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Abstract— A wide class of multirobot control tasks involves 

operator interactions with individual robots. Where the 

robots’ actions are independent, as for example in some 

foraging tasks, the operator can interact with robots 

sequentially in a round robin fashion. If the need for 

interaction can be detected by the robot through self-

reflection, the robot could communicate its need for 

interaction to the operator. The resulting human-robot system 

would form a queuing system in which the operator is the 

server and the queue of robots requesting interaction, the jobs. 

As a queuing system, performance could be optimized using 

standard techniques, providing the operator’s attention could 

be appropriately directed. An earlier study found that Human-

Robot Interaction (HRI) performance was improved by 

communicating requests for interaction to the operator, 

however, a first-in-first-out (FIFO) aid showing a single 

request at a time led to poorer performance than one showing 

the entire (Open) queue. The current experiment compared 

Open-queue and FIFO conditions from the first experiment 

with a Priority-queue using a shortest job first (SJF) discipline 

known to maximize throughput. Performance in the Priority-

queue condition was statistically indistinguishable from the 

best performance for all measures except those for missed 

victims where it was intermediate between FIFO (best) and 

Open-queue. Both of the other conditions produced poorest 

performance on some measures. The results suggest that 

operator attention can be effectively scheduled allowing the 

use of scheduling algorithms to improve the efficiency of HRI. 

I. INTRODUCTION 

n the simplest case of multirobot control, an operator 

controls multiple independent robots interacting with 

each as needed. A foraging task [1] in which each robot 

searches its own region would be of this category. Control 

performance at such tasks can be characterized by the 

average demand of each robot on human attention [2]. Such 

operator interactions with a robot might be described as a 

sequence of control episodes in which an operator interacts 

with the robot for period of time (interaction time, IT) 

raising its performance above some upper threshold (UT) 

after which the robot is neglected for a period of time 

(neglect time, NT) until its performance deteriorates below 

a lower threshold (LT) when the operator must again 

interact with it. In practice the operator’s task is even more 

complex. Humans are additionally included in robotic 

systems to perform tasks the automation cannot. The most 

common of these tasks is searching for targets in noisy 

displays such as remote video or aerial imagery.   

Research in robot self-reflection [3] has progressed to 

the point that it is plausible to presume robots capable of 

reporting their own off normal conditions such as an 

inability to move or unsafe attitude. By focusing the 

operator’s attention on robots needing interaction rather 

than requiring the operator to monitor for the failures, time 

spent monitoring can be eliminated increasing the number 

of robots that can be serviced over this interval. With robots 

informing the operator of their need for interaction the 

human-robot system becomes a queuing system in which 

the operator acts as the server and robot interaction requests 

as jobs. Using operations research methods the performance 

of such a queuing system might be further improved by 

prioritization of jobs or adjustment of service levels [4] to 

match current conditions. Deriving full benefit from such 

aiding, however, would require the ability to focus an 

operator’s attention on a particular robot. 

The prior experiment [5] compared a control condition 

without requests for interaction with experimental 

conditions in which either a single request (FIFO-queue) or 

all requests (Open-queue) were shown to the operator. 

Because ITs for recovery were the same across failures 

there should have been no difference in performance 

between operators presented with robots needing service 

individually or as a group. Instead, we found consistent 

advantages for the Open-queue condition that showed all 

failures. There are two plausible explanations for this 

finding: 1) despite the apparent equivalence of repairs, 

operators were able to take advantage of situational 

differences involving things such as proximity to targets or 

other robots to choose robots for repair that led to higher 

overall performance or 2) the system’s designation of the 

robot to be serviced next seemed too restrictive to operators 

who therefore did not consistently follow its advice. 

Direction of operators at this level of specificity has often 

met with resistance [2], [6]. Because the FIFO queue 

always presented a robot in an appropriately failed state, 

however, the aid was errorless and not subject to the usual 

manipulations of trust [7]. 
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Figure 1. Alarm condition display (Open-Queue).     

  
    Figure 2. Decision aid condition display (FIFO-/Priority-Queue). 

