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Abstract— Gestures are characterized by intermediary or
final landmarks (real or virtual) in task space or joint space
that can change during the course of the motion, and that
are described by varying accuracy and correlation constraints.
Generalizing these trajectories in robot learning by imitation
is challenging, because of the small number of demonstrations
provided by the user. We present an approach to statistically
encode movements in a task-parameterized mixture model,
and derive an expectation-maximization (EM) algorithm to
train it. The model automatically extracts the relevance of
candidate coordinate systems during the task, and exploits this
information during reproduction to adapt the movement in
real-time to changing position and orientation of landmarks or
objects. The approach is tested with a robotic arm learning to
roll out a pizza dough. It is compared to three categories of task-
parameterized models: 1) Gaussian process regression (GPR)
with a trajectory models database; 2) Multi-streams approach
with models trained in several frames of reference; and 3)
Parametric Gaussian mixture model (PGMM) modulating the
Gaussian centers with the task parameters. We show that the
extrapolation capability of the proposed approach outperforms
existing methods, by extracting the local structures of the task
instead of relying on interpolation principles.

I. INTRODUCTION

One important challenge of imitation learning is to design

models of multidimensional continuous movements that can

fulfil various purposes such as storing, recognizing, predict-

ing and reproducing movements. The models needs to be

compact to facilitate the joint use of self-refinement learning

strategies. The main difficulty is that gestures depend on task

parameters such as locations of intermediary via-points or

targets (virtual or real) that can locally influence the shape,

amplitude, direction and timing of movements. Several de-

nominations have been used to describe these models such

as task-parameterized [1], parametric [2]–[4] or stylistic [5].

Research in robot learning by imitation tackles skills

of increasing complexity. Often, this complexity does not

grow with the size of the training data, which need to be

small to keep the skill transfer interaction user-friendly. This

trend results in generalization problems requiring stronger

extrapolation requirements, see Fig. 1.

Existing methods to tackle such challenge can be classified

in three categories:

1) Approaches employing M models for the M demonstra-

tions, performed in M different situations (e.g., Gaussian

process with trajectory models database) [4], [6]–[11];
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Fig. 1. Illustration of the challenge. The aim is to learn, from very few
demonstrations, how to modulate a movement with respect to two different
frames of reference. The observed movements (in red, green and violet)
consist of smoothly switching from a motion in the robot frame to the
motion of rolling a dough (shaped as an ellipse) back and forth, following
a specific direction (smallest diameter). The robot is not provided with this
information, and must extract the important characteristics of the task to
extrapolate the skill to a new situation (in black), that cannot, in this case,
be represented as a convex sum of the previously observed situations.

2) Approaches employing P models for the P frames of

reference that are possibly relevant for the task (e.g.,

multi-streams methods encoding the same movement in

several coordinate systems) [12]–[16];

3) Approaches employing a single model whose parame-

ters are modulated by task parameters (e.g., parametric

hidden Markov model) [2], [3], [17].

We recently showed in [1] that a promising trend in

this last category is to exploit the functional nature of

manipulation tasks to build models that can learn the local

structures of the task from a low number of demonstrations.

The model was employed in the context of early movement

acquisition in a humanoid, with simple time-dependent and

time-independent gestures (clapping hands and pointing at a

toy object).

The purpose of this paper is to compare this model to

the three categories of approaches described above. The

paper is organized as follows. Examples of models falling in

these three categories are first presented in Section II. The

proposed approach is then described in Section III. Sections

IV and V present the experimental setup and comparison

results. Sections VI and VII are discussions and conclusion.

II. PREVIOUS WORK

Various task-parameterized movement models exist, dif-

fering both in the research questions being addressed and

in the techniques being employed [2]–[11], [14]–[16], [18].

It would not be possible to review the specificities of each

model in this paper. We instead give a global overview of ex-

isting strategies by classifying them into three main branches.

