we map the local motion parameters of robots to
Euclidean rhythms with the use of sequencers. The control
parameters allow a human user to direct this decentralized
musical process by guiding and interfering with the robots’
motion, which subsequently affects their musical activity.
We simulate such a robotic system in real time, demon-
strating the expressiveness of the decentralized algorithmic
musical output as well as a number of behaviors that arise
out of the manipulation of the control parameters.

I. INTRODUCTION

Decentralized control and coordination of multi-robot
teams has arguably matured as a discipline and there
is, by now, a large collection of results pertaining to
a number of different applications and task domains.
Examples include formation control [1], [2], [3], sensor
coverage [4], and boundary protection [5], [6]. One
commonality among all of these different control and
coordination schemes is that they enforce a limited
information flow between the robots. This limitation
furthermore implies that only certain types of motions
are possible and, as a consequence, only certain types
of control “knobs” are available to the control designer.

In this paper we follow this line of investigation by
restricting the information flow further by only allowing
for locally measurable information to inform the control
and coordination algorithms. Following the taxonomy
from [7], by “locally measurable”, we include the dis-
tance and relative orientation to adjacent robots as well
as the total number of robots within sensory range.

Consider a planar robot (indexed by i) in the team,
located at xi ∈ <2. If we assume that this agent has an
effective footprint of ∆i (see for example [4]), robot j
is said to be adjacent to robot i if ‖xi − xj‖ ≤ ∆i and

Email: aalbin3@gatech.edu.
Georgia Tech Center for Music Technology, Georgia Institute of

Technology, Atlanta, GA 30332, USA.
Email: gilw@gatech.edu.
Georgia Tech Center for Music Technology, Georgia Institute of

Technology, Atlanta, GA 30332, USA.
Email: magnus@gatech.edu.
School of Electrical and Computer Engineering, Georgia Institute

of Technology, Atlanta, GA 30332, USA.

we let the number of robots adjacent to robot i be given
by ni. The locally available, measurable information is
thus given by the set of distances ‖xi − xj‖ and angles
∠(xj−xi) to adjacent agents, as well as the total number
ni itself. The control laws under consideration should
thus only be allowed to depend on these entities.

We couple this locally measurable information not
only to mobility algorithms, but also to musical abstrac-
tions. In other words, the robots will move around in
their environment and in addtiion they will make music
while moving. As such, the purpose of this paper is
twofold: First, we will examine how locally measurable
information imposes constraints on the mobility control
laws, and second, how these can mapped onto interesting
musical abstractions in order to allow the robot swarm
to serve as a generator of algorithmic composition.

Research on musical swarm robot systems is severely
lacking. Uozumi used bug-like robots tracked with an
overhead camera system [8] where the positions of the
robots were given to a central computer that generated
music; the robots themselves were not aware of their
neighbors and did not make music. McLurkin’s swarm
robots were not meant to create music, but instead used
to illustrate swarm behaviors [9]. In one scenario, robots
would play a precomposed melody and then group
together according to their MIDI1 synthesizer voicing.
Another scenario involved using the synthesizer on each
robot to help with identification and debugging [10].
Both of these systems dealt only with synthetic music
as opposed to physically actuated acoustic sounds.

Control mechanisms in human interactive musical
robot systems, such as Pat Metheny’s Orchestrion[11],
allow for an instrumentalist to directly control the
pitch and rhythm of the robotic system. The robots
were treated like advanced physical instruments that
can actuate at the level of a virtuosic jazz guitarist. In
contrast to this direct approach of robot control is the
marimba playing robot, Shimon[12]. An indirect method
of control over Shimon exists in a “call and response
module”, in which the human plays a musical sequence
and the robot responds to the input based on the human’s
style of playing or it can use internal statistical models of

1Musical Instrument Digital Interface



famous jazz musicians to influence and mix the musical
output. Shimon was designed with the idea of being a
robot musician that could play with and interact with
humans socially. User studies have shown that visual
contact with the robot makes for improved audience
appreciation as opposed to interactions with synthetic
reproductions of the same music [13]. As a physical
embodied robot, it addresses the limitations of computer
simulated music which cannot capture same richness as
acoustic sound [14].

