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Abstract— When GPS, or other absolute positioning, is un-
available, terrain-relative velocity is crucial for dead reckoning
and the vehicle’s pose estimate. Unfortunately, the position-
denied accuracy of the inertial navigation system (INS) is
governed by the performance of the linear velocity aiding
sources, such as wheel odometry, which are typically corrupted
by large systematic errors due to wheel slip. As a result,
affordable terrestrial inertial navigation is ineffective in esti-
mating position when denied position fixes for an extended
period of time. For mobile robots, the mapping between
inputs and resultant behavior depends critically on terrain
conditions which vary significantly over time and space which
cannot be pre-programmed. Past work has used Integrated
Perturbative Dynamics (IPD) to identify successively systematic
and stochastic models of wheel slip, but treated the pose filter
only as input without improving the odometry measurements
used for vehicle navigation. We present a unique approach of a
predictive vehicle slip model in a delayed state extended Kalman
filter. The relative pose difference between the current state and
delayed state is used as a measurement update to the vehicle
slip model. These results create an opportunity to compensate
for wheel slip effects in terrestrial inertial navigation. This
paper presents the design, calibration, and verification of such
a system and concludes that the position-denied performance
of the compensated system is far superior.

I. Introduction

For a ground mobile robot, inertial navigation can provide
excellent high frequency attitude information necessary for
processing perception data and vehicle stability, high fre-
quency linear and angular velocity information for vehicle
control, and a capacity to dead reckon both heading and
position when GPS, or other position fixes, are unavailable.

Today’s affordable gyro technology is impressive. Tactical
grade MEMS gyros have bias stabilities under 10 degrees
per hour while fiber optic gyros are an order of magnitude
smaller. The impact of this on mobile robots is that even
heading, the most difficult of the three orientation angles,
can be well estimated, without any external fixes, for many
minutes.

The same is not true of accelerometers. The process of
integrating accelerometer indications twice with respect to
time magnifies errors to such a degree that an IMU is a
poor surrogate for GPS for more than a few seconds of
time. Even with wheel slippage, the process of integrating
accelerometers once with respect to time is a poor surrogate
for wheel odometry. Indeed, a relatively high performance
tactical grade IMU cannot compete with odometry for more
than a few seconds, and moreover, when pose fixes from GPS
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or other sources are absent, the dead reckoning performance
of the entire system depends critically on the performance
of odometry – as our results will show.

In the absence of position measurements (“fixes”), there
are only two ways to get good position information – by
integrating good velocity (or relative positions) once or by
integrating very good acceleration twice. The second option
requires navigation grade components that can cost twice as
much as an automobile. The first option, for a ground robot,
can be achieved with visual odometry [1], using cameras or
lidar, under certain conditions, or with good wheel odometry.
However, lidar odometry requires sufficient geometric texture
everywhere, and camera odometry requires ambient light and
sufficient features everywhere. Visual odometry is not always
an option but can always complement wheel odometry.
Wheel odometry does not perform well under conditions
of slip. It has been shown that the dominant component of
slip is often rotational for a skid-steered or tracked vehicle
[2]. A gyro measures rotational velocity well; so sensor
fusion is likely to be valuable even off-road. Furthermore,
we have already argued that even uncompensated odometry
outperforms free inertial derived translation.

For accurate results where the position does not drift
quickly without position fixes, modeling wheel slip is an
important part of pose estimation for outdoor mobile robots.
We use Integrated Perturbative Dynamics (IPD) to learn
the mapping between control inputs and resultant vehicle
motion by calibrating the vehicle’s mobility model online
using an extended Kalman filter. Past work has used IPD to
identify systematic and stochastic models of wheel slip [2],
powertrain dynamics, and odometry parameters [3].

In past work on IPD, the vehicle pose system has been
treated strictly as an input to the IPD filter, but the learned
mobility models can improve the vehicle allied odometry by
including predicted vehicle-terrain interactions. By combin-
ing pose estimation and model identification into a unified
filter, we show that the measurement and system modeling
uncertainty is correctly handled which leads to superior pose
estimates from dead-reckoning.