We will focus on task parameters that can be described as

coordinate systems, each represented by a position b (origin



of the observer) and a set of basis vectors {e1, e2, . . .}
forming a transformation matrix A = [e1, e2, · · · ]. The

coordinate systems can include time as coordinate, or any

other variable relevant for the task. The frames need to have

the same number of rows but can have various numbers of

columns (e.g., to consider constraints in both configuration

space and task space). We will consider here only squared

frames of reference defined by orthogonal coordinate systems

in task space.

We will assume that each demonstration m ∈ {1, . . . ,M}
contains Tm datapoints forming a dataset of N datapoints

{ξn}
N
n=1 with N=

∑M

m Tm. Each datapoint ξn=[tn,xn]
⊤ ∈

R
D+1 (e.g. D = 3 Cartesian datapoints augmented with

timestamp tn) is associated with the observed task parame-

ters {An,j , bn,j}Pj=1 that represent respectively P candidate

frames of reference, with offset position vectors bn,j and lin-

ear transformation matrices An,j .1 Some task-parameterized

approaches work only with task parameters constant during

each demonstration. In this case, the task parameters will be

described as {Am,j , bm,j}
P
j=1, with m∈{1, . . . ,M}.

A. Gaussian process regression (GPR) with trajectory mod-

els database

1. Task demonstrations

- Set P (number of candidate frames)

for m← 1 to M (for each demonstration)

- Collect task parameters {Am,j , bm,j}
P
j=1

for n← 1 to Tm (for each time step)

- Collect datapoint ξm,n

end

end

2. Model fitting

- Set K (number of components in each GMM)

for m← 1 to M (for each demonstration)

- Fit a GMM to ξm with EM

θm = {πi,m,µi,m,Σi,m}
K
i=1

- Associate query points qm = {Am,j , bm,j}
P
j=1

end

- Precompute [K(Q,Q)+σ2I]−1
Θ in Eqs (1)-(2)

3. Reproduction

- Set the input I and output O elements

- Collect/select new query point Qd = {Aj , bj}
P
j=1

- Estimate resulting GMM using Eq. (2)

for n← 1 to T (for each reproduction step)

- Collect/select ξI

n

- Use Eq. (3) to retrieve ξO

n through GMR as

ξO

n |ξ
I

n ∼ N (µ̂O

n , Σ̂
O

n )
end

Algorithm 1: GPR with trajectory models database.

One possible encoding of task-parameterized movement is

1It is possible to remove the effects of the task parameters on ξn by
setting null values in the corresponding elements of vectors bn,j , and
identity matrices in the corresponding blocks of An,j (e.g., if it is not
desired to modulate the duration of the movement with the task parameters).

to fit a model to each demonstration and associate it with a

task-specific feature, goal, style variable or perceptual feed-

back. The challenge of generalizing the observed movement

to new situations requires here an effective combination of

the existing models to generate new movements that can

interpolate or extrapolate the task [4], [6]–[11].

In the special case of task parameters constant during each

demonstration, one possible implementation is to build a

trajectory models database, where each model and associated

task parameters are represented in the form of output vari-

ables (model parameters) and query points (task parameters).

This information is then used to retrieve new model param-

eters from the new task parameters. A popular non-linear

interpolation approach is to use Gaussian process (GP),

which has been employed in various Bayesian probability

modeling and regression problems [19].

For a set of new query points, and after centering the

training data, the joint distribution of the demonstrated and

new outputs can be estimated as
[

Θ

Θ
d

]

= N

(

0,

[

K(Q,Q)+σ2I K(Q,Qd)

K(Qd,Q) K(Qd,Qd)

])

, (1)

where Q is the concatenation of query points qm, and Θ

the concatenation of outputs θm, with m ∈ {1, . . . ,M}.
Squared exponential covariance functions K are considered,

with hyperparameters optimized for the specific extrapolation

requirements of the experiment.

The expected outputs Θ̂ associated with the new query

points Qd is given by

Θ̂ = K(Qd,Q) [K(Q,Q)+σ2I]−1
Θ, (2)

with the covariance of the prediction given by

Σ̂
Θ

= K(Qd,Qd)−K(Qd,Q)[K(Q,Q)+σ2I]−1K(Q,Qd).

