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Abstract—Multi-fingered robot grasping is a challenging
problem that is difficult to tackle using hand-coded programs.
In this paper we present an imitation learning approach for
learning and generalizing grasping skills based on human
demonstrations. To this end, we split the task of synthesizing
a grasping motion into three parts: (1) learning efficient grasp
representations from human demonstrations, (2) warping con-
tact points onto new objects, and (3) optimizing and executing
the reach-and-grasp movements. We learn low-dimensional
latent grasp spaces for different grasp types, which form the
basis for a novel extension to dynamic motor primitives. These
latent-space dynamic motor primitives are used to synthesize
entire reach-and-grasp movements. We evaluated our method
on a real humanoid robot. The results of the experiment
demonstrate the robustness and versatility of our approach.

I. INTRODUCTION

The ability to grasp is a fundamental motor skill for

humans and a prerequisite for performing a wide range of

object manipulations. Therefore, grasping is also a funda-

mental requirement for robot assistants, if they are to perform

meaningful tasks in human environments. Although there

have been many advances in robot grasping, determining

how to perform grasps on novel objects using multi-fingered

hands still remains an open and challenging problem.

A lot of research has been conducted on robot grippers

with few degrees of freedom (DoF) which may not be

particularly versatile. However, the number of robot hands

developed with multiple fingers has been steadily increas-

ing in recent years. This progress comes at the cost of

a much higher dimensionality of the control problem and,

therefore, more challenges for movement generation. Hard

coded grasping strategies will typically result in unreliable

robot controllers that can not sufficiently adapt to changes

in the environment, such as the object’s shape or pose.

Such hard coded strategies will also often lead to unnatural

‘robotic looking’ grasps, that do not account for the increased

sophistication of the hardware. Alternative approaches, such

as the optimization of grasps using stochastic optimization

techniques, are computationally expensive and require the

specification of a grasp quality metric [27]. Defining an

adequate grasp metric is often hard to do, as it requires speci-

fying intuitive concepts in a mathematical form. Additionally,

such approaches typically do not consider the whole reach-

and-grasp movement but exclusively concentrate on the hand
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Fig. 1. The Justin robot learns to grasp and lift-up a mug by imitation. The
reach-and-grasp movement is learned from human demonstrations. Latent-
space dynamic motor primitives generalize the learned movement to new
situations.

configuration at the goal.

In this paper, we present an imitation learning approach for

grasp synthesis. Imitation learning allows a human to easily

program a humanoid robot [3], and also to transfer implicit

knowledge to the robot. Instead of programming elaborate

grasping strategies, we use machine learning techniques to

successfully synthesize new grasps from human demonstra-

tion. The benefits of this approach are threefold. First, the

computational complexity of the task is significantly reduced

by using the human demonstrations along with compact low-

dimensional representations thereof. Second, the approach

allows us to imitate human behavior throughout the entire

reach-and-grasp movement, resulting in seamless, natural-

looking motions. Typical transitions between a discrete set

of hand shapes, as can be found in traditional approaches,

are thus avoided. Finally, this approach also allows the user

to have control over the type of grasp that is executed.

By providing demonstrations of only one particular grasp

type, the synthesis algorithm can be used to generate distinct

grasps e.g., only lateral, surrounding, or tripod grasp. The use

of assorted grasps can considerably improve the robustness

of the grasping strategy as the robot can choose a grasp type

which is appropriate for the current task.

A. Related Work

In order to generalize human grasping movements, we

need to understand how humans perform grasps. Human

grasping motions consist of two components: the reaching

motion of the arm for transporting the hand, and the motions
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Fig. 2. An overview of the proposed approach. The contact points of a known object are warped on the current object. Using the resulting positions, an
optimizer finds the ideal configuration of the hand during the grasp. The optimizer uses low-dimensional grasp spaces learned from human demonstrations.
Finally, a latent space dynamic motor primitive robustly executes the optimized reach-and-grasp motion. The approach is data-driven and can be used to
train and execute different types grasps.

of the fingers for shaping the hand [16], [17]. These two

components are synchronized during the grasping movement

[7]. For example, at around 75% of the movement duration,

the hand reaches its preshape posture and the fingers begin

to close [15]. At this point in time, the reaching motion of

the hand shifts into a low velocity movement phase.