A. Vehicle System Modeling

The aspects of wheel-terrain interaction that are needed
for accurate ground robot models are neither well known nor
easily measurable in realistic situations. Published methods
are mostly concerned with robust path-following (e.g. [4]), or
the estimation of instantaneous wheel slip for feedback con-
trollers. Some have developed terramechanics-based models
for slip estimation that require knowledge of tire constants



and soil parameters [5]. Some methods lump all unknown
tire and soil parameters into slip ratios and angles; extended
Kalman filters have been developed for real-time estimation
of slip ratios and angles using velocity measurements [6]
[7]. Scheding et. al. [8] developed a slip model for Load,
Haul, and Dump trucks (LHD) by estimating the current
slip angles of front and rear axles separately; the slip angles
were allowed to change over time by treating errors in slip
as random walks.

Our approach relies on compensating a 3D wheel odome-
try solution for wheel slip. We deal with the case of arbitrary
terrain and presently do not try to separate the effects of
vehicle and terrain. Our slip models try to account for the
effects of all of the forces on the vehicle, rather than just
those directly related to the controls. Notably, the composite
effects of gravity and lateral acceleration are modeled. We
estimate instantaneous slip based on the inputs and IMU-
derived attitude, but the estimation algorithm is calibrated in
an on-line process using a delayed state filter as described
below.

The calibration of our slip model is based on the IPD
approach described in [2]. This approach uses an integral
of the perturbative dynamics of 3D odometry in order to
increase the sensitivity and conditioning of the mapping
between the history of wheel slip along an arbitrary trajectory
and the observed pose error that it causes a few seconds later.
This method captures the underlying disturbance dynamics
as a function of all of input space and is calibrated online
based on trajectories executed under normal operation. In
the past, the pose filter was separate from the vehicle system
identification and treated only as a measurement input.

B. Delayed State Filter

Whenever a filter is provided with a sequence of mea-
surements which is itself based on dead reckoning, the
inevitable correlation of the measurement sequence will have
to be treated correctly. One technique for doing so is the
use of delayed states. This technique allows the filter to
correctly extract the information about relative motion from
the measurement without burdening the measurement system
with the problem of computing its correlations.

We use a delayed state EKF formulation that has been
referred to as stochastic cloning in [12] and [13]. Helmick
et. al. [14] have also used a delayed state formulation for
slip-compensated path following on planetary exploration
rovers by calculating a slip vector via differencing the
current Kalman filter estimate from the kinematic estimate.
This method, along with most classical model identification
techniques, estimates the current slip vector, or combination
of slip angle and slip ratio, by using the differential equation
directly, which requires observations of x and ẋ. Often ẋ
can not be measured directly, so measurements of x are
numerically differentiated with respect to time.

Instead of using the delayed state to add a visual odometry
measurement update, we will use the relative pose difference
between the current state and delayed state as a measurement
update to the slip model. The measurement update can occur

at a fixed time interval or after a given distance has been
traveled. Since we use RTK GPS measurements in this paper,
the delayed state formulation is less important, due to weaker
correlations, but this arrangement is the most general and
allows for additional sensing with few changes. It should be
noted that if visual odometry was used as an input to the
pose system, such a measurement could be used to update
the pose and slip model simultaneously. The delayed state
formulation enables future investigations into calibrating slip
using visual odometry, less accurate GPS and perhaps even
just the integrated inertial navigation system.

In the following sections, we present an approach to
unified pose estimation and vehicle model identification.
Section II introduces the vehicle system model along with
the corresponding linearized error dynamics and perturbation
model parameterization. Section III presents the delayed state
Kalman filter which both estimates the vehicle’s pose and
identifies the vehicle’s perturbation model. Experimental re-
sults are presented in Section IV, followed by the conclusion
and discussion of future work.

II. Vehicle SystemModeling

For a vehicle moving in contact with a surface, there are
three degrees of freedom of motion as long as the vehicle
remains in contact with the local tangent plane.

Fig. 1. Vehicle inputs and perturbations. Three degrees of freedom remain
in the general case after terrain contact is enforced. Velocity inputs and
disturbances are expressed in the body frame.

