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Fig. 1: An example of our approach. (a) The workcell as seen by one of the 3D sensors. The red region indicates the adaptive danger zone
surrounding the moving robot arm. (b) As the person enters the workcell, the green region indicates the adaptive safety zone surrounding
the person. (c) When the person gets too close to the robot, the safety zone and danger zones intersect (shown in purple and highlighted
with a red circle), and the robot automatically halts.

Abstract— Current manufacturing practices require com-
plete physical separation between people and active industrial
robots. These precautions ensure safety, but are inefficient in
terms of time and resources, and place limits on the types
of tasks that can be performed. In this paper, we present a
real-time, sensor-based approach for ensuring the safety of
people in close proximity to robots in an industrial workcell.
Our approach fuses data from multiple 3D imaging sensors
of different modalities into a volumetric evidence grid and
segments the volume into regions corresponding to background,
robots, and people. Surrounding each robot is a danger zone
that dynamically updates according to the robot’s position and
trajectory. Similarly, surrounding each person is a dynamically
updated safety zone. A collision between danger and safety zones
indicates an impending actual collision, and the affected robot
is stopped until the problem is resolved. We demonstrate and
experimentally evaluate the concept in a prototype industrial
workcell augmented with stereo and range cameras.

I. INTRODUCTION

Current robotic manufacturing practices require that peo-
ple be completely separated from active robots, which is
typically achieved using fences or similar physical barriers.
Since industrial robots can be large, fast-moving, and carry
heavy or hazardous parts, a collision with a person could
result in severe bodily injury or death.

While separation between robots and people ensures
safety, the practice is inefficient for several reasons. Work-
cells may occupy large amounts of floor space due to the
extensive workspace of the robot, even if only a small
portion of that workspace is actually used. Any time material
needs to be brought into or removed from the workcell, the
robot must be halted while a person enters to deliver or
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retrieve the material. Perhaps most importantly, human/robot
separation precludes activities involving robots and people
working cooperatively. These limitations result in manu-
facturing processes that require more space, more robots,
and more time than would be needed if robots and people
could work together safely. Enabling robots and people to
work safely in close proximity can increase the efficiency of
robotic workcells. For example, if a worker needs to restock
materials in a workcell, a robot could continue working
in another part of the workcell without interruption. We
envision a workcell where there is no need for safety fences.

This paper presents a sensor-based approach for ensuring
the safety of people operating in close proximity of robots
(Figure 1) [2]–[4]. Our approach uses the real-time fusion of
multiple three dimensional (3D) imaging sensors to create a
volumetric evidence grid representation of the space within
the workcell [12], [13]. The occupied space is segmented into
regions corresponding to background, robots, and people.
Surrounding each robot is an adaptive danger zone that
is based on the robot’s position and trajectory. Similarly,
an adaptive safety zone surrounds each person and follows
them as they move about the workcell. This safety zone is
“inflated” to be larger than the person to envelop them even
when they are in motion. To ensure safety, regions that cannot
be observed due to occlusion are also surrounded by safety
zones. A danger and safety zone intersecting indicates that a
robot and a person are too close and that a collision may be
imminent. In such cases, the robot stops, or slows down, until
the violation is cleared, for example by the person moving
away.

Sensor-based safety in robotic workcells presents a num-
ber of challenges. Occlusions from equipment as well as



moving robots and people can prevent sensors from fully
perceiving the space. The environments are complex and
dynamic, and may contain previously unseen objects. Sen-
sors must be carefully calibrated and synchronized to allow
them to work together effectively. And, most importantly,
the system must be extremely reliable, since a mistake can
result in injury or death. The primary contributions of this
paper are the development of an approach to sensor fusion
that addresses these challenges and the implementation and
evaluation of the complete safety system in a prototype
industrial workcell.

II. RELATED WORK

The safe interaction between humans and robots has been
studied extensively since the early days of robotics [8], [10],
[11], [15], [16]. Existing methods can be broadly classified
into post-collision and pre-collision approaches [8]. Post-
collision methods detect a collision as it occurs, and attempt
to minimize the resulting damage. Methods in this category
include detecting collisions through force and torque sensors
on the robot [10], limiting forces through active or passive
compliance [16], limiting the joint robot velocity so that the
damage from a collision is acceptable [8], and cushioning
the blow using padding on the robot. None of these methods
actually prevent a collision, which reduces their usefulness in
safety systems. Pre-collision approaches attempt to prevent
collisions by detecting them in advance. These methods
include proximity sensors either mounted on the robot [11]
or in the environment [18].