The above formulation is independent of the trajectory

model parameterization employed. We implemented it here

as a Gaussian mixture model (GMM), and used Gaussian

mixture regression (GMR) to regenerate new trajectories

[12]. The parameters of a GMM with K components are

defined by {πi,µi,Σi}Ki=1, with πi the prior (mixing coef-

ficient), µi the center, and Σi the covariance matrix of the

i-th Gaussian component. By defining which variables span

for input and output parts (noted respectively by I and O
superscripts), a block decomposition of the datapoints ξn,

vectors µi and matrices Σi can be written as

ξn =

[

ξI

n

ξO

n

]

, µi =

[

µI

i

µO

i

]

, Σi =

[

Σ
I

i Σ
IO

i

Σ
OI

i Σ
O

i

]

.

GMR relies on the learned joint distribution P(ξI

n, ξ
O

n )
of the data ξn. At each reproduction step, the conditional

probability P(ξO

n |ξ
I

n) is estimated as an output distribution

N (µ̂O

n , Σ̂
O

n ), that is also Gaussian, with

µ̂O

n =
∑

i

hi(ξ
I

n)
[

µO

i +Σ
OI

i Σ
I

i
−1

(ξI

n − µI

i )
]

,

and Σ̂
O

n =
∑

i

h2
i (ξ

I

n)
[

Σ
O

i −Σ
OI

i Σ
I

i
−1

Σ
IO

i

]

. (3)



The activation functions hi in the above equations are

defined as

hi(ξ
I

n) =
πiN (ξI

n| µ
I

i ,Σ
I

i )
∑K

k πkN (ξI

n| µ
I

k,Σ
I

k)
.

Eq. (3) is computed in real-time from the model parame-

ters. The retrieved trajectory presents interesting smoothness

properties (infinitely differentiable) and encapsulates varia-

tion and correlation information in the form of a probabilistic

flow tube [20]. GMR has mostly been used in three manners:

1) as an autonomous system with ξ = [x, ẋ]⊤, by learning

P(x, ẋ) with a GMM, with x and ẋ representing po-

sition and velocity (either in task space or joint space),

and by retrieving iteratively velocity commands during

reproduction by estimating P(ẋ|x) with GMR [13], [21];

2) as an approach to couple the dynamical systems of a

dynamic movement primitive (DMP) [22], where GMR

provides a probabilistic formulation of DMP [1];

3) as time-indexed trajectories with ξ=[t,x]⊤, by learning

P(t,x) with a GMM, and retrieving P(x|t) with GMR

for each time step to reproduce a trajectory [12].

This last form will be used throughout this paper, but the

approach remains valid for the other encoding schemes.

Alg. 1 summarizes the GPR approach in the case of trajec-

tory models encoded as GMMs. The loop step in red (model

fitting) highlights the specificity of the approach to encode

each demonstration in a separated model. Although GPR can

handle nonlinear interpolation problems, its generalization

capability can degrade if the query points are too far from

the demonstrations (it collapses to an average of the models).

This will be tested later in the experiment.

B. Multi-streams approach

Another category of approaches relies on the encoding

of trajectories in multiple candidate frames of reference

[12]–[16]. The core strategy consists of observing the same

movement from different landmarks or coordinate systems,

and training a separated model in each frame. The learned

models are then merged during reproduction to reproduce a

generalized version of the movement. We will use the term

multi-streams to refer to this category of approaches.

Alg. 2 shows an implementation of such approach. The

loop step in red (model fitting) highlights the specificity

of the approach to encode data for each candidate frame

in a separated model. The core idea is to train GMMs

with the same dataset projected in the different frames,

generate new trajectories (and associated variations) with

GMR in the different frames, project back the resulting GMR

representations in task space, and multiply the resulting

Gaussians at each iteration to reconstruct the movement, see

[13] for details. GMR serves here the purpose of realigning

the different models (trained separately) with respect to

a common input. While accurate, the approach has some

computational disadvantages regarding the use of multiple

GMMs trained separately. This will be tested and discussed

later in the experiment.

