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Abstract— We address the problem of arranging a
meeting (or rendezvous) between two or more robots in
an unknown bounded topological environment, starting at
unknown locations, without any communication. The goal
is to rendezvous in minimum time such that the robots
can share resources for performing any global task. We
specifically consider a global exploration task executed by
two or more robots. Each robot explores the environment
simultaneously, for a specified time, then selects potential
rendezvous locations, where it expects to find other robots,
and visits them. We propose a ranking criterion for selecting
the order in which potential rendezvous locations will be
visited. This ranking criterion associates a cost for visiting a
rendezvous location and gives an expected reward of finding
other agents. We evaluate the time taken to rendezvous by
varying a set of conditions including: world size, number
of robots, starting location of each robot and the presence
of sensor noise. We present simulation results to quantify
the effect of the aforementioned factors on the rendezvous time.

Keywords — exploration, rendezvous, multi-robot coordina-
tion, random environments, sensor noise.

I. INTRODUCTION

This paper addresses algorithmic improvements to strate-
gies for multi-robot rendezvous, and looks at extending
new and existing strategies to larger number of robots than
previously considered in [1]. Rendezvous is the problem of
getting two or more agents to find and meet each other in
(possibly unknown) environment. It is a problem class faced
every day by biological organisms looking for a mate, people
catching the bus, and perhaps even undercover secret agents.

In our work, we consider rendezvous in a topological envi-
ronment in a worst-case scenario, where no communication
is possible between the agents until they physically come
together. This can arise in practice if the environment is
very large relative to the communication bound, if a large
number of communication channels are available or if there
are reasons for the team to maintain radio silence.

We specifically analyze the rendezvous problem in the
context of multi-robot exploration. The multi-robot explo-
ration task requires mobile robots to uniquely cover a given
region of interest and also meet as quickly as possible
to share their respective information. This process involves
continuous communication and planning between the agents
for coordination [2]. In contrast, we consider the case where
the robots do not communicate during exploration and at-
tempt to meet at regular intervals to find and exchange
information with each other. The meeting attempts are made
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by visiting potential rendezvous locations which are selected
during exploration. These locations are visited based on
a rendezvous strategy and a ranking criterion. The ren-
dezvous strategy gives the probability of visiting a potential
rendezvous location and the ranking criterion provides an
ordering relation for visiting them. In this work, we assume
that potential rendezvous locations can be selected based on
some sensor property which we refer to as distinctiveness.

The main contributions in this paper are: combining
exploration and rendezvous, evaluating the effect of initial
distance between the mobile agents on the time to explore
and rendezvous, analyzing the effect of noisy sensors on
the rendezvous time and proposing generalized algorithms
which are applicable to any number of agents. In addition, we
postulate a hybrid ranking criterion based on our empirical
observations. The following sections give an overview of:
related work for multi-robot rendezvous problem in realistic
and graph-like environments in Section II, our proposed
approach is described in Section III along with a summary
of our algorithms and the simulation results are presented in
Section IV.

II. RELATED WORK

The rendezvous problem was first introduced as a search
problem in game theory and is known for its use in the
mobile hider game, princess and monster [3]. Since then,
it has been extensively studied based on two world models:
graphs and simple geometric figures (such as lines, circles
and polygons) [4]. A survey of results for mobile agent
rendezvous is given in [5]. The theoretical results from these
abstract world models have been extended to real-world
environments with modifications to the rendezvous definition
itself. We focus on the work where rendezvous is applied to
the global task of exploration.

The task of scheduling a meeting between robots that are
in constant communication has been addressed by several
authors [6], [7], [8] in context of multi-robot exploration.
This problem is quite different from our present work since
communication makes many synchronization issues straight-
forward. Also, the distance constraints on communication
range requires the agents to be in the vicinity of each other
which makes exploration less efficient. An alternative to
overcome this drawback is to divide the multi-robot team into
small groups and start exploration from different locations.
These small groups communicate via a central agent to share
maps and distribute their work. This specific approach was
proposed in [9]. Another hierarchical approach was intro-
duced in [10] which considers the problem of rendezvous
after momentarily splitting up. Specifically, the robots in the



team are assigned roles for exploring and relaying infor-
mation. The explorer robots repeatedly split from the relay
robots for exploration. The relay robots share information
with a central agent and try to rendezvous with the explorer
by estimating its current location using topological cues. This
short-range rendezvous problem without any communication
is similar to our present work with the difference being that
in our work, the agents begin exploration from unknown
locations and they do not have an estimate of the locations
of other agents.