We found directed attention inferior to undirected 

alarms under conditions in which there should have been no 

difference for compliant operators. The possibility, 

however, remained that directed attention might improve 

performance under conditions in which compliance would 

produce superior performance to random selection from 

among the alarming robots. To examine the effects of 

attention direction through a prioritized queue, 

heterogeneous errors with different recovery times were 

introduced. This allowed a Priority-queue following the 

throughput maximizing SJF (Shortest Job First) discipline 

[8].  If operators strictly followed the recommendations of 

the Priority-queue they should achieve the best attainable 

performance. We therefore hypothesized that a Priority-

queue performance should be equal or greater than that in 

the Open-queue condition if the operator complies with its 

recommendations. In other words, the operator attention 

could be optimized based on an effective scheduling 

approach. Additionally, the FIFO-queue by contrast 

employs a suboptimal discipline and should lead to poorer 

performance for a strictly complying operator.  

II. METHODS 

A. USARSim and MrCS 

The experiment was conducted using the USARSim 

robotic simulation with 8 simulated Pioneer P3-AT robots 

performing an Urban Search and Rescue (USAR) foraging 

task. USARSim is a high-fidelity simulation of USAR 

robots and environments developed as a research tool for 

the study of human-robot interaction (HRI) and multi-robot 

coordination. USARSim supports HRI by accurately 

rendering user interface elements (particularly camera 

video), accurately representing robot automation and 

behavior, and accurately representing the remote 

environment that links the operator’s awareness with the 

robot’s behaviors. USARSim uses Epic Games’ 

UnrealEngine3 to provide a high fidelity simulator at low 

cost and also serves as the basis for the Virtual Robots 

Competition of the RoboCup Rescue League. Other sensors 

including sonar and audio are also accurately modeled.  

MrCS (Multi-robot Control System), a multi-robot 

communications and control infrastructure with 

accompanying user interface, developed for experiments in 

multirobot control and RoboCup competition [9] was used 

in this experiment. MrCS provides facilities for starting and 

controlling robots in the simulation, displaying multiple 

camera and laser output, and supporting inter-robot 

communication through Machinetta which is a distributed 

multi-agent coordination infrastructure. 

Figure 1 shows the MrCS user interface in alarm 

condition. Thumbnails of robot camera feeds are shown on 

the top, a video feed of interest in the bottom right. A GUI 

element in the middle right allows teleoperation and camera 

pan and tilt. Current locations and paths of the robots are 

shown on the Map Viewer (middle) which also allows 

operators to mark victims. The team status window (left) 

for the Open-queue condition shows each robot’s current 

status and briefly summarizes any problem. Green indicates 

the robot is in autonomous condition and functioning safely, 

yellow indicates an abnormal condition, such as stuck at a 

corner. When a robot is manually controlled, its tile turns 

white. The operator selects the robot to be controlled from 

either the team status window or camera thumbnail. 

Figure 2 shows the team status window for the forced 

queue (FIFO or SJF) conditions in which robots in 

abnormal states are presented one at a time. Additional 

alarms can only be reviewed after the presenting problem is 

resolved. To avoid “clogging” the status window with an 

unrecoverable failure, operators have an alternative in the 

Dead button (bottom left). Once switched off, the robot will 

stop reporting and no longer be scheduled. 

B. USAR Foraging task 

When an operator detects a victim in a thumbnail, a 

complex sequence of actions is initiated. The operator first 

needs to identify the robot and select it to see the camera 

view in a larger window and to gain the ability to stop or 

teleoperate the robot. After the user has successfully 

selected a robot, it must be located on the map by matching 

the window border color or numerical label. Next the 

operator must determine the orientation of the robot and its 



camera using cues such as prior direction of motion and 

matching landmarks between camera and map views. To 

gain this information the operator may choose to teleoperate 

the selected robot to locate it on the map, determine its 

orientation through observing the direction of movement, or 

simply to get a better viewing angle. The operator must then 

estimate the location on the map corresponding to the 

victim in the camera view. If “another” victim is marked 

nearby, the operator must decide whether the victim she is 

preparing to mark has already been recorded on the map.  