The novelty of this paper, from an algorithmic com-
position vantage point, is a new way to create interactive
algorithmic music with decentralized mobile robotic
systems that would be difficult to achieve with a single
robot or even a group of humans. For example, consider
ten mobile snare drums randomly placed in a room that
obey a rule in which each drum is hit at a fixed interval
only if it is within close proximity to another drum. If
the drums were to converge to a single location, the
resulting music would start off silent and then evolve
into a repeated rhythmic pattern. While a group of
experienced human drummers could carry out this task,
if a conductor were to spontaneously change the rule
or dictate new trajectories, then this task would become
much more challenging. Although decentralized swarm
music has been previously explored in interactive simu-
lations [15], [16], they often use global parameters such
as absolute position, which are typically not available to
multi-robot systems, to map musical parameters as they
move through a virtual space. For arbitrary locations in
a room, mapping the absolute position of the robots
would produce different musical output for the same
type of motion; by contrast, mapping local parameters
would give a musical output that is consistent with what
the robots perceive about each other. Furthermore, a
real musical swarm robot system would provide for a
rich acoustic experience. We are interested in rhythmic
creativity with multiple robot agents as this is an area
largely unexplored by previous swarm based music. By
understanding how to manipulate a musical swarm’s
motion, we can create musical behaviors that are tied
directly to motion capabilities, thus providing a very
expressive musical system for a human user. We first
must formulate how one should control and map motion
to music.

II. ALGORITHMIC COMPOSITION

Algorithmic composition provides a strategy for cre-
ating music with swarm robots. In an analysis of a
serialist musical piece by Pierre Boulez, György Ligeti
provided a method by which one could analyze and also
compose algorithmic compositions [17]. The composer

of the work chooses what musical parameters he wishes
to generate using a particular algorithmic process. For
example, a random number generator may print out a set
of note values. Then the composer can alter other aspects
that are not governed by the process to aesthetically
edit the output of the algorithm, such as by changing
the loudness of each note. The result of this approach
to musical composition forces the composer to let go
of some aspects of the composing music, ceding some
control of the creative process to the algorithm. At the
same time, the composer still has some measure of
creativity by shaping the often unexpected results with
musical parameters which were not explicitly mapped.

We borrow from Ligeti’s approach to algorithmic
composition and adapt it to the scenario of real-time
performance with decentralized swarm robots. In order
to determine the connections between music and motion
in a multi robot system, we need to examine the parame-
ters of the nonlinear control law, choose a set of these for
mappings to music, and leave the remaining parameters
for human control. Since the coordinated motion of robot
agents is what we wish to link to music, linking motion
activity with musical activity would be a prudent choice;
however, we must find an appropriate means for map-
ping these parameters in accordance with our musical
aesthetic. One can describe musical parameters from a
variety of perspectives such as pitch, frequency, ampli-
tude, timbre, dissonance, consonance, or even emotional
descriptions. Our decision to focus on rhythm with
sequencers as a musical aesthetic was due to the fact
that, in addition to being commonly used timing tools,
they can be easily quantified and represented with arrays,
manipulated with boolean functions, and can allow room
for a wide range of musical expression. It is also easier
to physically construct a simple percussive instrument
on a small mobile robot rather than a multi-pitched
instrument such as a keyboard. We will now examine the
parameters of a nonlinear control law describing robot
swarm motion so that we can eventually determine a
mapping from local properties of the robots to musically
interesting rhythms.

III. CONTROL “KNOBS”

Given a collection of N planar robots whose velocities
can be directly controlled, i.e.,

ẋi = ui, i = 1, . . . , N,

where xi ∈ <2 is the position of robot i. Also, assume
that agent i only has access to information pertaining to
agent j if ‖xi − xj‖ ≤ ∆i, where ∆i is the radius of
agent i’s circular, sensory footprint. We let Ni be the



set of all neighbors to agent i, and we let ni denote this
set’s cardinality.