It is most natural to express actuation in the body frame.
Given the vehicle’s commanded linear and angular velocities,
we have the following unconstrained kinematic differential
equation for the time derivatives of 2D position and heading
with respect to a ground-fixed reference frame:

ρ̇ = B(γ, β, θ) · u (1)

or, expressed in full:ẋ
ẏ
θ̇

 =


cθcβ cθsβsγ − sθcγ 0
sθcβ sθsβsγ + cθcγ 0

0 0 cγ
cβ


Vx

Vy

Vθ

 (2)

c = cos(), s = sin(), γ = roll, β = pitch, θ = heading

where Vx is the forward velocity, Vy is the lateral velocity
in the body-left direction, and Vθ is the heading rate with
positive rotation in the counter-clockwise direction - see
Figure 1. We will occasionally refer to this model in the
sequel as 3D odometry. This system is nonlinear because
the heading angle appears in the coefficient matrix. It should



be noted that we chose a velocity-driven model instead of
a comprehensive physics-based model for simplicity and
vehicle generality.

Since we are using the wheel odometry directly, the
transformation from left and right wheel velocities to forward
and angular velocity for a tracked vehicle will be needed
according to: [

Vx

Vθ

]
=

[ 1
2

1
2

− 1
W

1
W

] [
Vl

Vr

]
(3)

where Vl and Vr are the left and right encoder speeds, and
the wheel base, W, is the distance between the centers of the
two tracks.

A. Linearized Error Dynamics

We will briefly cover the mathematics of linearizing the
error dynamics of the systematic vehicle model - see [2]
for a full development and explanation of the equations.
Pose error of a path segment is attributed to the initial
pose measurement error and input velocity perturbations,
δu. Including these velocity perturbations, the kinematic
differential equation becomes:

ρ̇ = B(γ, β, θ) · (u + δu), δu =

δVx

δVy

δVθ

 (4)

In general form, the kinematic differential equation (2) can
be written:

ρ̇ = f
(
ρ(t), u(t)

)
(5)

Recall that the state (ρ) is the pose of the vehicle in the
ground-fixed reference frame and the inputs (u) are the linear
and angular velocities in the body frame. By differentiating
(5), we obtain the linearized error dynamics for deterministic
or systematic error:

δρ̇ = F(t)δρ(t) + G(t)δu(t) (6)

where F and G are Jacobian matrices:

F =
∂ f

∂ρ
=

0 0 −ẏ
0 0 ẋ
0 0 0

 (7)

G =
∂ f

∂u
= B(γ, β, θ) (8)

This allows us to define the transition matrix, Φ, and the
input transition matrix, Γ:

Φ(t, τ) = e
∫ t
τ

F(ζ) dζ =

1 0 −(y(t) − y(τ))
0 1 (x(t) − x(τ))
0 0 1

 (9)

Γ(t, τ) = Φ(t, τ)B(γ, β, θ) (10)

Using the transition matrices, the solution to the first-order
differential equation (6) is the following vector convolution
integral:

δρ(t) = Φ(t, t0)δρ(t0) +

∫ t

t0
Γ(t, τ)δu(τ)dτ (11)

B. Parameterization

Of course, wheel slip is not constant but depends on the
commanded trajectory and local terrain physical properties.
Accordingly, we parameterize the systematic component
of δu over velocities and accelerations predicted from the
encoder measurements along with components of the gravity
vector, which are available from the pose filter:

δu =

Vs,x

Vs,y

Vs,θ

 = Cα (12)

C =


cx

cy
cθ

 (13)

cx =
[
Vx |Vθ| (Vx|Vθ|) gx

]
cy =

[
Vx Vθ (VxVθ) gy

]
cθ =

[
Vx Vθ (VxVθ) gx gy

]
C is a 3×13 matrix in which all off-diagonal element blocks
are zero. The three slip velocities are treated independent
of each other and are parameterized by the row vectors
cx, cy, and cθ. The slip rate parameter vector, α, includes
the coefficients that are learned by the online filter.