1. Task demonstrations (M demonstrations)

- Set P (number of candidate frames)

for n← 1 to N , with N=
∑M

m Tm (for each step)

- Collect datapoint ξn
- Collect task parameters {An,j , bn,j}Pj=1

end

2. Model fitting

for j ← 1 to P (for each candidate frame)

- Set Kj (nb of components for frame j)

- Fit a GMM to {A−1

n,j [ξn−bn,j ]}
N
n=1 with EM

{πi,j ,µi,j ,Σi,j}
Kj

i=1

end

3. Reproduction

- Set the input I and output O elements

for n← 1 to T (for each reproduction step)

- Collect/select ξI

n and {An,j , bn,j}
P
j=1

for j ← 1 to P (for each candidate frame)

- Use GMR in Eq. (3) to estimate N (µ̂O

n,j , Σ̂
O

n,j)
- Project the resulting Gaussians with An,j , bn,j

end

- Multiply the projected Gaussians to retrieve ξO

n

end

Algorithm 2: Multi-streams approach.

1. Task demonstrations (same as in Alg. 2)

2. Model fitting

- Set K (number of components in the GMM)

- Fit a PGMM to ξ with EM algorithm of [2]

{πi, Z̃i,Σi}
K
i=1

3. Reproduction

- Set the input I and output O elements

for n← 1 to T (for each reproduction step)

- Collect/select ξI

n and {An,j , bn,j}
P
j=1

(concatenated in a vector Qd)

- Use Eq. (4) to estimate temporary GMM parameters

{µn,i}
K
i=1 modeling ξI

n and ξO

n as

ξI

n, ξ
O

n ∼
∑K

i=1
πi N (µn,i,Σi)

- Use Eq. (3) to retrieve ξO

n through GMR as

ξO

n |ξ
I

n ∼ N (µ̂O

n , Σ̂
O

n )
end

Algorithm 3: Standard PGMM.

C. Parametric Gaussian mixture model (PGMM)

The last category of approaches is to encode all demon-

strations in a single model. The parametric hidden Markov

model (PHMM) is a representative approach in this category.

It was originally introduced for recognition and prediction

of gestures [2], and extended in robotics to movement

generation [3], [17]. We will refer to a parametric Gaussian

mixture model (PGMM) when the transition and initial state

probabilities are not taken into account in the likelihood



estimation.2

The original model modulates each center through a linear

relationship with the task parameters, concatenated in a

vector Qd. Namely,

µn,i = Z̃i [Q
d, 1]⊤, (4)

with model parameter Z̃i, see [2] for details.

Alg. 3 gives a summary of the approach. One drawback

of standard PGMM/PHMM model is that only the centers

of the Gaussians are parameterizable. The covariances are

estimated as constant matrices Σi, with the standard EM pro-

cedure for GMM. We will show in the experiment that this

can be problematic when encoding continuous movements,

making EM converge to local optima unable to extract the

underlying structures of the task.

III. PROPOSED APPROACH

1. Task demonstrations (same as in Alg. 2)

2. Model fitting

- Set K (number of components in the model)

- Fit a model to ξ with the EM algorithm in Eq. (6)

{πi, {Z
µ

i,j ,Z
Σ

i,j}
P
j=1}

K
i=1

3. Reproduction

- Set the input I and output O elements

for n← 1 to T (for each reproduction step)

- Collect/select ξI

n and {An,j , bn,j}
P
j=1

- Use Eq. (5) to estimate temporary GMM parameters

{µn,i,Σn,i}
K
i=1 modeling ξI

n and ξO

n as

ξI

n, ξ
O

n ∼
∑K

i=1
πi N (µn,i,Σn,i)

- Use Eq. (3) to retrieve ξO

n through GMR as

ξO

n |ξ
I

n ∼ N (µ̂O

n , Σ̂
O

n )
end

Algorithm 4: Proposed approach.