Detecting and restoring a failed robot follow a similar 

time course: identifying the failed robot on the map and 

selecting it, then teleoperating it to its next waypoint where 

the automation can resume control. 

C. Types of Failures 

Recoverable failures were categorized into 4 major 

types, based on the data for commonly occurring non 

terminal and field repairable failures for the Pioneer P3-AT 

[10]. Two of these, camera and map failures, involve loss of 

display due to communication difficulties. The third, 

teleoperation lag is a control problem found by Ferrell [11] 

and Sheridan [12] to significantly degrade operator 

performance. The fourth, “stuck”, is a common condition in 

which a robot becomes entangled with obstacles. To resolve 

encountered failures, the operator needed to manually guide 

the robot from its current location to the next waypoint. 

Because each of the failure types imposed different 

difficulties for recovery, they took varying amounts of time 

to resolve.  In order to estimate typical resolution times for 

different failures, a pretest using 10 participants was 

conducted. 

TABLE 1. FOUR TYPES OF FAILURES OCCURRED IN THE STUDY. 

Failure Description 

Stuck 
Robot was stopped by approaching 

obstacles 

Teleoperation 

Lagged 

Robot executed operator's command 

with 2~3 seconds delay 

Camera 

Sensor Failed 

Robot's video feed will be frozen right 

before the failure happened 

Map Viewer 

Failed 

Robot's position on the map viewer 

will be unable to update 

In the training session, participants practiced control 

operations for different types of failures for 5 minutes each. 

Participants were instructed that their goal was to resolve 

failures by teleoperating to the next indicated waypoint as 

rapidly as possible. To avoid unrelated delays, such as 

those associated with switching attention among robots, 

participants controlled a single designated robot at a time. 

Because teleoperating the robot to its next waypoint was 

most easily accomplished by locating both on the map, loss 

of map indication proved to be the lengthiest failure to 

repair. The stuck condition which required extensive 

manual maneuvering and the camera failure that made 

obstacle avoidance more difficult were the easiest to 

overcome, with teleoperation delay falling in the middle, 

figure 3. This ordering of estimated interaction times 

allowed failures to be presented to the operator in a priority 

queue following a shortest job first (SJF) discipline, known 

to maximize throughput [8].  

 

Figure 3. Interaction time for failures. 

D. Experimental Conditions 

The selected USAR environment was an office like hall 

with many rooms full of obstacles like chairs and desks. 

Victims were evenly distributed within the environment. 

Maps were rotated by 90º and each robot entered the 

environment from different locations on each trial. Because 

the laser map is built up slowly as the environment is 

explored and the office like environment provides few 

distinctive landmarks, there was little opportunity for 

participants to benefit from prior exposure to the 

environment. A team size of 8 robots found by [13] to yield 

the highest performance at the USAR task was used in the 

experiment. Robots followed predefined paths of 

waypoints, similar to paths generated by an autonomous 

path planner [14] to explore the map. All robots traveled 

paths of the same distance with ten visible victims and four 

failures in each designed path. Upon reaching a failure 

point the robot experienced a failure, such as becoming 

entangled with a chair or sensor failures. The operator then 

needed to assume manual control to teleoperate the robot 

out of its predicament to its next waypoint where 

communications could be reestablished for lost camera feed 

or control and autonomous exploration resumed. The 

experiment followed a three condition repeated measures 

design comparing the MrCS augmented by alarm panels 

with two decision aid approaches. Experimental conditions 

were fully counterbalanced, for  map orientations, robots’ 

starting points, and displays, in which 5 participants were 

run in each of the six cells.  