Early studies into human hand control assumed muscles

and joints as being controlled individually by the central

nervous system [26], [19]. However, more recent studies have

found evidence suggesting that the fingers are controlled us-

ing hand synergies [23], [2] — i.e., the controlled movements

of the fingers are synchronized.

According to this view, fingers are moved “synergistically”

thereby reducing the number of DoF needed for controlling

the hand. Such hand synergies can be modeled as projections

of the hand configuration space into lower-dimensional sub-

spaces [20] such as the principal components. Movements

along the first principal component of this subspace result

in a basic opening and closing behavior of the hand. The

second and higher-order principal components refine this

motion and allow for more precise shaping of the hand [20],

[24], see Fig. 3. Although the majority of the variation in

the finger configurations is within the first two principal

components, higher-order principal components also contain

important information for accurately executing grasps [23].

The gain in grasp accuracy does, however, plateau at around

five dimensions [22], [20]. Therefore, the space of human

hand synergies during grasping can be well represented by

a five-dimensional subspace.

Following this idea, various researchers have used di-

mensionality reduction techniques to find finger synergies

in recorded human grasps [4], [8]. Once a low-dimensional

representation of finger synergies is found, it can be used

to synthesize new grasps in a generate-and-test fashion. For

example, the authors of [8] use Simulated Annealing to find

an optimal grasp on a new object while taking into account

the finger synergies. Common to such approaches is the

use of a grasp metric [27] that estimates the quality of a

potential solution candidate. However, such metrics can be

computationally demanding and rely on having an accurate

model of the objects. In general, it is difficult to define

a grasp metric that includes both, physical aspects of the

grasps (such as the stability) as well as functional aspects

that depend upon the following manipulations.

Alternative approaches to grasp synthesis predict the suc-

cess probability of grasps for different parts of the object. For

example, good grasping regions are estimated from recorded

2D images of the object in [25]. A labeled training set

of objects including the grasping region is subsequently

produced by using a ray-tracing algorithm. The resulting

dataset is then used to train a probabilistic model of the

ideal grasping region. The learned model, in turn, allows

a robot to automatically identify suitable grasping regions

based on visual features. In a similar vein, Boularias et al.

[6] use a combination of local features and Markov Random

Fields to infer good grasping regions from recorded point

clouds. Given an inferred grasping region, the reach-and-

grasp motion still needs to be generated using a set of

heuristics. Additionally, this approach does not address the

problems of how to shape the hand and where to place the

finger contacts.

Tegin et. al. [28] also used imitation learning from human

demonstration to extract different grasp types. However,

they do not model the whole reach-and-grasp movement

and circumvent the high-dimensionality problem by using

simpler manipulators.

II. OUR APPROACH

In our approach, we address the challenges of robot grasp-

ing by decomposing the task into three different stages: (1)



learning efficient grasp representations from human demon-

strations, (2) warping contact points onto new objects, and

(3) optimizing and executing the synchronized reach-and-

grasp movements.

An overview of the proposed approach can be seen in

Fig. 2. The contact points of a known object are first warped

onto the current object using the techniques in Sec. II-B.

The warped contact points are then used by the optimizer

to identify all parameters needed for executing the grasp,

i.e., the configuration of the fingers and the position and

orientation of the hand. The optimization is performed in

low-dimensional grasp spaces which are learned from human

demonstrations. Finally, the reach-and-grasp movement is

executed using a novel extension to dynamic motor primitive

[14] called latent-space dynamical systems motor primitive

(LS-DMP).

A. Learning Grasp Types from Human Demonstration

Using human demonstrations as reference when synthe-

sizing robot grasps can help to narrow down the set of

solutions and increase the visual appeal of the generated

grasp. At the same time, a discrete set of example grasps

can also heavily limit the power of such an approach. To

overcome this problem, we use dimensionality reduction

techniques on the set of human demonstrations in order

to infer the low-dimensional grasp space. To this end, we

recorded the movements of nine test-subjects, where each test

subject was asked to perform reach-and-grasp actions on a

set of provided objects. We subsequently performed Principal

Component Analysis (PCA) on the dataset, projecting it onto

five principal components. This choice of dimensionality is

based on research on the physiology of the human hand

[22], [20] which suggested that five principle components

are sufficient for accurately modeling the movements of the

human hand.