The variant of the rendezvous problem where the robots
initially start exploring from different unknown locations and
communicate only by physically meeting each other is rarely
addressed in robotics applications, yet it occurs often be-
tween biological agents. One particular work which considers
this problem is given in [11]. Our work is motivated by their
rendezvous strategies which are extended for more than two
robots. In addition, we also introduce a cost efficient ranking
criteria for combining exploration with rendezvous.

This paper only deals with the problem of rendezvous
in abstract graph worlds. However, the same rendezvous
strategies and ranking criteria can be applied to a real world
environment by extracting a graph from the explored map.
This problem in particular, is addressed in our previous work
[1] where we consider the practical issues such as: mobile
robot navigation, mapping, graph extraction and measuring
distinctiveness of the world structure for obtaining potential
rendezvous locations.

III. PROPOSED APPROACH

Our goal is to combine exploration and rendezvous for
multiple robots in abstract simulated environments of varying
sizes. The robots are initially distributed in the environment
at random locations restricted by initial distance criterion to
avoid overlap of the explored regions. The robots then begin
exploration from these locations and make a rendezvous
attempt at specified intervals. The details of random envi-
ronment generation, exploration along with initial distance
criterion and rendezvous are given in the following sections.

A. Random Environment Generation

Since experimental results on ensembles of graphs can
be dependent on the graph family, our experimental data is
based on two distinctly different families of planar graphs as
shown in Fig. 1. They are:
• Grid-based world
• Triangulation-based world
The triangulation-based world is constructed by starting

with triangulation of a set of random points and removing
random edges while preserving the connectivity of the graph.
In particular, a set of N random points are generated ensuring
that no two points are closer than a minimum distance.
This set of random points is used as input to a delaunay
triangulation [12] algorithm, the resulting triangulation is
interpreted as a graph where the random points (triangle
vertices) are the nodes of the graph and the triangle sides
are used as the graph edges. Each graph edge is assigned

(a) Grid-based world (b) Triangulation-based world

Fig. 1. Random Environments

a random weight, and a minimum spanning tree (MST)
is calculated based on these weights. The edges are then
removed repeatedly from the graph as long as they are not a
part of the MST, thus ensuring both the connectivity and the
randomness of the resulting structure as shown in Fig. 1(b).

The same procedure is used for grid-based world gen-
eration with only difference that we initially begin with
a complete grid structure for a given number of nodes
which are separated by a fixed edge length. These edges are
then removed iteratively while satisfying connectivity and
randomness in the graph, as described above. The random
grid thus obtained, models a complete road network with
some fractions of the roads missing, as has been previously
referred to “Montreal graph” [13]. An example of a grid-
based world with 400 nodes is presented in Fig. 1(a).

B. Rendezvous

The primary challenge in a multi-robot rendezvous prob-
lem is to define the rendezvous process itself. In our current
work, a successful rendezvous is defined as the state when
a transitive rendezvous relation is established between the
agents. Consider three robots ri, rj and rk, if ri has met rj at
time T1 and rj has met rk at time T2 then all the information
collected by agent rj from agent ri is shared with rk at time
T2 thus constituting the rendezvous transitive property. In
addition, we assume that the agent rj can coordinate with
agent ri to share any new information received from agent
rk, after its first successful rendezvous. Therefore, based on
the aforementioned property we consider all the robots to
have a successful rendezvous at time T2.

There are two possible ways the robots can coordinate
with each other after a successful rendezvous: (a) either they
can move together as a pack or (b) they can disperse in
unexplored regions and meet at a known location based on a
scheduling process similar to task partitioning. These cases
are beyond the scope of our current subject of interest and
we do not consider them in our present work.

In order to keep track of multi-robot rendezvous at dif-
ferent intervals we define a rendezvous matrix, Γ which
is similar to an adjacency matrix in graph theory. It is a
symmetric matrix of size nxn where n is the number of
robots. The rows and columns of the matrix correspond to
the rendezvous outcome between the agents. For example, as
shown in the matrix Γ, the row ri represents the rendezvous



outcome of agent ri with respect to the agents r1 through
rn. The elements of this matrix are binary with value 1 rep-
resenting a successful rendezvous and value 0 representing
no rendezvous. The rendezvous transitivity property is then
evaluated to be true if Γn is equal to a non-zero matrix.
A formal multi-robot rendezvous process is presented in
Algorithm 1.