E. Participants and Procedure 

The experiment followed a within-group design. 30 paid 

participants were recruited from the University of 

Pittsburgh community balanced among conditions for 

gender. None had prior experience with robot control 

although most were frequent computer users. Participants 



read standard instructions on how to control robots via 

MrCS. In the following 20 minute training session, 5 

minutes for each type of failure, participants practiced 

control operations by resolving failures, three times for 

each type. Participants were encouraged to find and mark at 

least one victim in the training environment under the 

guidance of the experimenter. After the training session, 

participants began the first 15 minute experimental session 

in which they performed the foraging task controlling 8 

robots in their first assigned condition. Participants had 

been told the main task was to locate victims with detecting 

and resolving robot failures as a secondary task. At the 

conclusion of the session, participants were asked to 

complete the NASA-TLX workload survey [15]. After brief 

breaks, the next two conditions were run accompanied by 

repeated workload surveys. 

F. Measurements 

To evaluate the effects of different scheduling schemes 

the following measurements were adopted:  

TABLE 2. MEASUREMENT SCALES. 

Category Concept 

Victim 

Rescued 

Primary task:  identifying more victims 

corresponds to better performance 

Distance 

Traveled 

Larger explored areas could result in 

greater opportunities to find more victims 

Event 

Timeline  

Characterizing the operators’ allocation of 

attention in controlling robots, shorter 

times indicate better performance 

Failures 

Resolved 

Secondary task:  indicating the operators’ 

efficiency in resolving robot failures  

Workload 

Survey 

Subjective report of cognitive workload, 

lower workload indicates better system 

performance 

III. RESULTS 

A. Victims Found & Distance Traveled  

No difference was found for the number of victims 

identified (F(2,58)=.110, p=.896). Each victim marking was 

compared to ground truth to determine whether there was 

actually a victim near the location. If a mark was made 

further than 2 meters away from any victim or multiple 

marks for a single victim were found, the marks were 

counted as false positives. The number of false positives 

showed a main effect for queue condition (F(2,58)=4.637, 

p=.014), figure 4. A pairwise T-test found a significant 

difference between Open-queue (1.13 false) and FIFO-

queue (2 false) conditions (p=.030), as well as a difference 

between Priority-queue (1.2 false) and FIFO-queue 

(p=.012). No effects were found between Open-queue and 

Priority-queue.  

 
Figure 4. Number of wrong marks (false positive). 

Unmarked victims that had appeared within a robot’s 

FOV (field of view) without being marked were counted as 

false negatives (misses). Operators in the Open-queue 

condition missed the most victims (15) and the FIFO-queue 

was the lowest (11) with the Priority-queue falling in 

between (13), as shown on figure 5. A repeated measures 

ANOVA shows a main effect among queue conditions, 

F(2,58)=20.5, p<.001. Pairwise T-tests revealed significant 

differences between Open-queue and FIFO-queue (p<.001), 

Open-queue and Priority-queue (p=.006), and Priority-

queue and FIFO-queue condition (p=.003). 

No difference was found for the distance traveled 

(F(2,58)=1.73, p=.186) although Open-queue (321m) 

appears slightly better than FIFO-queue (293m) with 

Priority-queue again in the middle (310m).   

                                  
Figure 5. Number of unmarked victims (false negative). 

Since avoiding missed targets is crucial to many 

foraging tasks, missing victims might have resulted simply 

from the greater opportunity afforded by exploring larger 

areas. To examine this possibility we tested the adjusted 

measure missed-victims per distance traveled Distance 

traveled is defined by the sum of the distances each robot 

has navigated through the environment during the 

experiment. As seen in figure 6, the results show operators 

in the Open-queue condition missed the most victims per 

region explored (.49) and the FIFO-queue the fewest (.40) 

with the Priority-queue falling in between (.45) . Again, a 

main effect was found among conditions (F(2,58)=11.238, 

p<.001). Pair-wise T-test revealed significant difference 



between Open-queue and FIFO-queue condition (p<.001), 

Open-queue and Priority-queue condition (p=.046), and 

Priority-queue and FIFO-queue condition (p=.015). 

                                  
Figure 6. Unmarked victims per region explored. 