The resulting grasp space is a compact representation

of the recorded grasps as it models the synergies between

the different fingers and finger segments. The first principal

component, for example, encodes the opening and closing

of the hand. Fig. 3 shows grasps from the space spanned by

the first two principal components.

The above approach yields general grasp spaces that do

not give the user control over the grasp type to be executed

by the robot. However, for many tasks it is important to favor

a particular grasp type over another when synthesizing the

robot movements. For example, for carrying a pen one can

use a tip grasp, while for writing with the pen an extension

grasp is better suited. Hence, in a second experiment with the

same test subjects we learned grasp spaces for specific grasp

types, such as lateral grasps or tripod grasps. To determine

the grasp space, we devised a grasp taxonomy [10] consisting

of twelve grasp types and recorded specific datasets for each

of these types. The datasets were subsequently used to learn

grasp spaces for the specific grasp type.

Due to the differences in kinematics of the human and

robot hand, there are multiple ways to map the hand state to

the robot state, also known as the correspondence problem
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Fig. 3. The space spanned by the first two principal components of human
recorded grasps applied to the robot hand. The first component describes the
opening and closing of the hand. The second principal component modulates
the shape of the grasp.

in the robotics literature [9]. In this paper, we solve the

correspondence problem by dividing the generalization of

grasps into two parts, i.e., the reproduction of the hand shape

and the adaptation of Cartesian contact points. The reproduc-

tion of the hand shape is realized by directly mapping the

human joint angles to the robot hand. For the index, middle

and ring fingers this results in an accurate mapping with

robot hand configurations similar to the demonstrated human

hand shapes. In order to map the thumb, an additional offset

needed to be added to the carpometacarpal joint. Using this

type of mapping, the reproduced hand shapes will be similar

to those of the human. The generalization of the Cartesian

contact points is achieved by the contact warping algorithm

described in Sec. II-B. The two generalizations in Cartesian

space and in joint space are then reconciled through the

optimization process explained in Sec. II-D.

B. Generalizing Grasps through Contact Warping

In this section, we introduce the contact warping algo-

rithm. This algorithm allows the robot to adapt given contact

points from a known object to a novel object. As a result, we

can generalize demonstrated contact points to new situations.

Assume that we are given two 3D shapes from the same

semantic/functional category through dense sets of range data

points. In our approach, the process of shape warping, that

is, computing a mapping from the source shape to the target

shape, has been broken down into three steps.

1) Rigid alignment of source and target shapes, such

that semantically/functionally corresponding points get

close to each other.



2) Assignment of correspondences between points from

the source shape and points on the target shape.

3) Interpolation of correspondences to a continuous (but

possibly non-smooth) mapping.

The alignment step involves sampling and aligning many

surflet pairs, i.e., pairs of surface points and their local

normals, from source and target shapes. The estimation of

relative clusters of the pose parameters is obtained from the

surflet-pair alignments [11], [12].

Since the alignment of source and target shapes has

brought corresponding parts close to each other, we can

again rely on the local surface description by surflets to

find correspondences, based on proximity of points and

alignment of normal vectors. The correspondence assignment

that we have used here is an improved version of the method

described in [11]. In this approach, correspondences were

assigned for each source surflet independently into the set

of target surflets. For strong shape variations or unfavorable

alignment between source and target, such an approach could

result in a confusion of similar parts.

In order to cope with larger shape variation, some inter-

action between assignments of neighboring points has to be

introduced. We have, therefore, formulated correspondence

search as an optimal assignment problem. In this formula-

tion, interaction between assignments of different points is

enforced through uniqueness constraints.

Let {x1, . . . , xN} be points from the source shape, trans-

formed to align with the target shape; let {y1, . . . , yN} be

points from the target shape.1 Assignment of source point i
to target point j is expressed as an assignment matrix,

aij =

{

1 if i is assigned to j,
0 otherwise.