Γ =



r1 r2 · · · ri · · · rn

r1 1 0 · · · 0 · · · 0
r2 0 1 · · · 0 · · · 0
...

...
...

. . .
... · · ·

...
ri 0 0 · · · 1 · · · 0
...

...
... · · ·

...
. . .

...
rn 0 0 · · · 0 · · · 1



• At the rendezvous time Tt the robots attempt to meet.
• Each robot ri selects a location prik to visit on this at-

tempt, thus defining a sequence of attempted rendezvous
locations pritk .

• Each robot travels to its appointed location pritk and, if
pritk = p

rjt
k , that is, robots ri and rj are in the same

place then we mark the entry (ri, rj) and (rj , ri) in Γ
matrix as 1.

• If the elements of the matrix Γn are all of non-zero value
then the multi-robot rendezvous process is considered
to be successful.

• In the event of a failed rendezvous, the robots continue
their background activity until the next rendezvous
interval.

Algorithm 1: Multi-robot rendezvous process

As mentioned in Section I, we implement three rendezvous
strategies for more than two robots, namely asymmetric,
symmetric and exponential. The first two strategies corre-
spond to robot roles during the rendezvous period. In the
asymmetric strategy, one of the robots is stationary at a node
while the other robots are allowed to move. These roles are
pre-determined before the start of exploration or rendezvous
processes. In the symmetric strategy all robots move and
hence do not require any pre-arranged role assignments. In
the exponential strategy, robots select possible rendezvous
locations at random, weighted by an exponentially decreasing
function of distinctiveness.

The rendezvous strategies are combined with ranking crite-
ria that provide an order for visiting the potential rendezvous
locations. We propose three ranking criteria which are based
on the distinctiveness measure of the location, linear-distance
and sigmoid-distance from current location to the potential
rendezvous point. These rendezvous strategies and ranking
criteria are derived from our previous work [1].

The distinctiveness measure considers the uniqueness of
the potential rendezvous locations for ranking. This measure
is a function of individual robot sensors and may vary due to
sensor noise. Examples of distinctiveness measure for indoor

environment are: hallway intersections or entrances and exits
of buildings. In our model, we simulate the effect of natural
variability of the environment, by using random values in the
range [1, N ] for distinctiveness D(pk) of any location pk.

The distinctiveness-based ranking does not account for the
amount of work required to visit a rendezvous location. This
implies that in case of a failed rendezvous attempt at far
locations the robot will lose substantial resources. Hence,
we propose a cost-reward model which accounts for the
cost of making a rendezvous attempt against the reward
of the uniqueness of the location. The cost is measured in
terms of the node-to-node distance d(ck, pk) between the
robot’s current location ck and the potential rendezvous point
pk. We consider two variants of the cost function: linear-
distance and sigmoid-distance. The linear-distance weighted
distinctiveness, DL(pk) is given in Eq. 1.

DL(pk) =
D(pk)

d(ck, pk)
(1)

The sigmoid-distance weighted distinctiveness, DS(pk) is
given in Eq. 2. This is obtained by applying a sigmoid
function S to the distance measure i.e. S(d(ck, pk)). Intu-
itively, this ranking criterion gives larger weights to the closer
rendezvous locations and smaller weights to the farther ones.

DS(pk) =
D(pk)

S(d(ck, pk))
(2)

The pair-wise combination of the rendezvous strategies
with ranking criteria provides nine variants of our algorithm.
We test each of these variants with respect to the rendezvous
time and infer the best combination in the ideal and noisy
cases. These cases are discussed in the following section.

C. Noisy Sensors

The ideal-case for rendezvous, refers to the situation when
the agents have synchronized clocks and noise-free sensors
to meet precisely at desired time and location. In practical
scenarios, the clocks of the agents may not synchronize
which can cause variations in the start time for exploration
and rendezvous. We deal with this situation in real environ-
ments, by allowing a wait time δ at each potential rendezvous
location to compensate for small delays. The second con-
dition for ideal-case which assumes noise-free sensors, can
be easily violated in real environments when agents vary
in their position while measuring the distinctiveness of a
location. The distinctiveness measure is a function of the
environment structure and agent’s position, assuming noise-
free sensors. We remove these dependencies in our analysis
by using topological graph worlds and allowing rendezvous
to occur only on the nodes of the graphs.