This parameterization works well in practice but also
makes intuitive sense. Wheel slip is fundamentally caused by
forces acting on the vehicle. The velocity terms Vx and Vθ are
included because frictional contact forces are proportional
to them; these terms also capture errors in the odometry
model such as mis-calibrated wheel radius or rate scaling
factors. The use of absolute values in the parameterization
of forward slip makes it not dependent on the direction of
turn. Centripetal acceleration (VxVθ) and the components of
the gravity vector (gx, gy) captures the main applied non-
contact forces.

III. Delayed State Kalman Filter

A. Inertial Prediction

The system state for pose estimation, x, is defined by the
current orientation, position and velocity of the IMU in the
vehicle frame along with the slip rate parameters defined
above:

x =
[
Ψ Rn Vn α

]
(14)

where Ψ =
[
γ, β, θ

]
are the roll, pitch, and heading Euler

angles relating the navigation frame (n) to the vehicle fixed
body frame (b). Rn is the position in the navigation frame,
and Vn is linear velocities in the navigation frame.

While it is typical in inertial navigation, we do not include
the inertial sensor biases in the state vector. The reason for
this is that our gyros are so good that vehicle heading error
can be maintained within a few degrees for almost an hour.
Unless we intended to operate fix denied for longer than this,
there is little value in estimating gyro biases. Accelerometer
biases are omitted for the opposite reason. These sensors
are so poorly equipped to estimate position, even when



calibrated in-run, that the odometry aided system ignores
the accelerometers anyway. This is particularly true when
odometry is well calibrated. It is straight forward to add the
biases to the filter if desired.

State derivatives, which define the kinematic relations
with regard to the current state and IMU measurements, are
defined by:

ẋ =


E(ωb −Ωb + nωb )

Vn

Cn
b( f b + n f b ) − 2Ωn × Vn + gn

nα

 (15)

where f b, ωb are the accelerometer and gyroscope measure-
ments respectively, E is a matrix that relates Euler angle
rates to gyroscope measured rotation rates, Cn

b is a rotation
matrix, formed from the Euler angles, that relates the IMU-
vehicle frame to the navigation frame, gn is the known
local gravity vector (incorporating centripetal acceleration
terms) and Ω is the known earth-rate vector (See [15] for
details). Gravity and earth rotation rate in the navigation
frame are provided as deterministic inputs. The slip rate
parameters only change when new measurements arrive, but
their uncertainty is increased as they are treated as random
walk variables.

Uncertainty is incorporated with Gaussian additive noises,
n
∗

on ωb and f b which represent true noise in the sensor.
Uncertainty is represented by the covariance of the states

P = E[(x − x̄)(x − x̄)>] (16)

where E in the last expression represents the expected value
operator, not to be confused with the Euler angle rate
matrix E presented earlier. The covariance is propagated by
numerical integration of the Lyapunov equation

Ṗ = FP + PF> + GQG> (17)

where the following definitions apply:

F =


∂(E(ωb−Ωb))

∂Ψ
0 0 0

0 0 I 0
∂(Cn

b( f b))
∂Ψ

0 [−2Ωn×] 0
0 0 0 0



G =


E 0 0
0 0 0
0 Cn

b 0
0 0 I


These are simply the Jacobians of the state derivative relative
to state and noise respectively. Finally

Q = diag(E[nωb n>
ωb ], E[n f b n>

f b ], E[nαn>α ]).

Where nα is the expected variance of how the slip parameters
vary over time; it can be increased when it is known that
the vehicle has driven from one terrain type to another.
For clarity, the time dependence of these parameters is not
explicit in the notation but it is seen that all the matrices
contain time varying values.

B. Delayed State Filter

At initialization, the orientation and position states of the
filter are copied such that a new state, x̂ ∈ R28×1, is created
by appending some delayed states xd to the original states

x̂ =
[
Ψ Rn Vn α Ψd Rn,d

]>
(18)

xd = [Ψd, Rn,d] represents the delayed state from the
beginning of the path segment used for model identification.
Along the path segment, a history of roll and pitch angles,
between the delayed and current states, is stored separately
from the filter; these angles can come from either past IMU
measurements or from placing the vehicle onto a elevation
map. The state covariance is similarly obtained

P̂ = T PT> =

[
Poo Pod

Pod> Pdd

]
(19)

where, we refer to states from the original state vector with
superscript o and delayed states with superscript d. Here

T =



. . .