(1)

Furthermore, let dij = ‖xi − yj‖ be the Euclidean distances

between source and target points and cij = ni ·mj be the

angle cosines between the unit normal vectors ni and mj at

source point i and target point j, respectively.
The objective is to minimize the sum of distances between

correspondences, i.e., mutually assigned points,

D(a11, . . . , a1N , a21, . . . , aNN ) =

N
∑

i=1

N
∑

j=1

dijaij , (2)

subject to the constraints

N
∑

i=1

aij = 1 ∀j ∈ {1, . . . , N} , (3)

i.e., to assign every target point to exactly one source point,

N
∑

j=1

aij = 1 ∀i ∈ {1, . . . , N} , (4)

i.e., to assign every source point to exactly one target point,

and

cijaij ≥ 0 ∀i, j ∈ {1, . . . , N} , (5)

1An equal number N of points from source and target shapes can always
be re-sampled from the original data sets.

Fig. 4. Mug warping example. A dense set of surface points from the
source mug (top row) and their mappings to the target mug (bottom row)
are colored to code their three Cartesian source coordinates (three columns).

i.e., to assign only between points with inter-normal angle

of ≤ 90 degrees. The two equality constraints (3) and

(4) mediate the desired interaction between assignments of

different points. The inequality constraint (5) can exclude

points from being assigned and, therefore, the problem may

become infeasible. Thus, we have to add imaginary source

and target points x0 and y0 which have no position and no

normal direction. They can be accommodated by appending

large entries d0j and di0 to the distance matrix, which larger

than all real distances in the data set, as well as zero entries

c0j = ci0 = 0 to the angle cosine matrix. These imaginary

points can be assigned to all real points with a penalty, which

is chosen such that only points without a compatible partner

will receive this imaginary assignment. We subsequently

minimize the cost function

C(a01, . . . , a0N , a10, . . . , aNN )

= D(a11, . . . , a1N , a21, . . . , aNN ) (6)

+

N
∑

i=1

di0ai0 +

N
∑

j=1

d0ja0j .

For solving this constrained optimization problem, we use

the interior-point algorithm, which is guaranteed to find an

optimal solution in polynomial time [30].

Finally, point correspondences are interpolated to obtain

a continuous (but possibly non-smooth) mapping of points

from the source domain to the target domain. More theory

and systematic evaluations of the procedure are given in [13].

Fig. 4 shows an example of a dense set of surface points

warped between two mugs. A warp of the contact points of

an actual grasp from the source to the target mug is shown

on the left of Fig. 2.

C. Latent Space Dynamic Motor Primitives

In order to execute different grasps, the robot requires

a suitable representation of the grasping actions. Ideally,

the grasping action should be straightforward to learn from



a couple of human demonstrations and easily adapted to

various objects and changes in the object locations. The

action representation should also ensure that the components

of the grasping movement are synchronized. The dynamical

systems motor primitives (DMPs) representation fulfills all

of the above requirements [14]. DMPs have been widely

adopted in the robotics community, and are well-known

for their use in imitation learning [21], [18]. The DMP

framework represents the movements of the robot as a set of

dynamical systems

ÿ = αz(βzτ
−2(g − y)− τ−1ẏ) + aτ−2f(x, θ1:N )

where y is a state variable, g is the corresponding goal state,

and τ is a time scale. The first set of terms represents a

critically-damped linear system with constant coefficients αz

and βz . The last term, with amplitude coefficient a = g−y0,
incorporates a shaping function

f(x, θ1:N ) =

∑N

i=1
ψi(x)θix

∑N

j=1
ψj(x)

,

where ψi(x) are Gaussian basis functions, and the weight

parameters θ1:N define the general shape of the movements.

The weight parameters θ1:N are straightforward to learn

from a single human demonstration of a goal directed

movement. The variable x is the state of a canonical system

shared by all DoFs. The canonical system acts as a timer

to synchronize the different movement components. It has

the form ẋ = −τx, where x0 = 1 at the beginning of

the motion and thereafter decays towards zero. The meta-

parameters g, a, and τ can be used to generalize the learned

DMP to new situations. For example, the goal state g of

the reaching movement is defined by the position of the

object and the desired grasp. We explain how the DMP goal

meta-parameters are computed for new objects in Sec. II-D.