Independently of robot safety applications, the problem of
detecting and tracking people has been extensively studied
in the computer vision community [5], [6], [14], [19],
[20]. Vision-based methods using cameras work reasonably
when people are well-separated, minimally occluded, and
in neutral poses [5]. Pose estimation methods can address
person detection when people are bending over or reaching
out [6], [20]. These methods are not yet reliable enough for
robot safety systems. Three-dimensional sensing can detect
people in arbitrary poses, and the recently introduced Kinect
system has proven to be fairly reliable for human pose
estimation [19].

Most of the aforementioned methods have yet to be widely
adopted by industry. Industrial robots usually achieve safety
through separation, either through physical barriers (e.g.,
fences) or virtual barriers (e.g., laser-based light curtains).
Advances in robotic controllers have enabled fine-grained
programming of static safety regions, allowing closer human-
robot interaction [1], [7]. The recently introduced SafetyEye
system uses stereo vision to detect moving objects inside a
safety region, reducing the need for fencing [18].

Our approach is most similar to the SafetyEye system,
but is unique in several ways. We combine multiple sen-
sors, which addresses the problem of occlusions; we utilize
different modalities, which reduces sensitivity to limitations
of a particular sensing modality; we explicitly model the
background and the robot, which enables detection of people
even in changing environments; and we construct dynamic

danger zones based on the robots’ position, trajectory, and
capabilities, which provides a more precise boundary of the
danger zone.

III. SENSOR FUSION FOR HUMAN SAFETY

In order for people to work safely in the proximity of
industrial robots, their positions within the workcell must be
constantly monitored, regardless of what they are wearing
or doing. Full-field, 3D sensors, such as range cameras or
stereo vision systems, are well-suited for detecting people
in 3D space. Our approach employs multiple 3D sensors
of different modalities placed strategically throughout the
workcell. The sensors must be intrinsically calibrated so
that the 3D data is geometrically accurate and extrinsically
calibrated so that measurements from each sensor can be
referenced in a single coordinate system.

Our safety monitoring system begins by converting the
data from each sensor into a probabilistic 3D evidence
grid which represents occupied, unoccupied, and unknown
regions [12]. The individual evidence grids from each sensor
are fused together into a single evidence grid. Prior to
workcell operations, with no people present and the robot
in a known position, a fused evidence grid is generated and
used to estimate a background model [4]. During operations,
the robot’s geometric model and kinematic parameters are
used to build a posable, voxel-based robot model, which
enables the system to remove the robot from the foreground.1

Any remaining occupied foreground voxels are clustered
into blobs, and blobs of sufficient size are considered to be
potential people. Using the robot’s known joint positions and
velocities, which are assumed to be available, the robot is
surrounded by a danger zone, which represents the maximum
distance the robot can travel within one sensing cycle, plus
the robot’s stopping distance [3]. A somewhat larger warn-
ing zone provides additional security. Similarly, the volume
representing each person in the workcell is expanded into a
region called a safety zone, which is the maximum distance
the person can move within a sensing cycle. If any part of
a person’s safety zone volume intersects with the robot’s
danger (warning) zone, the robot will be commanded to halt
(slow) its motion. This enforced restriction on the robot’s
motion stays in effect until the safety violation is cleared
when the person moves away. The next subsections describe
each part of the system in more detail.

A. Sensors and Sensor Placement

Our system can be used with data from an arbitrary num-
ber and type of 3D imaging sensors. Our testbed uses stereo
cameras and range cameras, each of which has complemen-
tary advantages and disadvantages.2 Stereo sensors have the
advantage that a variety of cameras, baselines, and lenses can
be configured to achieve resolution and range accuracy as

1For simplicity, we describe the approach using a single robot. The exten-
sion to multiple robots, which we have also implemented, is straightforward.

2Other 3D imaging systems, such as structured light cameras or the Kinect
sensor, could also be employed, with minimal additions to the system needed
to convert their output into an evidence grid.
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Fig. 2: Range data from range cameras (a) and stereo vision systems
(b) is first converted into point clouds (c) and then into probabilistic
evidence grids (d), which are then fused together.

needed for a given application. The sensing range is limited
mainly by the acceptable level of range uncertainty, which
increases quadratically with distance. Stereo requires good
illumination and provides accurate range only in regions
with sufficient texture. Repeated patterns can induce range
estimation errors as well.