In the situation when the sensors are noisy, the agents
may have a mismatch in the rank ordering of the rendezvous
locations and hence the visiting preferences. This factor
effects the rendezvous time for different ranking criteria
which we quantify in our analysis. We model the sensor noise
as a Gaussian function G and simulate it by applying this
function to the distinctiveness measure D(pk) of the potential



rendezvous location pk as given in Eq. 3. The distance
measure required for cost-reward model, is applied after
considering the noise function. In our experiments presented
in Section IV, we use σ = 3, as the variance of the Gaussian
function.

N(pk) = G(D(pk), σ) (3)

D. Exploration

Multi-robot exploration requires the robots to be initially
dispersed in the environment such that they uniquely cover
the given region of interest. In our work, we deploy the robots
based on an initial distance criterion according to which the
distances between the agents are selected as greater than or
equal to a fraction of the environment size. The agents are
unaware of the initial separation distance between them and
we use this criterion only to analyze its effect on different
rendezvous strategies.

We implement this criterion by randomly selecting a
location in the environment as the initial location of the first
robot and obtaining a set of points on the circumference
of a circle with radius equal to the required distance. A
random location is then picked from these locations and it
is considered as the initial location for the 2nd robot. This
process is repeated to obtain the initial locations for all the
remaining robots. An example of the initial dispersion of the
mobile agents on a grid-based world is shown in Fig. 2. It
must be noted that the initial distance refers to the euclidean
distance on the graph and does not require the node-to-node
distance information for this calculation.

Fig. 2. Initial robot locations: The smaller circles indicate the locations
of a particular robot and the rings around them represent the distance of
separation between them

The mobile agents begin at these locations and explore
the environment in bread-first order. The exploration is
performed for a fixed period and is followed by rendezvous
attempts within the explored regions of respective robots.
The regions explored by individual agents may not overlap,
resulting in unsuccessful rendezvous attempts. In this case,

the exploration is resumed from the same frontier node where
it was disrupted for rendezvous.

Our current implementation, allows rendezvous to occur
only on the nodes of the graph and not on the edges. Hence,
each graph node is considered as the potential rendezvous
location. In addition, we assume the agents move only over
the nodes without traversing the edges on the graph and thus
we do not deal with navigational issues such as obstacle
avoidance.

IV. EXPERIMENTAL RESULTS

This section presents a statistical analysis of the results
for multi-robot rendezvous algorithms. We specifically study
the effect of sensor noise, initial-distance between the agents,
environment size and number of robots, on the time taken
to rendezvous. The time taken to rendezvous is measured in
terms of the node-to-node distance for all the experiments.
The results for each of these cases is discussed below in
detail.

We first present a detailed comparison of three-robot ren-
dezvous outcomes for the ideal and noisy cases (in Figs. 3, 4
and 5) using a grid-based environment with 400 nodes. These
results are averaged over 9 different starting locations which
are split as 3 locations for each of the 3 initial separation
distances: small, medium and large (corresponding to 1/8, 1/4
and 1/2 the factor of the given environment size). Results for
larger number of robots follow essentially the same pattern
and are summarized subsequently in Fig. 8.

Fig. 3 gives an overview of the rendezvous strategies
and ranking criteria with respect to the total time taken to
rendezvous. It can be observed that asymmetric rendezvous
strategy, where one robot is stationary and all the other robots
are moving, is the best strategy with minimum time to ren-
dezvous in both ideal and noisy cases. In the ideal-case, the
sigmoid-distance weighted distinctiveness ranking performs
the best for all the rendezvous strategies which is followed by
distinctiveness-only and linear-distance weighted distinctive-
ness ranking. The case with noise clearly suggests that purely
distinctiveness based ranking performs worst when compared
to the linear and sigmoid distance based ranking. These two
trends seen in the ideal and noisy cases suggest that the cost-
reward model has better performance when there are noisy
sensors.

The results presented in the following sub-section are all
averaged over the rendezvous strategies in order to compare
the different ranking criteria. The variation in the total time
taken to rendezvous with respect to the total number of
combined rendezvous attempts made by all the robots is
presented in Fig. 4. It can be observed in the ideal-case,
that the number of attempts vary almost linearly with total
time taken to rendezvous. However, this pattern changes in
noisy case where the cost-reward model reduces the distance
traveled per rendezvous attempt. The noisy case also suggest
that linear-distance based ranking requires approximately
the same number of rendezvous attempts as the other two
ranking criteria but with much smaller distances.