The proposed approach shares connections with PGMM

models, but modulates both the centers and covariances

of the Gaussians, see also [1]. The learning problem is

set as maximizing the log-likelihood of the observations in

different candidate frames, under the constraint that these

observations are generated by the same source. Namely, each

frame j observes the same training datapoint ξn from its own

perspective through local projection. Similarly to the estima-

tion of the parameters of a standard GMM, deriving this

constrained optimization problem results in an expectation-

maximization (EM) algorithm that guarantee to improve the

likelihood of the model at each iteration.

The parameters of the proposed model are

{πi,Z
µ

i,j ,Z
Σ

i,j}, representing respectively the mixing

coefficients, centers and covariances matrices for each frame

j and mixture component i. At iteration n, the resulting

2Note here that the term parametric in PGMM/PHMM (referring to
task parameters) can be ambiguous because a standard GMM can also be
described as a parametric model (i.e., with model parameters). We still keep
this terminology here to match with the original model description.

center µn,i and covariance matrix Σn,i of each component

i correspond to products of linearly transformed Gaussians

N (µn,i,Σn,i)=
P
∏

j=1

N
(

An,jZ
µ

i,j+bn,j , An,jZ
Σ

i,jA
⊤

n,j

)

,

computed as

Σn,i =
(

P
∑

j=1

(An,jZ
Σ

i,jA
⊤

n,j)
−1

)

−1

,

µn,i = Σn,i

P
∑

j=1

(An,jZ
Σ

i,jA
⊤

n,j)
−1(An,jZ

µ

i,j+bn,j). (5)

The parameters of the model {πi,Z
µ

i,j ,Z
Σ

i,j} are itera-

tively estimated with the following EM procedure.3

E-step:

γn,i =
πiN (ξn|µn,i,Σn,i)

∑K

k=1
πkN (ξn|µn,k,Σn,k)

.

M-step:

πi =

∑N

n=1
γn,i

N
, Zµ

i,j=

∑N

n=1
γn,i A

−1

n,j [ξn − bn,j ]
∑N

n=1
γn,i

,

ZΣ

i,j=

∑N

n=1
γn,i A

−1

n,j [ξn−µ̃n,i,j ][ξn−µ̃n,i,j ]
⊤A−⊤

n,j
∑N

n=1
γn,i

,

with µ̃n,i,j=An,jZ
µ

i,j+bn,j . (6)

Note that, in contrast to the multi-streams approach, a

single EM process is used to iteratively refine the model

parameters, where the E-step considers the influence of the

different frames for clustering the data in a common frame,

see Eq. (5) for the computation of µn,i and Σn,i in the E-

step. The model parameters are initialized with a k-means

procedure modified similarly as for the EM algorithm.

Alg. 4 describes the overall process.4 Model

selection is compatible with the techniques employed

in standard GMM (Bayesian information criterion,

Dirichlet process, etc.). The Matlab and C++ source

codes of the proposed model are available on

http://programming-by-demonstration.org.

In the next section, the advantage of the proposed approach

is demonstrated with an experiment of rolling out a pizza

dough.

3The proof is omitted here due to space restriction but can be retrieved by
differentiating (with respect to Z

µ

i,j and ZΣ

i,j ) the log-likelihood function

from Eq. 5. The result shares similarities with the estimates for µi and
Σi in EM applied to GMM, with the difference that in the case of Z

µ

i,j

and ZΣ

i,j , the data are locally projected through the inverse of the local

transformation defined by An,j and bn,j . Indeed, the role of EM in a
standard GMM is to estimate constant model parameters µi and Σi, while
in the proposed task-parameterized model, EM estimates Z

µ

i,j
and ZΣ

i,j by

incrementally refining the local importance of the candidate frames for the
overall task.

4In step 3), the temporary GMM parameters do not need to be re-
estimated if {An,j , bn,j}

P
j=1

do not change over time. Namely, if the

candidate frames do not move during the movement, {µn,i,Σn,i}
K
i=1

can be evaluated only once at the beginning of the movement to reduce
computation.