Range cameras (also known as flash lidars) are less sen-
sitive to ambient light, since they are active sensors and use
their own modulated infrared (IR) illumination. The cameras
can measure range on featureless surfaces as well. On the
downside, range sensors are often slower than stereo cameras
and have difficulty imaging highly reflective or IR-absorbent
surfaces because either no energy is returned or the detector
is saturated. The sensors can also interfere with one another
because stray returns from the IR signals of other sensors
can cause spurious range measurements. Finally, like other
active range sensors, range cameras suffer from the “mixed
pixel” effect, which occurs when a single pixel images
two surfaces located at different ranges (typically at object
boundaries). These mixed pixels translate into phantom 3D
points that appear where no surface actually exists. In our
implementation, explicit mixed-pixel filtering and redundant
sensors mitigate this problem.

To fully perceive a workcell, sensors must be placed at var-
ious locations around the space. The best sensor placement
depends on the geometry of the environment, the number
of sensors, their capabilities, and the task. Intelligent sensor
placement is important, since regions that are unobserved
due to occlusion or being outside every sensor’s field of view
could potentially contain a person. Sensors with overlapping
fields of view help reduce the possibility of occlusion. We
developed a simulation tool to quickly evaluate the quality
of a proposed sensor placement. The tool allows placement
and configuration of an arbitrary number of sensors and
then casts rays – according to the sensor geometry – into
a volumetric voxel grid, recording the number of sensors
that observe each voxel. In practice, the intuitive notion of
placing sensors high in the corners, pointing downwards, and
oriented orthogonally or with opposing fields of view gives
the best coverage and redundancy.

B. Sensor Calibration

Each sensor must be intrinsically calibrated, and the col-
lective sensors must be extrinsically calibrated with respect
to the workcell’s coordinate system. In our implementation,

Fig. 3: A custom-built calibration cube is used to estimate the
extrinsic parameters of the sensors.

we use the factory calibration for the the sensors’ intrinsic
parameters. For extrinsic calibration, we estimate the relative
pose between sensors using a custom-built calibration cube
with a regular pattern on each face (Figure 3). During
calibration, the cube is placed so that pairs of sensors can
see at least one common face. Fiducials mounted on the floor
are used to estimate the pose of the sensor network in the
workcell’s coordinate system.

In addition, the data acquisition of all sensors must be syn-
chronized in order to fuse the data successfully. Without such
synchronization, fast-moving objects would be misaligned
between sensors, causing blurring when the data is fused.
We have developed software and hardware approaches to
improve overall sensor synchronization.

C. Evidence Grid Data Fusion

At each time step, data from each sensor is encoded
into a 3D evidence grid (with a cell size of 10cm3) and
combined with the evidence grids obtained at that time
step from the other sensors (Figure 4). The fused evidence
grid helps attenuate sensor noise by combining information
and facilitates reasoning about the effects of occlusions that
block a sensor’s field of view, since any area unseen by the
sensors could potentially contain a hidden person. The range
measurements from a given sensor are first transformed into
a point cloud using the sensor’s intrinsic parameters. The
details of this process are sensor-dependent, but are either
well-known (for stereo vision) or straightforward (for range
cameras). Next, the points in the point cloud are added to
a 3D evidence grid [12]. The space within the workcell is
discretized into a fixed-sized 3D grid of voxels (10cm3 in
our implementation). Each voxel stores the log-likelihood of
the probability that it is occupied. Cells are initialized to 0.5
probability, which represents the “unknown” state. Points are
added to the evidence grid by tracing a ray from the sensor’s
center of projection through the workcell, applying a sensor-
specific evidence model along the line. See [2] for details.