However, we need first to define how the finger trajectories

can be encoded as DMPs, such that they generalize to new

situations in a human-like manner.

Representing and generalizing the motions of the fingers

is a challenging task due to the high dimensionality of the

finger-configuration space. A naive solution would be to

assign one DMP to each joint [19]. However, as previously

discussed in Sec. I-A, humans seem to generalize their

movement trajectories within lower-dimensional spaces of

the finger configurations, and not at the level of each joint

independently [23], [20]. If the robot’s generalization of the

grasping action does not resemble the human’s execution,

implicit information contained within the human demon-

strations is lost. Therefore, in order to facilitate behavioral

cloning of human movements, the DMPs for multi-fingered

hands should be realized in a lower dimensional space. In

addition, overfitting is avoided by representing the movement

in a lower-dimensional space.

In particular, the DMPs can be defined in the latent

spaces learned in Sec. II-A. As such spaces are learned

from complete trajectories of the grasping movements, they

also include the finger configurations needed for representing

the hand during the approach and preshaping phases of the

action, as well as the final grasps [20]. We use a DMP for

each of the latent space dimensions as well as DMPs for

the wrist position and orientation. The weight parameters

for these DMPs can be learned from human demonstrations

by first projecting the tracked motions into the latent space

and subsequently learning the weights from the resulting

trajectory. Thus, the same data that is used to learn the

latent space can be reused for learning the weight parameters.

The resulting latent-space DMPs, as well as the reaching

movement’s DMPs, are linked to the same canonical system,

thus, ensuring that they remain synchronized. The output of

the latent-space DMPs is afterwards mapped back into the

high-dimensional joint space by the PCA projection. In this

manner, the grasping action can be executed seamlessly, and

the robot can begin closing its fingers before the hand has

reached its final position.

Thus, we have defined a human-like representation of

the grasping movements that can be acquired by imitation

learning. Given this DMP representation, the robot still needs

to determine the meta-parameters for new situations. This

process is described in the next section.

D. Estimating the Goal Parameters

In order to generalize the latent-space DMPs to new

objects, we need to estimate the goal state g for each latent-

space dimension, as well as the orientation of the hand

for a new set of contact points which we have acquired

from contact warping as discussed in Sec. II-B. We use

one contact-point per finger, where the contact point is

always located at the finger tip. Each point is specified in

Cartesian coordinates. As we have four fingers, this results

into a 12-dimensional task space vector xC . Additionally,

we also want to estimate the position and orientation of the

hand in the world coordinate frame. We therefore add six

virtual joints v, i.e., three translational and three rotational

joints. We will denote the transformation matrix, which is

defined by these six virtual joints, as T(v). We define the

finger tip position vector x1:4 as the concatenation of all

four finger tip positions. This vector is a function of the

transformation matrix T(v) and the joint configurations of

the fingers q = m+Kg, i.e.,

φW (y) = T(v)φH(m+Kg).

The vector m represents the mean of the PCA transformation

and K is given by the first five eigenvectors. The function

φH(q) calculates the finger tip-positions in the local hand

coordinate frame. This setup is an inverse kinematics prob-

lem with the difference that we want to optimize the joint

positions of the fingers in the latent space instead of directly

optimizing the joint positions q. Thus, the inverse kinematics

problem is over-constrained as we have twelve task variables

and only eleven degrees of freedom. Therefore, instead of

the standard Jacobian pseudo-inverse solution, we need to

employ a different approach.

Our task is to estimate the optimal configuration y∗ =
[v∗,g∗] of the hand, which consists of the orientation and



the latent space coordinates, such that the squared distance

between finger-tip positions x1:4 and the contact points xC

is minimal, i.e.,

y∗ = [v∗,g∗] = argmax
y
L(y),

L(y) = −(φW (y)− xC)
TC−1(φW (y)− xC) (7)

+yTWy.