IV. EXPERIMENTAL SETUP

We consider the movement of rolling out a pizza dough

demonstrated by kinesthetic teaching, see Fig. 1. Such task

is used as an example of movement modulated locally by the

position and orientation of an object (the dough). The user

simulates a movement that would increase the dough surface

to make the pizza circular.5 The task is to move the rolling

pin from an initial pose in the robot workspace to the center

of the dough, then move back and forth the rolling pin in a

direction following the minor axis of the dough shape, and

finally lift the rolling pin to let the vision system track the

dough again.

The experiment is implemented in a Barrett WAM torque-

controlled 7 DOFs manipulator with a rolling pin mounted

at the end-effector. The robot is gravity-compensated during

demonstrations and reproductions, with a wrench command

to keep the orientation of the end-effector perpendicular to

the worktop.

The resulting trajectories are tracked by a virtual spring-

damper system, whose attractor and stiffness matrix are

respectively defined by the center of the retrieved Gaussians

in Eq. (2) and associated precision matrices (inverse of

covariances). Forces acting as gravity compensation are su-

perposed to the tracking forces, resulting in a safe controller

for the user, who can exploit the redundancy of the robot

and the redundancy of the task during demonstration and

reproduction, see [23] for details of the controller. For

example, when sharing the workspace with the robot, the user

can during reproduction change the position of the robot’s

elbow to have more space.

Two candidate frames are considered (P = 2): the fixed

robot frame (useful for the first part of the motion) and a

frame defined by the dough location and shape extracted by

a camera (based on color information). By assuming that

the duration of the movement is not modulated by the task

parameters, we have bn,1=0, An,1=I and bn,2=[0,pn]
⊤,

An,2=
[

1 0

0 Rn

]

, with pn and Rn the position and orientation

of the dough at time step n (An,j ∈R4×4, I is the identity

matrix, 0 are zeros vectors of appropriate sizes and Rn is a

direction cosine matrix).

The motions are described by three variables (D=3) rep-

resenting the position of the rolling pin, with an orientation

actively maintained to follow the movement direction. Four

demonstrations with different positions and orientations of

the dough are provided to the robot by kinesthetic teaching.

Models with K = 6 components are considered in the

experiment (selected empirically).

V. EXPERIMENTAL RESULTS

We compared the proposed approach (Alg. 4) with the

three models described in Algs 1, 2 and 3.

5In a real pizza making process, other elements would come into play
such as friction, softness of the dough, flour on the worktop, etc. In our
experiment, the dough is pre-shaped in an elliptical form and no force is
applied to it.

Fig. 2. Snapshots of a typical reproduction result performed in a new
situation that has not been demonstrated to the robot.

Demonstrations

Proposed approach

Standard PGMM

Multi-streams approach

GPR with trajectory models database

0.2 0.9

−0.2

0.4

x1

x
2

Fig. 3. Demonstrations and reproductions in the same situations (top-view
of the worktop). Initial positions are plotted with points, and doughs are
plotted with ellipses.

Fig. 2 presents snapshots of the reproduction results in

new situations,6 which can also be seen in the video ac-

companying the paper. Fig. 3 presents the demonstrations

and reproductions results. For the same situations, all models

produce smooth trajectories passing over the dough. Namely,

the movement starts with a path in the robot frame that

progressively moves towards the dough, and when reaching

it, moves the rolling pin back and forth in a direction parallel

to the minor axis of the dough.

Fig. 4 presents interpolation and extrapolation results. All

6The most representative reproduction attempts are depicted here, since
the results can randomly differ with the k-means initialization.



Proposed approach

Standard PGMM

Multi-streams approach

GPR with trajectory models database

Fig. 4. Reproductions in new situations (new task parameters). The ’+’
signs depict the dough positions used to train the model.
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Fig. 5. Comparisons by considering the root-mean-square error between
the demonstrated and reproduced trajectories (for the same situations as
the demonstrations), the likelihood of the model retrieved after regression,
the computation time for each reproduction step and a simulated surface
elongation score for the reproductions with new task parameters. This score
estimates the extrapolation capability by using the datapoints on the surface
of the dough to measure the cumulated distance along the minor axis
minus the cumulated distance along the major axis. This score reflects the
requirement of spreading the dough in a desired direction. The error bars
show standard deviations over the sets of datapoints and trials.

approaches show good interpolation capability (first graph).