The individual evidence grids are fused together into a
single, unified grid that extends over the entire volume of
the workcell. Since each voxel stores the log-likelihood
probability, the evidence in the grids can be combined simply
by adding voxel values [12]. Evidence of occupancy from
one sensor will strengthen evidence of occupancy from a
second sensor (the same holds for unoccupancy). If one
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Fig. 4: A 2D illustration of the process of converting measurements
into evidence grids. (a) The data points (red dots) are converted into
voxels (yellow squares); (b) The resulting evidence grid, where the
darker the square, the more likely that it is occupied (gray regions
are unknown); (c) The fusion of multiple evidence grids reinforces
the presence of obstacles (darkest regions).

sensor reports a value of occupancy but another reports a
value of unoccupancy, the two values will tend to cancel out
and shift the cell towards the unknown value since the data
is otherwise inconsistent. For a given sensor, any cells that
are occluded will remain set to the “unknown” state for that
sensor and will have no effect on cells fused from other
sensors. These evidence grids are re-created at each new
timestep from new sensor data. Data from previous timesteps
is not retained in the grids. For efficiency, we have added the
option to fuse grids hierarchically and in parallel, first fusing
groups of evidence grids, then fusing groups of groups, etc.

D. Background Subtraction

Our system uses a background model to represent aspects
of the environment that are stationary and will not (or
cannot) move (Figure 5(b)). The background model is created
automatically upon initialization, the only requirement being
that moving objects (e.g., people) must not be present.
During operations, at each time step, the background model

(a) (b)

(c) (d)

Fig. 5: The process of separating background from foreground. (a)
The initially static background of the workcell containing objects
that are expected to be immovable. (b) The red voxels show the
background model learned by the system. (c) The full evidence
grid after another box and a mannequin have been added. (d) The
foreground evidence grid created by subtracting the background
model from the full grid.

is subtracted from the fused evidence grid to determine the
foreground voxels (Figure 5(d)). The foreground consists of
all objects that entered the workspace since the background
model was initialized. The space associated with the robot
is treated separately, as described in the next subsection.

The most straightforward definition of background would
be to use voxels in the evidence grid with sufficient evidence
of being occupied. For safety purposes, however, we must
also consider unknown regions. Some unobserved regions
are perfectly safe. For example, the inside of a box cannot
be observed by the sensors, yet it is unlikely that a person
is hiding inside the box and will suddenly burst out and
collide with a nearby robot. On the other hand, the region
behind a screen might also be unobservable, but in this
case, person could easily be standing within this occluded
space. To address this problem, we developed the concept of
accessibility analysis [4]. A region is considered accessible
if a path exists between a known accessible region and an
unknown region without passing through an occupied region.
A closed box would be inaccessible, so the interior voxels
would be considered part of the background. However, the
area behind a screen would be considered accessible, and
therefore part of the foreground, since one could access the
occluded region by going around the side of the screen.
Details of the approach can be found in [4].

E. Robot Modeling and Danger Zone Generation

The robot is not part of either the background or fore-
ground – it is not static, but it also should not be treated as
an unexpected object. In particular, voxels associated with
the robot must be removed from the foreground; otherwise,
“phantom” foreground objects would appear co-located with
the robot, causing the robot to stop due to a false alarm.

Each robot is explicitly modeled using a voxel-based
approximation. Since robots are articulated, each rigid part
is modeled separately, which allows the model to be updated
in real time based on the pose of the robot. The modeling
process is performed once at initialization. The CAD models
of each of the robot’s parts are converted into triangular
surface meshes. Next, we use a modified form of spatial
occupancy enumeration via divide and conquer to convert
the meshes into voxel grids [9]. In particular, we recursively
subdivide each triangle into four using the midpoints of each
edge until the triangle edge lengths are smaller than the target
voxel grid cell size. In this way, a binary occupancy grid of
the model can be computed directly from the vertices of the
up-sampled triangle mesh. For improved model accuracy, we
use a voxel grid with twice the resolution of the evidence
grids. Assuming the input mesh is watertight, the resulting
occupancy grid will be watertight (in a 6-connected sense),
and we use a simple flood-fill algorithm to mark any interior
voxels as occupied. The corners of the occupied voxels are
then used to form point clouds for each robot part.

At runtime, the point clouds for each part are positioned
according to the robot’s pose, and a new, combined occu-
pancy grid is generated representing the robot in its current
position. This combined occupancy grid is overlaid with the



current fused evidence grid to subtract out voxels that are
attributed to the robot. The same process is applied to tools or
other payload objects that a robot may currently be holding.

The combined point-cloud model is also used for gen-
erating the danger zone surrounding the robot. At a given
instant, the danger zone encompasses the region that the
robot could occupy at any time in the next ∆t seconds.
The choice of ∆t depends on the sensor framerate, latency
of the sensing system, and time required to halt the robot
(in our case, on the order of 400 ms, total). While a more
accurate danger zone can be achieved using the robot’s
precise trajectory, such information is often difficult to obtain
from commercial robots. Instead, we assume only that the
current joint positions and velocities are provided, along with
fixed accelerations.