In order to define the coordinated motions of each
agent, we insist on the fact that only locally measurable
information is available. Following the developments in
[18], a general way of producing such a controller is to,
for each j ∈ Ni, define an edge-tension function Eij as a
function of ‖xi−xj‖ and the desired inter-agent distance
dij . Summing up all edge-tensions in the total energy in
the network E allows us to design quite general, gradient
descent-based formation controllers by letting

ui = − ∂E
∂xi

,

which results in E taking on the role of the Lyapunov
function when employing LaSalle’s invariance principle
due to the fact that its time derivative is strictly non-
increasing.

One useful aspect of this choice of control law is that
it can be rewritten (see [18]) as

ui = −
∑
j∈Ni

wij(‖xi − xj‖, dij)(xi − xj),

where wij is a weight function. Note that this is in fact
a weighted version of the so-called consensus equation.
One additional change we can make to this equation is to
add an angular offset θij and, putting all of this together
yields the following, quite general decentralized control
strategy

ẋi = −
∑
j∈Ni

R(θij)wij(‖xi − xj‖, dij)(xi − xj), (1)

where R is the rotation matrix.
The general formulation in Equation 1 now tells us

what the available control “knobs” really are. In fact,
the items we can think of as control abstractions are the
following:
• Offset angle: θij
• Nominal interaction distance: dij
• Footprint radius (for certain classes of sensors): ∆i

The challenge for the remainder of this paper is to con-
nect these control abstractions to musically meaningful
abstractions.

IV. MUSICAL ABSTRACTIONS

We can now turn our attention to mapping the local
robot parameters to rhythm with sequencers. We will
use the magnitude (speed) and angle of ẋi and the
degree, Ni (the set of all neighbors to the agent). These
three parameters locally and succinctly describe how
a single robot moves in relation to others while the
control abstractions give us a means to influence this

motion. Each robot has its own 16 step sequencer, tied
to a common clock. We want increasing musical activity
to correspond to filling in the steps of the sequencer;
however, the rhythmic space is quantized to a set of 2n

possibilities where n is the number of steps. To make
this vast rhythmic space more tractable, we use the so-
called Euclid algorithm since it provides a means to
create natural sounding rhythms using sequencers. As
described in [19], the Euclid algorithm can generate
many metrical structures found across different cultures.
The function takes two arguments: the number of hits,
and the total number of elements in the sequence. The
hits are distributed as evenly as possible, interspersing
them with empty space. Hits are represented with the
symbol 1 and empty elements are represented with
the symbol 0. As a simple example, Euclid(3, 8) will
proceed in this manner.
• 1,1,1 – 00000. Two sequences of hits are created,

one with the number of hits, corresponding to the
first parameter, 3, and the other with the number of
empty elements, which is 8-3.

• 10, 10, 10, – 00. Empty elements are assigned to
each of the hits sequentially.

• 100, 100, 10. The process continues until there are
no more empty elements left to assign to the hits.

• 10010010. The subsequences are then concate-
nated.

In this simulation, the second parameter is fixed at 16,
while the first parameter will be the result of a linear
mapping f ,

f(x) = a+ (b− a)
x− c
d− c

(2)

where x is the input value (magnitude, angle, or degree)
of the robot, a and b are the minimum and maximum
index of the output value respectively and c and d
are the bounds of the input respectively. The result
from f is truncated to an integer in order to be used
in the Euclid algorithm. Changes in magnitude will
correspond to changes in rhythmic activity2. With the
angle mapping, the radian values vary from 0 to 360.
Thus, as a robot rotates, it will progressively select
all the possible Euclidean rhythms for ten robots. The
degree of the robot agent does not require a linear
mapping function since it is already an integer value
whose maximum value is one less than the total number
of robots3.