(a) Ideal (b) Noisy

Fig. 3. Total distance traveled for different rendezvous strategies and ranking criteria

(a) Ideal (b) Noisy

Fig. 4. Number of rendezvous attempts and distance traveled for different ranking criteria

(a) Ideal (b) Noisy

Fig. 5. Total distance traveled to rendezvous for different ranking criteria as a function of initial distance between the agents



A comparison of the ranking criteria with respect to the
initial distance is presented in Fig. 5. It can be observed that
as the initial distance of separation increases, the rendezvous
time also increases in both ideal and noisy cases. In the
ideal-case with the large initial distance of separation (i.e.
(1/2)*environment size), the sigmoid-based ranking criteria
performs significantly better than the distinctiveness-based
measure since it ranks the closer landmarks higher than the
farther ones. However, in the noisy case the linear-distance
based ranking takes over sigmoid-based ranking.

A summary of the results with different environment sizes
and the time taken to rendezvous are presented in Fig. 6. In
this plot, the environment size is measured in-terms of the
number of nodes in the graph. These results were obtained
for three robots in the ideal-case. It can be observed that the
difference between the total distance traveled or time taken to
rendezvous gradually becomes significant as the size of the
environment increases. It can thus be concluded that as the
environment size increases, the cost-reward model performs
better when compared to the distinctiveness-based ranking.

Fig. 6. Total distance traveled or the time taken to rendezvous as a function
of environment size: Ideal case

The results discussed above clearly indicate the need of
the cost-reward model to speed-up the rendezvous process.
However, if the agents have noise-free sensors and have
explored the complete graph then the cost-reward model
is not useful since the agents can rendezvous at the most
distinctive node in one attempt only. In order to choose
between the different ranking criteria, we analyze the effect
of variation in the initial number of common nodes on
the total time to rendezvous. We allow the agents to only
explore initially until a desired number of common nodes are
achieved and then continue with combination of rendezvous
and exploration attempts.

We measured this variation for different initial-distance of
separation between three agents, in a grid-base environment
with 400 nodes and ideal sensors. These results are presented
in Fig. 7. When the environment is completely explored by

all the agents, the distinctiveness based ranking criterion per-
forms the best, as discussed above. However, when the num-
ber of common nodes decrease, the distinctiveness ranking is
less effective and the sigmoid-based ranking shows superior
performance. In our tests, this transition occurs when there
is roughly (5/8)th or less of the map is shared between the
robots. Hence, for an effective combination of rendezvous
and exploration, these results suggest an implementation of
cost-reward model for rendezvous until 50% of the environ-
ment is explored and then switch to distinctiveness based
ranking in case of unsuccessful rendezvous attempts.

Finally, we present the result for multi-robot (≥ 3)
rendezvous in ideal-case, over a grid-based environment with
400 nodes in Fig. 8. This plot illustrates the variation in
the time taken to rendezvous with respect to the number
of robots. It can be observed that as the number of robots
increase, the time taken for multi-robot rendezvous increases
for all the ranking criteria. However, the cost-reward based
ranking criteria (linear and sigmoid distance-based ranking)
records shorter rendezvous time when compared to distinc-
tiveness based ranking. The cost-reward model saves time
by making rendezvous attempts at best nodes in the vicinity
and if the attempt is unsuccessful it continues to explore.
This results in a faster increase in the number of nodes ex-
plored and hence the probability of common nodes explored
between the agents, when compared to distinctiveness-based
measure.

Fig. 8. Total distance traveled or the time taken to rendezvous as a function
of number of robots: Ideal case

V. DISCUSSION AND CONCLUSION

Our results from Section IV, show that the amount of
information obtained from the environment has implications
on how to perform rendezvous. Thus, we formulate a new
ranking criterion which depends on the extent of exploration
completed. We derive this criterion based on the results in
Fig. 7. These results suggest that when half of the envi-
ronment size is explored, there is a switch over of ranking
preference from distinctiveness-based measure to cost-reward



(a) Small initial distances (b) Medium initial distances (c) Large initial distances

Fig. 7. Effect of variation in number of nodes overlapping on ranking criteria

model. Hence, we propose a combination of the two ranking
criteria in Eq. 4, to obtain a hybrid ranking D′(pk) for any
potential rendezvous location pk.