We have developed an algorithm for estimating the danger
zone for a multi-jointed manipulator in real time (Figure 6).
The method, briefly summarized here (see [3] for details),
can be applied to any robot with no cyclic kinematic chains.
Given the current position and velocity and maximum accel-
eration of each joint, the range of possible joint positions that
can be achieved in ∆t seconds can be determined in closed
form. Starting with the free end of each kinematic chain,
the algorithm builds a sequence of volumetric “reachability”
grids that store the minimum time for any part of the
manipulator to reach each grid cell. A point-cloud model
of the last link is swept through the range of possible values
of the last joint, creating a reachability grid for that link.
This grid is then converted into a point cloud (augmented
with reachability times) and rigidly attached to the model of
the previous link. The sweeping process is repeated down
the kinematic chain to the robot’s base, at which point the
combined reachability grid represents the desired danger
zone. The same process can be used to create a slightly larger
warning zone as well.

Note that the dynamic danger zone is typically asymmet-
ric, extending further in the direction the robot is currently
moving. This means that it may be safe for a person to
move immediately behind a robot even if it is not safe to
be immediately in front.

Fig. 6: Robot motion prediction. Joint positions and velocities are
used to dynamically and efficiently predict the region the robot
could occupy during a given time interval. The color of the voxel
cloud indicates the minimum time for the arm to reach a given
position, with red being the shortest and yellow, the longest.

F. Person Detection and Safety Zone Generation

Ideally, the safety zone surrounding a person would be
computed in a manner analogous to the robot danger zone.
However, people are not as predictable as robots, and esti-
mating the detailed body pose of a person is a challenging
problem (although [19] shows promising results). Instead,
we create a safety zone simply by expanding the volume
occupied by each potential person in the scene.

The system considers any connected group of foreground
voxels of sufficient size to be a person. While it would
be possible to explicitly recognize people, it is safer to
conservatively assume that any large foreground object is
a person, rather than to risk a missed detection and potential
injury. Our approach can detect potential people regardless
of their body pose or the direction they are facing.

The first step is to find all the connected components of the
foreground voxels. Components with fewer than a threshold
Np voxels (10, in our case) are too small to be people, more
likely to be noise, and are therefore discarded. The remaining
components get surrounded by safety zones. Each safety
zone represents space where a person could possibly move in
∆t seconds, in any direction, where the maximum velocity of
the movement is determined from existing safety standards,
such as the R15.06 robotic industrial specification [17]. The
safety zones are enlarged using morphological dilation to
compensate for a person’s potential movements in the space.

G. Collision Detection

The danger and warning zones of the robot and the safety
zones of the people are updated at each time step as the robot
operates and people move about the workcell. The zones are
checked for collisions. If a safety and warning zone intersect,
the robot is slowed down and the people in the workcell are
alerted with a warning. If a safety and danger zone intersect,
the robot is halted and a safety violation alert is sounded.
When the person causing the warning or violation moves
out of the way, the alarm ceases, and the robot resumes
its normal operation. For handling multiple robots, we keep
track of which warning/danger zone belongs to which robot,
so that the system can slow/halt the correct robot and leave
the others to continue working.

IV. EXPERIMENTAL VALIDATION

We implemented and evaluated the proposed approach
using a simplified industrial workcell testbed. The testbed
consists of an aluminum cross-bar sensor frame – 4 m on a
side and 2 m tall (Figure 5) equipped with two Swissranger
SR4000s range cameras3 and two Tyzx G3 EVS stereo cam-
eras4. The sensors were mounted in the four upper corners
of the frame to provide the widest possible overlapping
coverage of the area. The testbed was equipped with two
2.67 GHz Intel Core i7 920 quad-core workstations running
64-bit Ubuntu Linux 10.04 LTS. All computers and sensors
were connected through a wired gigabit Ethernet network.

3http://www.mesa-imaging.ch/
4http://www.tyzx.com/
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Fig. 7: (a) Percentage of missed pixels for each clothing type and sensor type, (b) Percentage of missed pixels for each action and sensor
type. Error bars are one standard deviation from the mean.

Using this testbed workcell, we conducted experiments to
characterize both the individual sensors and our overall safety
monitoring system.