2We impose no limits on the speed of robot agents. Thus, the
maximum input value is chosen heuristically and the output value
is clamped to ten, corresponding to the maximum number of robots

3For all mappings, we clamp the minimum output value to 1 to avoid
total silence. This avoids the problem of a particular angle mapping
having no rhythmic activity



Fig. 1: A list of all possible Euclidean rhythms for ten agents.

Figure 1 shows all the possible rhythm mappings for
this system with degree as the first parameter to the
Euclid function and 16 as the total number of elements
4. The time interval between each step of the sequencer
is 125 ms, which corresponds to 120 beats per minute.

V. EXAMPLES

The simulation is designed in Java using the Process-
ing API and integrated development environment [20].
Sound is produced using ten acoustic drum samples
obtained from Freesound.org [21]. We use MIDI to
trigger the samples and we pan the sample for each
robot based on its position on the screen to help the
listener discriminate among robots5. Robots are drawn
with a circle on the screen along with their ID number
and number of neighbors as shown in Figure 2. The
velocity vector, ẋi, is represented with a blue line. A
robot will flash green whenever it plays its drum sample
as dictated by its sequencer. By default, the simulation
starts with ten agents so that the adjacency matrix
can be displayed reasonably well without obstructing
the viewing area. The adjacency matrix describing the
connections between agents is displayed on the top left
corner of the screen. Each element ij corresponds to a
directional connection from agent i to agent j.

As shown in Figure 3, the red lines indicates one way
connections as described by the adjacency matrix in the
upper left corner of the screen. Two way connections use
black lines. The control law as described in Equation 1

4With 16 steps, we can make music in “common time”, that is,
having four main beats per sequence, each beat having four steps.
A larger step size such as 32 hits would give more options for
syncopation; however, the time interval between a small number of
distributed hits would be too long and the resulting rhythms would
feel off-kilter.

5Using MIDI allows us to trigger the samples in an external
synthesizer since JavaSound has audio latency issues.

Fig. 2: A directed connection from one agent to another.

Fig. 3: Example of a robot that cannot sense other agents, with red
lines indicating one way connections.

is evaluated at a time step which can be adjusted with a
slider on the right side of the screen. Additional features
of the program include adjustable parameters for the θij
and dij for all robots. ∆i can also be toggled and a
slider will appear to adjust this parameter.

A. Movement to Specific Locations

If a robot is fully disconnected and cannot sense any
other robot, then it will not move; ẋi is the zero vector.
Figure 3 illustrates this scenario. In this situation, it
makes sense for this robot to have low musical activity.

If the graph describing the adjacency matrix is not
balanced, the centroid of the entire agents will shift over
time as shown in Figure 4. All of the agents will move
towards the agent with the zeroed out column, in this
case, agent 3. The red square seen in Figure 4 indicates
the initial centroid of the whole system, whereas the



Fig. 4: The agents can sense the unconnected robot and move
towards it, causing the current centroid (green square) to shift from
the initial (red square). The unconnected robot does not move.

green square represents the current centroid as the agents
move. Eventually, the green square will align on top of
agent 3. This is an example of an unbalanced digraph.

Just as the initial starting points of the agents can
be set with the mouse, they can also be modified in
real time, forcing an agent to stay still. This has the
same effect as in Figures 3 and 4 in a fully connected
network, temporarily zeroing out one of the columns
that corresponds to the stopped agent. All of the agents
can be moved by a user to any arbitrary position on
the screen. The user can interfere with the movement
dynamics of the system momentarily and then watch as
the robots adjust as a result of his or her interaction.
This type of interaction behavior causes the magnitude
of ẋi for a robot agent to increase suddenly when there
is a disturbance in the system, and then decrease as it
moves towards the local centroid. In a fully connected
network, all agents move to the centroid in a straight
line. The program is capable of drawing traces of these
pathways as shown in Figure 5. When the θij and dij
parameters of the control law are both set to zero, agents
will move towards the centroid based only on distance
vectors of their connected agents, slowing down as they
reach the centroid. Robots that move faster will have
more rhythmic density than slower moving robots when
a speed mapping is used.