I
. . .

I 0 0 0
0 I 0 0


(20)

is a 28×22 matrix designed to select the appropriate rows of
orientation and position covariance for copying. The result is
an identical duplication of position and orientation estimates
with their associated variances and covariances at that instant
in time. The original states evolve with new measurements,
while the delayed states remain fixed, in effect saving the
information available at the instant they were appended. That
is

˙̂x =



E(ωb −Ωb + nωb )
Vn

Cn
b( f b + n f b ) − 2Ωn × Vn + gn

nα
0
0


. (21)

The variances of the appended states are fixed (block
diagonal elements) representing the uncertainty in the states
at the instant they were appended. However the covariances
(block off-diagonal) with the current state propagate as the
current state continues to evolve

˙̂P =

[
FPoo + PooF> + GQG> FPod

(FPod)> 0

]
(22)

where the previous definitions of F,G and Q still apply. See
[12] for additional details.

C. Odometry Measurement

Using the slip-compensated vehicle model, we can achieve
improved dead-reckoning relative to naive integration of the
odometry measurements (3). By assumption, the perturbative
(i.e. slip) dynamics are determined by the odometry velocity
and the roll and pitch measurements (12). This allows the



filter to add the predicted perturbative velocities to the
measurement velocity. The perturbed motion model includes
odometry and the systematic velocity perturbations. In the
navigation frame, this perturbed model is defined in (6).

We use the perturbed model for linear velocity measure-
ments only, while relying on the more accurate gyroscope to
indicate angular velocity.

Cb
nVn =

V
o
x

0
0

 +

δVx

δVy

0

 (23)

hodom(x) = zodom + nVo + nδu (24)

Hodom =

[
∂(Cb

nVn)
∂Ψ

0 Cb
n 0 0 0

]
(25)

The measurement uncertainty needs to take into account
the uncertainty from odometry, nVo , and the perturbative
velocities given by the estimated coefficients, nδu = CPαC>.
Pα is the state uncertainty sub-matrix corresponding to the
slip coefficients.

D. Position Measurement

We treat GPS measurements as standard position updates:

Rn = Rn
gps (26)

hgps(x) = zgps + nRn
gps

(27)

Hgps =
[
0 I 0 0 0 0

]
(28)

After the vehicle has traveled a sufficient distance, the state
x̂ is given by

x̂ =
[
Ψ(tk) Rn(tk) Vn(tk) α(tk) Ψ(tk−1) Rn(tk−1)

]>
(29)

where tk refers the present state time and tk−1 refers to the
time of the delayed state.

At the end of each path segment, the difference between
current state at the last key frame is used for slip model
identification. To minimize uncertainty, the two key frames
should occur right after GPS, or other position measurements
are made. Starting at the last key frame, we propagate
the pose forward using the past odometry measurements,
along with measured roll and pitch history, and the current
perturbation model coefficients.

ρ
k,ipd

=

∫ tk

tk−1

B(γ(τ), β(τ), θ(τ)) ·
(
u(τ) + δu(τ, α)

)
dτ (30)

The Kalman filter measurement is the difference between
final measured and final predicted poses (x, y, θ):

zipd = ρ−1
k−1,ins

⊗ ρ
k,ins

(31)

hipd(x) = ρ
k,ipd

+ nipd (32)

Here, ⊗ refers to the pose addition found by multiplying the
corresponding Homogeneous Transforms.

The measurement covariance is:

Ripd = E[nipdn>ipd] (33)

= T n
i

(
P̂oo

x,y,θ + ΦP̂dd
x,y,θΦ

> − P̂od
x,y,θΦ

> − ΦP̂do
x,y,θ

)
(T n

i )>

T n
i =

c(−θi) −s(−θi) 0
s(−θi) c(−θi) 0

0 0 1


where the four uncertainty terms, respectively, come from the
current state, the delayed state, and the covariance between
the two. The transition matrix, Φ (9), computes the effect
of initial orientation uncertainty on final predicted state.
T n

i transforms the uncertainty from the navigation frame to
initial pose frame.