A. Individual Sensor Experiments

The goal of the first set of experiments was to determine
how well each sensor type can detect people under different
conditions. If a sensor cannot accurately detect a person
under certain conditions, the system could potentially fail
to detect the person, leading to an unsafe situation. We
examined people performing a variety of actions, oriented in
different directions, and wearing different types of clothing.
For each type of sensor (stereo and range camera), we
tested seven actions (crouching, jumping jacks, bending to
touch toes, walking across workcell, running across workcell,
reaching for an object, and lying down), two orientations
(facing and perpendicular to the sensor), and three types
of clothing (camouflage, Navy staff uniform (khaki top and
black pants), and all black). We used the same person for
each trial, and he performed the actions the same way each
time, to the extent possible.

The images collected were then manually labeled to
highlight the person. An analysis program then tallied the
number of valid range measurements associated with each
labeled pixel, both for the interior and perimeter of each
person. Although it may be that some data was labeled as
valid, but had the wrong range value, our experience with the
sensors indicates that, except for mixed pixel effects along
the perimeter, this is not much of a problem, in practice.

Figure 7 shows the results for just the perimeter (edge)
pixels, just the interior pixels, and all body pixels. Figure 7a
presents the data as a function of clothing type (with all
actions aggregated), while Figure 7b presents the data as
a function of action (with all clothing aggregated). The
results indicate that the range camera (Swissranger) is fairly
insensitive to clothing type, although it has fairly large
variance. On the other hand, the stereo camera (Tyzx) is
extremely sensitive to clothing differences. For camouflage
clothing (Figure 8a), stereo actually performs significantly
better than the range camera (Figure 8c), while for black
clothing (Figure 8b) it performs much worse. The results also
show that the performance along the perimeter is similar for
both sensors, regardless of clothing type.

Analyzing the data by action (Figure 7b), we see that, for
the range camera, slower motions (bend, crouch, reach, lie)
are significantly better than faster motions (jump, run, walk),
with running being by far the worst. This is not surprising, as
the range camera has a relatively long exposure time, which
exacerbates motion blur, which in turn adversely affects the
performance of the range camera (Figure 8c). For the stereo,
on the other hand, the exposure time is quite short, and so
motion blur does not play as big a role (Figure 8a). Thus,
for stereo, all the actions have similar rates of missed pixels
(the faster motions are a bit worse, but not significantly so).

To more fully understand the distribution of missed pixels,
we investigated the distribution of holes (connected clusters
of missed pixels) in order to distinguish missing pixels that
are primarily near the perimeter (e.g., missing heads or
hands) from holes in the interior (e.g., caused by insufficient
texture). Specifically, we calculated both the sizes of the
holes and their distances from the perimeter of the body. The
results (space precludes including the graphs) show that, for
both sensor types, most of the holes are fairly small (1-3
pixels), although the tails of the distribution are quite large,
with about 0.5% of the holes being larger than a third of the
body size (see, for instance, Figure 8c). The range camera
has over 90% of the holes touching the perimeter, and none
more than 5 pixels from the perimeter, while the stereo has
only 70% of the holes touching the perimeter, and 8% of the
holes are more than 5 pixels from the edge, including 2.5%
that are more than 15 pixels away. Such placement of holes is
actually somewhat safer than those on or near the perimeter,
since safety violations occur when the most distal part of

(a) (b) (c)

Fig. 8: Missed pixels (red) overlaid on image data for the jump
action. (a) Camouflage and stereo (Tyzx), (b) Black and stereo
(Tyzx), and (c) range camera (Swissranger).
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Fig. 9: Results of the fusion experiments. Percentage of false positives (a) and false negatives (b) as a function of distance along the
track. Solid lines are the rates for the static experiments. Blue squares are the rates for the moving experiments.

the person intersects with a robot’s danger zone. Interior
holes will likely be surrounded by other parts that will make
contact first, making interior holes less of a concern.

B. Fusion Experiments

The goal of the second set of experiments was to evaluate
the quality of the fused evidence grid generated by multiple
sensors. We tested the performance of the fusion algorithm
in both static and moving cases. The experimental apparatus
consisted of a box placed on a cart that could be pulled
by an iRobot ATRV Jr.5 mobile robot. A dedicated tracking
system was developed that used a SICK LMS 2196 planar
LIDAR to estimate the position of the box. We chose to use a
box target for these experiments because ground truth could
easily be generated by rendering a simulated box in a virtual
environment that could be voxelized and compared against
the voxels returned by the sensors (Figure 10).