B. Rotational Movements

When the graph that represents the adjacency matrix
is balanced, but not fully connected, agents still move
towards the centroid, but they might not take a linear
path. As an example, Figures 6 shows a chained two-
way connection between the agents. The pathways that

Fig. 5: An example of the path taken by a fully connected network.
Robots move on a fast and direct path to centroid, slowing down
as they reach the target. Speed mappings to rhythm work well iin
these cases.

Fig. 6: Robots move to the centroid, but take a slower, curved path
because they have fewer connections to others.

the agents take to the centroid are more curved in nature;
it also takes longer for the agents to reach the centroid
than if they were fully connected. If θij is set, then
each agent can also rotate towards the centroid at the
specified angle. The amount of rotation can also be set
with a slider located below the minimum distance slider
on the left hand side of the screen. When θij is less than
90 degrees in the case of a symmetric adjacency matrix
(connected disoriented digraph), the agents will spiral in
towards the centroid. Figure 7 shows the pathways taken
by a fully connected network if the rotation parameter
is set to -54 degrees (clockwise rotation).

When θij is exactly 90 degrees, the agents will start
to slightly expand further apart over time as shown in
Figure 8. Incrementally, the pathways of each agent will



Fig. 7: An example of a fully connected network with rotation
parameter at -54 degrees moving towards the centroid.

Fig. 8: Fully connected network with rotation parameter at 90
degrees. The path of the robots are slowly expanding. Angle
mappings to rhythm work better in these cases.

get larger since at every time step the agents try to move
in a tangential orbit. In the case of a weakly connected
digraph with the adjacency matrix, the agents will main-
tain a stable rotational orbit if θij is π/n, or in this case
with ten agents, 18 degrees. Figure 9 shows the initial
starting conditions of the agents, their connections, and
the pathways taken that eventually lead to a circular orbit
around the centroid. In these types of scenarios, the most
descriptive parameter of motion would be the angle of
ẋi. Rotation in one direction could be thought of as an
increase in rhythmic density, corresponding to how the
Euclidean rhythms are mapped.

In situations where the magnitude of the velocity
vector is small, rotation may not be as straightforward
of a mapping to use. Conversely, magnitude mappings

Fig. 9: A directed network orbits at fixed distance because the offset
angle is π/n.

Fig. 10: In this fully connected network with dij set to 200 pixels,
a formation results that can disturbed with the sliders or by the user
dragging a robot and intefering with its motion. It will eventually
resettle to this configuration.

might not seem as straightforward in perfect rotation
scenarios in which the magnitude stays constant. The
user is given the option of selecting the appropriate
mapping with a dropdown menu bar.

C. Maintaining Separation

The simulation allows for modification of the interac-
tion distance, dij with a slider bar on the left hand side
of the screen. Figure 10 shows the robots settling into a
formation when dij is 200 pixels. It is important to note
that in this idealized view of multi-agent control, robots
can only maintain a minimum distance of separation
with those it can see; the simulation does not model
collisions.



Fig. 11: An example of network with small radius for ∆i.

Fig. 12: When ∆i is expanded, the adjacency matrix shows the
increased number of connections. Degree mappings to rhythm work
well in these cases.

D. Footprint Based Motion

The simulation also allows for the setting of the
footprint radius, ∆i with a slider that can be adjusted
on the right hand side of the screen. To enable this,
the “use radius” button must be selected so that the
adjacency matrices are set by the radius as opposed to
manually selecting the connections. This disk allows for
the connections of the network to vary in real time. A
two-way connection will form between agents if they
come within range of one another.

Figure 11 shows a group of agents with ∆i set to a
small value. The resulting adjacency matrix shows only
one symmetric connection between agents 0 and 7 and
all other agents remain unconnected. Only agents 0 and
7 would move if the simulation were activated. As the
radii are increased for all agents, as shown in Figure

12, the adjacency matrix reflects the increasing number
of connections between agents. In this simulation, the
adjacency matrix will always be symmetric when ∆i is
used since the radii are the same for all agents.