The matrix W = diag(w) defines a damping or regu-

larization term for the step-size of y, and C = diag(c)
defines the inverse precision for each task variable. The

Jacobian J = ∂φW /∂y for this problem can be obtained

straightforwardly, i.e., for the derivation w.r.t v it is given

by the standard geometric Jacobian and for the derivation

w.r.t the latent variable g it is given by Jl = JqK, where Jq

denotes the geometric Jacobian.

We will solve the optimization problem given in Equation

(7) by iteratively applying a least squares solution. Given

the current hand configuration yk and the desired finger-tip

positions xC , the update step for the hand configuration is

therefore given by

∆yk = (JTCJ+W )−1JTC (xC − φW (yk)) . (8)

As we have to solve an overconstrained inverse kinematics

setting, in contrast to the more common underconstrained

inverse kinematics setting, we use the left-pseudo inverse

in Equation (8). This update equation also corresponds to

a Bayesian view on inverse kinematics [29]. We repeat the

update until convergence in order to get the optimal hand

configuration y∗. We always start our optimization from an

initial posture where the hand is pointing downwards.

III. SETUP AND EVALUATIONS

To evaluate the proposed approach, we conducted a set

of experiments using the Rollin’ Justin robot platform [5].

Justin is a mobile humanoid robot system with an upper-

body including 43 actuated degrees-of-freedom (DoF). In our

experiments we controlled 22 DoF pertaining to the Torso

(3 DoF), the right arm (7 DoF), and the four-fingered right

hand (12 DoF). The experiments were performed both in

simulation and on the physical robot.

A. Simulation Results

In the first experiment, we evaluated the performance

and the results of our approach in a simulated environment

for the Justin robot. As explained in Sec. II, we trained

individual LS-DMPs for each of the principal components of

the demonstrated reach-and-grasp movement. Fig. 5 shows

the latent-space trajectories for three out of the five principal

components of the hand shape. The example trajectories are

depicted in blue, while the trajectory learned by the LS-

DMP is depicted in red. This figure reveals an interesting

insight into the nature of the recorded human reach-and-grasp

movements: many of the example trajectories have a distinct

sigmoid shape that has a bell-shaped velocity profile. This

insight corresponds to the results in [1] , which showed that

Fig. 6. The Justin robot executes a reach-and-grasp movement in sim-
ulation. Using the trained LS-DMP a new trajectory (red) to the target
object is synthesized. The optimal hand position and orientation (shown
as a coordinate system) is estimated along with the optimal hand shape in
latent-space.

humans perform point-to-point reaching movements such

that the velocity profile along the path can be characterized

by a symmetric bell-shape. Our results indicate that a similar

property holds for the latent space trajectories of the hand

shape during a reach and grasp.

After learning, we first executed the LS-DMP in simula-

tion. Fig. 6 shows the start and end configuration during one

run of the algorithm. The red curve depicts the trajectory of

the hand as generated by the LS-DMP, while the displayed

coordinate system shows the estimated hand orientation of

the robot. To evaluate the accuracy of the produced grasping

motions, we repeatedly changed the position and orientation

of the target object and measured the distance between

the warped contact points on the object and the fingertip

positions. Ideally, the fingertips should always coincide with

the contact points. Tab. I shows the average distance of the

fingers to the warped contact points after executing a reach-

and-grasp movement. We also varied the grasp spaces in

order to evaluate the effect of the grasp type on the the

resulting hand shape. The grasp space indicated by Multi in

Tab. I was learned using all available human demonstrations.

This grasp space encompasses a wide range of variations of

the human hand. As can be seen in the table, we achieved

the most accurate results by using this grasp space. In this

case, the average error is about 7mm.

It should be noted that the fingers of the robot are much

larger than human fingers and have a width of about 3cm.

Given the size of the robot’s fingers, the produced error only

corresponds to about a quarter of the finger width. The table

clearly shows that changing the grasp type results in higher

average error. This increased error is to be expected, as we

constrained the space of possible solutions to a specific grasp

type. At the same time, visual inspection of the resulting

grasps shows that this error does not deteriorate the quality

of the resulting grasps, as will be seen in the next section.