To obtain the measurement Jacobian H we differentiate
the predicted measurement with respect to the state α. We
use Leibnitz’s rule to move the derivative inside the integral.

Jα =
∂h(α)
∂α

=

∫ t

t0
Γ(t, τ)

∂δu(α, τ)
∂α

dτ =

∫ t

t0
Γ(t, τ)C(τ)dτ

Hipd =
[
0 0 0 Jα 0 0

]
(34)

where C(τ) is defined by (13), and Γ(t, τ) is from (10).

IV. Experimental Validation

Tracked vehicles are possibly the worst case for slip since
they must slip by design during any turn. Data was collected
on a custom surveillance robot similiar to the Foster-Miller
TALON. Even though the IPD system identification algo-
rithm was originally developed for skid-steered and Acker-
mann vehicles, the vehicle motion model is general enough
to use directly on a tracked robot with no changes. The robot
was instrumented with encoders on each track, GPS, and
an Honeywell HG1930 IMU including accelerometers and
gyros. The GPS data was post-processed with a nearby base
station for high accuracy positioning. For purposes of this
test, GPS was used in the filter only during the calibration
phase. The robot was driven on soft dirt at relatively high
commanded speeds of up to 1.7 m/s and 3 rad/s.

For the first four minutes after initialization, the complete
filter was run using sensor inputs from the IMU, gyro,
encoders and GPS; IPD calibrated the systematic slip model
using the filter’s delayed state at two second intervals. To
track performance during calibration, after each IPD update,
the vehicle’s path was predicted 5 seconds into the future
using odometry both with and without the calibrated vehicle
model. As can be seen in the two scatter plots, Figures 2(a)
and 2(b), the standard deviation of along track error and cross
track error are reduced by 95% and 89%, respectively, of the
non-calibrated odometry error, using the current calibrated
model. The standard deviation of heading prediction error is
reduced by 70%. The mean distance error is also reduced
from 83 cm to 19 cm, 77%, with a mean heading reduction
of 83 mrad to 16 mrad, 81%.

After the calibration phase, all GPS updates were disabled.
To compare how well the calibrated vehicle model improved
pose results, the pose-only filter was run in 5 different modes
for the next minute: IMU Only, Odometry Only, Odome-
try+Slip, Odometry+IMU, Odometry+IMU+Slip. Slip refers
to slip compensation based on the perturbative velocities
estimated by the calibrated vehicle model. See Figures 3
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Fig. 2. Scatter plots of along track and cross track error for predicted pose
error at the end of a five-second path segment. The two-standard deviation
error ellipse of the points is shown by the solid red line. Figure (a) figure
shows predicted pose using odometry only; figure (b) shows prediction error
using odometry and the current estimate of the vehicle slip mode.

and 4 for results. Ground truth positioning provided by the
differential GPS is shown by the thick blue line.

Table I presents the distance errors at the end of 60 seconds
of the 5 different pose filters. The IMU Only solution quickly
drifted away from the true solution and ended with an error
of 48 meters. Free inertial navigation is not viable at all –
even with a relatively high performance IMU. The vehicle
slip model produced the largest relative improvement when it
aided the Odometry Only solution without the IMU, Figure
3. The Odometry Only solution overestimated rotations and
suffered from frequent misalignments which caused an end
error of 33.2% of distance traveled while the Odometry+Slip
solution more closely tracked the true path and had a 5.7%
distance traveled end error - a factor of 5.9 improvement.

The improvement produced by slip modeling when odom-
etry and IMU sensors were included is only slight, from
0.31% before to 0.27% after, Figure 4. The dominant compo-
nent of slip is rotational and the gyro also measures this well,
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Fig. 3. Predicted path using vehicle odometry with and without the
calibrated vehicle model.
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Fig. 4. Predicted path using IMU sensors and odometry with and without
the calibrated vehicle model.

however the slip model still improves heading performance.
This is because velocity is measured in the vehicle frame and
transformed to the global frame in the IMU + Odometry filter
measurements. This transformation is a function of heading,
so even linear slip degrades IMU heading performance. A
larger relative improvement would be expected with a lower
performance IMU or a longer path.