In the first experiment, ten sets of data were recorded
where the box and cart were placed in a static position for 10
seconds. The cart and box were then moved 30 cm down the
path. In the second experiment, the robot was commanded
to pull the cart at 30 cm/s.

The results of both the static and the moving experiments
are shown in Figure 9. Figure 9a presents the false positive
results (perceiving voxels where there is, in fact, no box)
and Figure 9b presents the false negative results (missing
voxels that should be observed). We note that, due to discrete

5http://www.irobot.com
6http://www.sick.com

(a) (b)

Fig. 10: (a) Ideal model box voxels in red generated in virtual
environment. (b) Live sensor box voxels in blue projected into the
virtual environment.

voxelization and errors in our position estimates, the “ground
truth” may be off by a voxel. Thus, to calculate the numbers
of false positives and false negatives, we used a distance-
weighted exponential function to assign accuracy scores for
both false positives and false negatives as follows:

Dist(v,G) = min(d(v, v′)∀v′ ∈ G)

Score(v,G) = eln(0.95)∗Dist(v,G)4

Where the Score function assigns a voxel a real value
between 0 and 1, v is a voxel from a binary grid that is
filled, and G is the set of all voxels. The scoring function
chosen treats being one voxel away as 95% as good as being
the same voxel, and drops off very rapidly after that.

To find the total detection rate, we iterate through the grid
and calculate a score for each voxel detected and divide that
by the maximum score possible, as follows:

Acc(G1 → G2) =

∑
v∈G1

Score(v,G2)

|G1|
FalsePositiveRate = 1−Acc(Gsensor → Gmodel)

FalseNegativeRate = 1−Acc(Gmodel → Gsensor)

False positives are obtained by comparing each voxel in the
sensor grid against the nearest matching voxel in the model
grid. False negatives are obtained by comparing each voxel
in the model grid against the sensor grid. Each value is
subtracted from one to obtain the failure rate.

As can be seen in Figure 9, the false positive and negative
rates are highest when the cart is at the beginning of the
track, since in that position, one side of the box cannot be
seen. As the box position changes along the track, the error
rates drop significantly until the entire box is in view and
then hovers between 5% and 10%. The effect of a moving
box can be seen as a slightly larger error, ranging from 5%
to 15% for the false positive calculations but staying in the
5% to 10% range for the false negative calculations.

It is important to note that the evidence grid that we used
in this experiment is only the base representation used by the
overall system. Thus, even if there are holes in the middle
or along the edges, they will likely be “filled in” by the



Fig. 11: Qualitative experiments demonstrating that the robot suc-
cessfully halted when the human’s safety region (green) intersected
with the robot’s danger region (red).

morphological operations that create the safety zones. Thus,
in our evaluations with real people, we have found that given
a reasonably-sized safety zone that takes into account RIA
standards for human motion [17], the humans can be fully
enclosed by the grid and thus protected at all times.

Finally, as illustrated in Figure 1(c) and Figure 11, we have
performed numerous qualitative experiments where we tested
the implementation by having different people walk about
normally in the workcell in the presence of a robot. With
our system running at approximately 10 Hz, we observed
that the safety region successfully enveloped the people at
all times while they were in the environment.

V. SUMMARY AND FUTURE WORK

This paper presented a real-time, sensor-based system that
is intended to ensure the safety of people operating in close
proximity to robots in industrial workcells. Our approach
fuses data from multiple 3D sensors, of different modalities,
into a volumetric evidence grid that is used to identify the
locations of people and robots. Safety and danger zones
surround the people and robots, respectively, and are each
expanded to a size that will fully enclose them based on their
maximum speeds and the cycle time of the system. Intersec-
tions between these two zones signal a possible impending
collision, and the robots are commanded to slow and/or halt
their motions, as needed. We have fully implemented this
approach and have demonstrated its feasibility with a set of
controlled experiments.

Currently, our implementation assumes that all foreground
objects could potentially be people and extends safety re-
gions around all of them, as this is the most conservative
and safe option. For the future, we will seek to actively
discriminate between human and non-human objects as well
as to identify activities that the human is performing to
improve system efficiency.

We believe that this type of technology will have a
profound impact on how robots are integrated into factory
settings. We look forward to a future where robots and people
will work together, effectively and safely.
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