B. Event Timelines 

Neglect time (NT) and latency in responding to failures 

are indicators of the operator performance. Long NTs can 

indicate that some robots may have been ignored while 

latency in responding to failures can suggest noncompliance 

with assistance requests or heavy workload at other parts of 

the task. NT (F(2,58)=1.66, p=.20) and the latency in 

responding to failure (F(2,58)=1.75, p=.183) were not 

significantly different among the three conditions. Pairwise 

T-tests found no difference between Open-queue and FIFO 

queue in either Neglect Time, figure 7 (p=.086) or fault 

detection time, figure 8 (p=.079). A prior study [5], 

however, found an advantage for Open queue over FIFO 

queue for response latency under similar conditions.  

 
Figure 7. Neglect time 

The time to service failed robots, measured as the time 

between selecting the robot and resolving its problem again 

showed no difference among conditions (F(2,58)=.579, 

p=.507), which suggests the types of pre-designed failures 

were well distributed among three conditions. Overall, 

FIFO-queue appears slightly worse in the above three 

measurements.   

 
               Figure 8. Latency in responding to failures. 

Select-to-Mark, is defined by the interval between 

selecting a robot with a victim in view and marking that 

victim on the map. Select to mark times can be interpreted 

as a measure of situation awareness (SA) because they 

require the operator to orient and interpret the environment. 

A repeated measures ANOVA shows a significant 

difference among conditions (F(2,58)=5.413, p=.011). 

Operators in the FIFO-queue condition took the longest 

time (583 sec) and the Open-queue was the shortest (389 

sec) with the Priority-queue falling in between (478 sec), 

figure 9. A pairwise T-test showed a significant difference 

between Open-queue and FIFO-queue conditions (p=.002), 

and a marginal difference between Open-queue and 

Priority-queue (p=.061). 

                              
Figure 9. Accumulated Select to Mark time. 

C. Failures Resolved  

The operator must successfully teleoperate the stopped 

robot from its current location to the next predefined 

waypoint to resolve a failure. A repeated measures ANOVA 

showed a significant difference for the count of resolved 

failures among experimental conditions (F(2,58)=5.5, 

p=.006), figure 10. Participants in the Open-queue 

condition solved the most failures (17.8), which was 

significantly more than FIFO-queue (p=.003). A pairwise 

T-test also revealed a difference between Priority-queue, 17 

failures, and FIFO-queue, 15.7 failures, (p=.057). 



                            
Figure 10. Number of failures resolved. 

D. Workload  

The full-scale NASA-TLX workload measure found no 

advantage among conditions. To examine effects related to 

the highly prescriptive aiding in the FIFO and Priority 

queue, we analyzed the frustration scale separately.  

 
Figure 11. Subjective workload ratings of Frustration. 

Repeated measures ANOVA showed a significant 

difference (F(2,58)=5.159, p=.009), figure 11. Pairwise T-

tests revealed differences between Open-queue and FIFO-

queue (p=.038) and between Open-queue and Priority-

queue (p=.004). 

IV. DISCUSSION 

In a previous study [5] we found that alerting operators 

to robots in need of interaction improved performance 

along a number of dimensions. The earlier study compared 

a control condition without alerting with experimental 

conditions corresponding to the Open-queue and FIFO-

queue conditions of the current experiment.  While alerting 

was beneficial, the earlier study found FIFO-queue which 

directed the operator to service a particular robot was less 

effective than the Open-queue which allowed the operator 

to choose. This advantage could be explained either by 

superiority of strategies of Open-queue operators when 

allowed choice or operator difficulties in complying with an 

aide that prescribed the robot to be serviced.  

A. Hypothesis Validation  

Our present study reflects the effects of operator 

attention allocation using various forms of alerting 

assistance. The results roughly support the hypothesis that 

operator attention can be effectively directed to interaction 

with individual robots. Open-queue performed slightly 

better than Priority-queue on false positives, distance 

traveled, and failures resolved, but only for select-to-mark 

times did the difference approach significance. For the 

primary task of marking victims, FIFO participants proved 

slightly better, however, SJF participants were significantly 

superior to Open-queue users yielding a balanced 

performance which was never poorest. The above results 

may be due to the differences in allocation of attention. 