Using ∆i affects both the magnitude and orientation
of ẋi, typically by causing increased motion. Addi-
tionally, the degree of a robot becomes a dynamic
parameter. A high degree value evokes a sense of in-
creased awareness of the presence of other robot agents.
Therefore, we map the increasing degree directly to
the Euclid function; the more connected a robot is to
its neighbors, it will be more rhythmically active. This
mapping seems to work best when ∆i is used, otherwise
the rhythmic structure will not change unless the user
manually changes the elements in the adjacency matrix.

VI. DISCUSSION

In the video provided, mappings of speed can be seen
from 00:00 to 01:02, angle from 01:03 to 01:50, and
the remainder is degree. Several behaviors seem to arise
naturally out of the use of these control knobs. One such
example is a “following” behavior in which the robots
are fully connected, but the user manually selects one
robot and drags it to a particular location, making the
other robots move. Two examples of this can be seen
in the video, each using either the speed, at 00:49, or
angle mapping, at 01:22. With the speed mapping, the
robots are moved to a high state of rhythmic activity
which then gradually subsides as the robots slow down.
Angle mapping in the “following” scenario results in
a strict sense of unity among the robots, as the user
is essentially cycling through the Euclid rhythms by
making the robots point in a particular direction. With
the use of sliders for dij and θij , the user can induce
a type of “breathing” gesture among the robots. An
example of this can briefly be seen from 00:34 to 00:39.
Another general behavior seen throughout the video
involves the user interfering with the dynamics of the
control law momentarily and then letting the robots
adjust. Interfering behaviors highlight the mapping from
local parameters to rhythm. In a scenario with a cluster
of robots using the degree mapping, robots in the center
of the cluster become more rhythmically active than
those on the edge. When the agents are kept separate
with a dij that is near to the value of ∆i and θij is 90
degrees, dynamic connections in the adjacency matrix
form and break apart as the robots fall in and out of one
another’s neighborhoods. In this behavior, the user does
not need to control any knobs because the system seems
to be in continual motion.

We can conclude that the control knobs of the non-
linear control law give human operators the ability to



create expressive rhythmic music with a decentralized
multi-robot system, where the music comes about solely
through local robot perspectives. This system can be
directed to states of increased and decreased musical
activity if we provide an appropriate mapping from the
control system to the musical aesthetic. The idea of a
physical swarm robot system for music becomes more
compelling now that there is a methodology for creating
music based on robot motion. There are some additional
challenges associated with creating a real musical swarm
robot system that this work does not address, such as
non-holonomic motion, sources of error in sensing, state
estimation, tracking and obstacle detection. Furthermore,
this type of music should be evaluated by experts
as to their meaningfulness and expressivity. However,
assuming that the robots can reasonably determine their
velocity, robot neighborhood, and if the environment is
considered to be controlled and free of obstacles, we
feel that a real musical swarm robot system is worth
exploring. The resulting music could also be used to
quickly give information to a human user about the state
of the robots without the need for a visual interface.

We are developing musical robot teams using mostly
inexpensive hobbyist parts. For example, a solenoid
is used to strike against percussive objects such as
piccolo woodblocks, paper cups, and dampened, hand-
bells mounted on the robot. We currently use a top
down camera system to track the positions of robots,
but only the parameters of neighbors, angle and speed
will be used to modify the robots’ sequencers. Using
Android phones as the brains of the robots and using
Arduino-based ADK boards [22] we can design swarm
robot agents capable of being controlled in a manner
similar to this work and even reuse a large amount of the
code in this simulation since Android runs a modified
version of Java. Further work is required to take the
control parameters from the control law and present
them in a form more easily understood by novices or
people unfamiliar with nonlinear control theory. We
hope that this platform can be used to create novel
ways to explore human and swarm robot interaction and
interactive algorithmic music.

Acknowledgments

The work by Aaron Albin and Gil Weinberg was
sponsored by the National Science Foundation. The
work by Magnus Egerstedt was sponsored by the US
Office for Naval Research through MURI HUNT.