B. Real Robot Experiments

We also conducted experiments with the real Rollin’ Justin

robot. Three different types of mugs were used during

the experiments. After placing a mug on a table in front

of the robot, all information about the pose of the mug
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Fig. 5. The plots show example trajectories (blue), and the mean trajectory (red), for three (out of five) latent space dimensions during the closing of the
hand. The trajectories have been shifted and scaled to start at zero and end at one, in order to allow for easier comparison of their shapes. As the scaled
trajectories have similar shapes, they can be represented by individual DMPs and easily learned from human demonstrations.

TABLE I

AVERAGE DISTANCE BETWEEN WARPED CONTACT POINTS AND

FINGERTIPS AFTER GRASPING.

Grasp Type Multi Tripod Surrounding Lateral

Avg. Error (m) 0.007 0.013 0.0157 0.014

was estimated using a Kinect camera and the techniques

explained in [12]. Subsequently, using the contact warping

techniques from Sec. II-B the contact points from a known

mug were warped onto the currently seen mug. The resulting

contact points were subsequently fed into the optimizer to

estimate all parameters that are needed to execute the reach-

and-grasp movement. The estimation of all parameters using

the algorithm in Sec. II-D takes about one to five seconds.

We performed about 20 repetitions of this experiment with

the different mugs placed at various positions and heights.

Additionally, we included a lifting-up motion to our move-

ment, in order to evaluate whether the resulting grasp was

stable or not. In all of the repetitions the robot was able to

successfully grasp and lift-up the observed object.

Furthermore, we also executed the reach-and-grasp move-

ments using grasp spaces belonging to different grasp types.

No change was made to the structure or other parameters of

the algorithm. The only difference between each execution

run was the grasp space to be loaded. Fig. 7 shows three of

the grasp types used in our taxonomy along with the result of

applying them to the Justin robot. The figure clearly shows

that changing the grasp type can have a significant effect

on the appearance of the executed grasp. For example, we

can see that the use of the tripod-grasp results in delicate

grasps with little finger opposition, while surrounding grasps

lead to more caging grasps with various finger oppositions.

Our approach exploits the redundancy in hand configurations

and allows desired grasp types to be set according to the

requirements of the manipulation task that is going to be

executed. Fig. 8 shows a sequence of pictures captured

from one of the reach-and-grasp movements executed on the

real robot. Reach-and-grasp movements for different grasp

types and situations are shown in the video submitted as

supplemental material.

Tripod Surrounding Lateral
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Fig. 7. The three grasp types lateral, surrounding, and tripod from our
taxonomy are demonstrated by a human and later reproduced by the Justin
robot. All parameters of the reach-and-grasp movement, such as the shape
of the hand, its position, and orientation are automatically determined using
latent space dynamic motor primitives.

IV. CONCLUSION

In this paper, we presented a new approach for imita-

tion and generalization of human grasping skills for multi-

fingered robots. The approach is fully data-driven and learns

from human demonstrations. As a result, it can be used

to easily program new grasp types into a robot – the user

only needs to perform a set of example grasps. In addition

to stable grasps on the object, this approach also leads to

visually appealing hand configurations of the robot. Contact

points from a known object are processed by a contact

warping technique in order to estimate good contact points

on a new object.

We, furthermore, presented latent-space dynamic motor

primitives as an extension to dynamic motor primitives that

explicitly models synergies between different body parts.

This significantly reduces the number of parameters needed

to control systems with many DoF such as the human hand.

Additionally, we have presented a principled optimization

scheme that exploits the low-dimensional grasp spaces to

estimate all parameters of the reach and grasp movement.



Fig. 8. A sequence of images showing the execution of a reach-and-grasp movement by the Justin humanoid robot. The executed latent-space dynamic

motor primitive was learned by imitation. The type of the grasp to be executed can be varied according to the requirements of the task to subsequently
executed. New grasp types can be trained within minutes by recording a new set of human demonstrations.

The proposed methods were evaluated both in simulation

and on the real Justin robot. The experiments exhibited the

robustness of the approach with respect to changes in the

environment. In all of the experiments on the real, physical

robot, the method successfully generated reach-and-grasp

movements for lifting up the seen object.
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