D′(pk) = αD(pk) + (1 − α)DS(pk) (4)

The parameter α in the Eq. 4 is a continuous variable that
can be used for switching between distinctiveness D(pk) and
sigmoid-distance weighted distinctiveness DS(pk) ranking
methods and it can be obtained using the following equation:

α =
(

1 − e−(2n/N)
)

(5)

The variables n and N represent the current number of
nodes explored and estimated total number of nodes in a
bounded environment, respectively. Hence, when n is small
implying there are not many nodes explored, the probability
of number of overlapping nodes between the agents is low
which provides a small value of α and results in a larger
weight to the sigmoid-distance weighted distinctive ranking
DS(pk). In contrast, when n is large the α value is large
and the hybrid ranking criterion D′(pk), biases towards the
distinctiveness measure D(pk).

In conclusion, we addressed the problem of combining
multi-robot exploration and rendezvous tasks in random
topological environments. The abstraction of world structure
and distinctiveness measure in these world environments
made it easier to analyze the joint problem. The cost-reward
model was shown to be a better ranking criterion for both
ideal and noisy cases. The evaluation of the rendezvous
process with noisy sensors provided a practical platform for
testing our algorithms. In addition, our proposed algorithms
were shown to be easily generalizable for any number of
robots and can be applied in any environment with the frame-
work given in [1]. These aspects of our work combined
together makes it a novel contribution to multi-robot ren-
dezvous.

The future direction for our work is to apply it on real
robots to perform multi-robot rendezvous in radio-silent

environments. We also intend to obtain the theoretical bounds
on our algorithm to compare them against our simulated
results.

VI. ACKNOWLEDGEMENT

The authors would like to acknowledge Dr. Ioannis Rek-
leitis for his triangulation-based world generation code.

REFERENCES

[1] M. Meghjani and G. Dudek. Combining multi-robot exploration
and rendezvous. In CRV ’11: Proceedings of the 2011 Canadian
Conference on Computer and Robot Vision, pages 80–85. IEEE
Computer Society, May 2011.

[2] I. Rekleitis, A.P. New, E.S. Rankin, and H. Choset. Efficient bous-
trophedon multi-robot coverage: an algorithmic approach. Annals of
Mathematics and Artificial Intelligence, 52(2):109–142, 2008.

[3] S. Alpern and S. Gal. The theory of search games and rendezvous.
Springer, 2003.

[4] A. Dessmark, P. Fraigniaud, and A. Pelc. Deterministic rendezvous in
graphs. Algorithms-ESA 2003, pages 184–195, 2003.

[5] E. Kranakis, D. Krizanc, and S. Rajsbaum. Mobile agent rendezvous:
A survey. Structural Information and Communication Complexity,
pages 1–9, 2006.

[6] I. Rekleitis, G. Dudek, and E. Milios. Multi-robot collaboration for
robust exploration. In Proceedings of International Conference in
Robotics and Automation, pages 3164–3169, San Francisco, USA,
April 2000.

[7] W. Burgard, M. Moors, D. Fox, R. Simmons, and S. Thrun. Collab-
orative multi-robot exploration. In IEEE International Conference on
Robotics and Automation, volume 1, pages 476–481, 2000.

[8] N. Atay and B. Bayazit. Emergent task allocation for mobile robots.
In Proceedings of Robotics: Science and Systems, 2007.

[9] R. Vincent, D. Fox, J. Ko, K. Konolige, B. Limketkai, B. Morisset,
C. Ortiz, D. Schulz, and B. Stewart. Distributed multirobot exploration,
mapping, and task allocation. Annals of Mathematics and Artificial
Intelligence, 52(2):229–255, 2008.

[10] J. de Hoog, S. Cameron, and A. Visser. Selection of rendezvous points
for multi-robot exploration in dynamic environments. In International
Conference on Autonomous Agents and Multi-Agent Systems, 2010.

[11] N. Roy and G. Dudek. Collaborative exploration and rendezvous: al-
gorithms, performance bounds and observations. Autonomous Robots,
11(2):117–136, Sept. 2001.

[12] B. Delaunay. Sur la sphère vide [on the empty area]. Izvestia Akademii
Nauk SSSR, Otdelenie Matematicheskikh i Estestvennykh Nauk, 7:793–
800, 1934.

[13] G. Dudek, M. Jenkin, E. Milios, and D. Wilkes. Map validation and
robot self-location in a graph-like world. Robotics and autonomous
systems, 22(2):159–178, 1997.