REFERENCES

[1] M. Ji and M. Egerstedt. Distributed Coordination Control of
Multi-Agent Systems While Preserving Connectedness. IEEE

Transactions on Robotics, Vol. 23, No. 4, pp. 693-703, Aug.
2007.

[2] W. Rei and R. Beard. Formation Feedback Control for Multi-
ple Spacecraft via Virtual Structures. IEE Proceedings-Control
Theory and Applications, vol. 151, no. 3, p. 357-368, May, 2004.

[3] H. Tanner, A. Jadbabaie, and G. Pappas. Flocking in Fixed and
Switching Networks. IEEE Transactions on Automatic Control,
Vol. 52, No. 5, pp. 863-868, 2007.

[4] S. Martinez, J. Cortes, and F. Bullo. Motion coordination with
distributed information, IEEE Control Systems Magazine, Vol.
27, No. 4, pp. 75-88, 2007.

[5] J. Cortes. Distributed Kriged Kalman filter for spatial estimation,
IEEE Transactions on Automatic Control, Vol. 54, No. 12, pp.
2816-2827, 2009.

[6] F. Zhang and N. E. Leonard. Cooperative Control and Filtering
for Cooperative Exploration. IEEE Transactions on Automatic
Control, Vol. 55, No. 3, pp. 650-663, 2010.

[7] P. Twu and M. Egerstedt. Optimal Decentralization of Multi-
Agent Motions. American Control Conference, Baltimore, MD,
July 2010.

[8] Y. Uozumi. A Musical Framework with Swarming Robots.
CMMR-LNCS. vol. 4969. 360-67, 2008.

[9] J. McLurkin. Stupid robot tricks: A Behavior-based Distributed
Algorithm Library for Programming Swarms of Robots. M.S.
thesis, Dept. Elect. Eng. Comp. Sci., MIT, Cambridge, MA,
2004.

[10] J. McLurkin et al. Speaking Swarmish: Human-Robot Interface
Design for Large Swarms of Autonomous Mobile Robots. /it
AAAI Spring Symposium, 2006.

[11] E. Van-Burskirk. Robot Band Backs Pat Metheny on Orchestrion
Tour. http://www.wired.com/underwire/2010/01/orchestrion/

[12] G. Weinberg, G. Hoffman, R. Nikolaidis, and R. Aimi. Shimon
+ ZOOZbeat: an improvising robot musician you can jam with.
ACM SIGGRAPH ASIA. ACM, New York, NY, USA, 84-84,
2009.

[13] G. Hoffman, G. Weinberg. Interactive Improvisation with a
Robotic Marimba Player. Autonomous Robots. pp 1-21, May,
2011.

[14] G. Weinberg and S. Driscol. Toward Robotic Musician-
ship.Computer Music Journal. 30, 4, pp. 28-45, 2006.

[15] T. Blackwell. Swarming and Music. Evolutionary Computer
Music. pp. 194217, 2007.

[16] T. Unemi, D. Bisig. Playing Music by Conducting BOID Agents
a Style of Interaction in the Life with A-Life. International
Conference on Artificial Life. pp. 546 550, Boston, USA, 2004.

[17] G. Ligeti. Pierre Boulez: Decision and Automatism in Structure
Ia. Die Reihe 4 (Young Composers): 3662, 1960.

[18] M. Mesbahi and M. Egerstedt. Graph Theoretic Methods for
Multiagent Networks, Princeton University Press, Princeton, NJ,
Sept. 2010.

[19] G. Toussaint. The Euclidean algorithm generates traditional
musical rhythms. BRIDGES: Mathematical Connections in Art,
Music, and Science. Banff, Alberta, Canada. July 31 to August
3, pp. 47-56. 2005.

[20] B. Fry, and C. Reas. Processing. http://www.processing.org/
[21] Freesound. http://www.freesound.org/
[22] Google, Android Open Accessory Development Kit.

http://developer.android.com/guide/topics/usb/adk.html