Within limited cognitive capacity of processing information, 

operators have to selectively dedicate attention to any of the 

"wanted" targets and filter out the irrelevant information 

simultaneously [16]. Open-queue operators must devote 

time and attention to monitoring and selection of robots for 

servicing as well as the interaction leaving less available for 

the victim monitoring and marking tasks; whereas operators 

in the forced queue (Priority-/FIFO-Queue) conditions, by 

contrast, do not have to compete with monitoring and 

selecting robots to service leaving more resources available 

for victim-related tasks, which leads to the reversed results 

in unmarked victims among three conditions.  

The FIFO-queue condition which directed operator 

attention suboptimally also led to the greatest loss of SA as 

reflected in its longest Select-to-Mark victims times and 

lowest marking accuracy. This may have been exacerbated 

by the FIFO discipline which did not distinguish between 

distracting recoveries such as loss of track on map and brief 

interventions such as maneuvering around an obstacle. For 

the Priority-queue, the SJF discipline had not only the 

advantage of allowing operators to work primarily on 

briefer interventions thereby preserving SA, but by 

clustering similar types of failures increased opportunities 

for reducing the cost to switch between recovery strategies 

and sharing the similar cognitive procedures among 

failures. However, the Priority-queue operators may have 

simply devoted more of their time and attention to robot 

requests than operators using the less efficient FIFO 

because of their greater payoff, which could be observed 

from the higher rate of unmarked victims.  

B. User Compliance in Forced Queue Conditions 

Difficulties in obtaining compliance have frequently 

been reported for highly prescriptive decision aids [17].  

Crandall et al. [18] recently reported problems in directing 

operator attention to particular classes of tasks at a multi-

robot control task similar to the one reported here. A more 

general finding is that even minor conflicts between an 

operator’s intentions and an aid’s suggestions can lead to 

disuse [17]. This experiment provided a clear advantage to 

participants complying with the Priority-queue and a 

relative disadvantage to those complying with the FIFO-



queue. Participants in the Open-queue condition who chose 

to follow the SJF discipline (service map failures last) could 

potentially match the performance of Priority-queue users.  

Results generally support this ordering with FIFO 

participants resolving the fewest failures (secondary task) 

while identifying the most victims (primary task); however, 

there were no main effects for the number of victims found. 

SJF participants had a more balanced performance finding 

marginally fewer victims but matching Open-queue 

performance on resolving failures.  

In forced queue conditions operators receive an explicit 

recommendation for the robot to assist. Under extreme 

stress or time pressured tasks, humans tend to defer to 

automation and rely on the system for making decisions 

[19]. This increased compliance under high workload could 

be especially beneficial to system performance where 

optimal strategies such as SJF can be used to steer operator 

attention. Although automated aids can reduce decisional 

load, they carry little additional information about other 

robots in need of assistance or the general state of the 

system [20], [21]. Operators therefore need to regain SA 

every time they switch to serve a new robot. While working 

from a forced queue, operators must match the alarmed 

robots to the thumbnails and/or maps, which could increase 

the cost in switching attention among failures and robots.  

C. User Perception of Workload   

The NASA-TLX survey revealed differences among 

conditions where the Open-queue was judged significantly 

more frustrating than either the SJF or FIFO queues. 

Potential causes for frustration in the Open-queue condition 

reported in debriefings were: 

1) Endless failures: participants felt distracted with so 

many robots requiring attention 

2) Showing all failed robots led participants to feel 

more pressure than with only one robot in the queue. 

3) Under overload conditions, participants wanted to 

rely on automatic recommendations, as provided by 

the FIFO-/SJF-queue. 

The study results are promising for the prospects of 

improving HRI performance through scheduling operator 

attention. The improvement of performance in queuing 

discipline shows that forced queue aiding can be effectively 

used by operators and might even lead to superior 

performance under more complex conditions where choice 

among robot requests becomes more difficult.   
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