To further compare the results of the IMU + Odometry so-
lutions, the two solutions were propagated for 7 minutes. The
absolute position error along the path is highly dependent of
the path geometry. The remaining error is a semi-random
process so there is always a chance that the errors in the
uncompensated system will cancel and appear to work better.
It is the average performance over a long period of time
that matters. Figure 5 shows that the calibrated slip model
solution had an position error less than the non-calibrated
solution 90.3% of the time with a reduction in position error
of 32% measured at every time-step along the path and final
reduction of 76%. The complete path is show in Figure 6.
The end position error using the slip model was only 1.13%
of distance traveled.



TABLE I
End Path Error, Total Path Length: 57.35 meters, 60 seconds

Filter Position Error (m) % of distance traveled
IMU Only 48.23 84.09
Odometry Only 19.03 33.18
Odometry+Slip 3.25 5.67
IMU+Odometry 0.18 0.31
IMU+Odometry+Slip 0.15 0.27
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Fig. 5. Position Error along the path of the two IMU + Odometry solutions.
The calibrated slip model had a position error less that the non-calibrated
solution 90.3% of the time over the 313 meter path.

A case where we think slip modeling will make a large
difference is combining it with visual odometry and wheel
odometry. Visual odometry, which normally offers great short
relative poses, often suffers from dropouts which can be
detected. This allows the system to calibrate using good
visual odometry relative poses and use the slip prediction
model when frames are lost due to errors such as motion
blur or bad lighting.

Thirty minutes of data was collected with the robot. Dur-
ing the thirty minutes, the robot’s slip model was calibrated
over four terrains: Dirt, Rock, Asphalt, and Grass. While
driving on grass, the vehicle experienced slopes of up to
35 degrees. The complete results are not shown for brevity,
but mobility calibration results over all four terrains are
presented in [16]. Results from the four minute calibration
phase and minute-long path were presented because they
were the beginning of the data collection and also represented
typical results seen across the dataset. It was shown that the
mobility model parameters quickly converged as the robot
drove between terrain types.

V. Conclusion and FutureWork

In this paper we have shown that slip modeling can pro-
duce a significant improvement in odometry dead reckoning
accuracy – even off road for a tracked vehicle with a high
performance IMU. We have also argued that the fix-denied
performance of aided terrestrial inertial navigation systems
is governed in many cases by the performance of wheel
odometry, and then showed that performance of inertial
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Fig. 6. Predicted 7 minute path using IMU sensors and odometry with
and without the calibrated vehicle model.

navigation is also significantly improved with a calibrated
model of slip.

We have shown that wheel slip model identification can
be integrated successfully with pose in a single estimation
system. We used RTK GPS measurements in this work, but
it will also be interesting in future to see if lower quality
measurements can calibrate models of slip well. There are
two reasons to be optimistic. First, the capacity of the IPD
approach to calibrate models of uncertainty suggests that
the associated integrated filter can be well tuned. Second,
the delayed state approach allows significant correlations to
accumulate in order to disambiguate the likely causes of
observed pose prediction error.

Our first goal was to demonstrate the viability and value
of off-road slip modeling. Our IMU was one of the highest
performance MEMS IMUs available on the market and slip
modeling still mattered. Therefore, it seems that all land
inertial navigation systems are likely to benefit from slip
modeling. In addition, the improved models produced by
this technique should lead to significant improvements in the
performance of model predictive controllers, particularly in
difficult terrains or during aggressive maneuvers.

In our experiments we used a clear calibration phase
and then stopped calibration thereafter thus freezing the slip
model. When the slip model is allowed to evolve indefinitely,
interesting questions arise. First, can the slip models be
calibrated continuously while the system operates – across
transitions in terrain type. Second, how good do the pose
sensors need to be to identify the slip model well. There
is every reason to believe that when visual odometry can
operate simultaneously with wheel odometry, calibration can
proceed. Even more interesting is the question of whether
good gyros alone will generate enough information to cali-
brate the slip models, because then the fusion of the INS and
the slip models will be a self contained higher performance
system requiring no new inputs except, possibly, the vehicle
controls.
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