Loading [a11y]/accessibility-menu.js
On impact decoupling properties of elastic robots and time optimal velocity maximization on joint level | IEEE Conference Publication | IEEE Xplore

On impact decoupling properties of elastic robots and time optimal velocity maximization on joint level


Abstract:

Designing intrinsically elastic robot systems, making systematic use of their properties in terms of impact decoupling, and exploiting temporary energy storage and releas...Show More

Abstract:

Designing intrinsically elastic robot systems, making systematic use of their properties in terms of impact decoupling, and exploiting temporary energy storage and release during excitative motions is becoming an important topic in nowadays robot design and control. In this paper we treat two distinct questions that are of primary interest in this context. First, we elaborate an accurate estimation of the maximum contact force during simplified human/obstacle-robot collisions and how the relation between reflected joint stiffness, link inertia, human/obstacle stiffness, and human/obstacle inertia affect it. Overall, our analysis provides a safety oriented methodology for designing intrinsically elastic joints and clearly defines how its basic mechanical properties influence the overall collision behavior. This can be used for designing safer and more robust robots. Secondly, we provide a closed form solution of reaching maximum link side velocity in minimum time with an intrinsically elastic joint, while keeping the maximum deflection constraint. This gives an analytical tool for determining suitable stiffness and maximum deflection values in order to be able to execute desired optimal excitation trajectories for explosive motions.
Date of Conference: 07-12 October 2012
Date Added to IEEE Xplore: 20 December 2012
ISBN Information:

ISSN Information:

Conference Location: Vilamoura-Algarve, Portugal

References

References is not available for this document.