The proposed approach and the multi-streams approach stand

out in terms of extrapolation (last three graphs), both being

capable of adapting the movement outside the region covered

by the demonstrations (depicted by ’+’ signs).

Fig. 5 provides quantitative comparisons with four crite-

rions, highlighting the overall advantages of the proposed

approach. The first two graphs show that for the same

situations, the proposed model can regenerate movements

closely matching the demonstrations, with the best likelihood

fit over the other approaches. The third graph shows the com-

putation time improvement over multi-streams approaches

that require more Gaussians products operations. The last

graph shows that the proposed approach has on average the

best extrapolation capability, with more consistent results

than the other approaches. These results concord with our

expectation that task-parameterized models extracting the

local structures of the task can improve generalization and

speed up the retrieval process.

VI. DISCUSSION

The proposed model circumvents the shortcoming of stan-

dard PGMM/PHMM that only the centers are influenced

by the task parameters. The results show that adapting

covariance matrices to external task parameters is crucial

when modeling continuous movements. The covariances

represent the principal direction of the movement, the local

synergies among the variables, and the variations between

demonstrations (e.g., to determine which parts of the motion

need to be reproduced precisely and which parts can be more

loosely reproduced).

A common practice to prevent this problem in standard

PGMM/PHMM is to increase the number of Gaussians,

which has the effect of reducing the relevance of the co-

variance information in the modeling of the movement. It

however degrades the parsimony of the model and comes

at the expense of losing information about the local shape

of the movement. By increasing the number of Gaussians,

each covariance will provide only narrow and unusable

information instead of the important local neighborhood

characteristics, synergies and shapes of the movement.

Other approaches were previously proposed for adapting

covariances to task parameters. Inspired by PHMM, Brand

and Hertzmann proposed in [5] a parameterization mod-

ulating both centers and covariances, used to synthesize

novel motion data in computer graphics applications. The

perspective was however different, by identifying common

choreographic elements (and the different styles in which

each element is performed), with a small number of stylistic

variables describing the variations in the dataset.

By using PHMM, Krueger et al [3] proposed to tackle the

problem of parameterizing both the centers and covariances

by encoding each demonstration in a separated model. After

proper realignment, a resulting model is estimated as a

weighted sum of the centers and covariances of the different

models. For our application, the drawback of this approach is

that it only considers scalar scaling transformations of the co-

variances instead of linear transformations. It does not allow

the system, for example, to re-orient a normal distribution

with respect to landmarks in the robot’s environment (e.g.

to approach an object from a desired angle to facilitate its

prehension).7

The approach that we propose is well suited for problems

in which the task parameters can be represented in the form

of coordinate systems. However, for task parameters that can-

not be represented in such way, the standard PGMM/PHMM

7For example, if a Gaussian in a first demonstration has a main axis
oriented at 0 degree, and if the corresponding Gaussian in a second
demonstration has a main axis oriented at 90 degree, the weighted sum (with
equal weights) will result in a circular covariance, instead of a Gaussian with
main axis oriented at 45 degrees.



remains a better modeling choice because it does not require

the separation of the task parameters into an offset value (po-

sition b of the observer) and basis vectors forming a matrix

A. The standard PGMM/PHMM can also tackle the reverse

problem of estimating the task parameters from observations

in a more straightforward manner. Indeed, in the proposed

approach, the parameters representing the coordinate systems

are combined in such a way that the estimation of the

task parameters from observed data becomes more complex.

This issue will require further investigation (b can easily

be estimated in a closed form, but A requires an iterative

procedure).

The proposed model and the multi-streams approach share

the common perspective of probabilistically representing the

local importance of different coordinate systems. While this

is done as separated batch learning processes in multi-

streams GMR (projection, EM learning, back-projection and

recombination with Gaussians products), the proposed ap-

proach permits us to formulate the different steps directly

in the EM procedure, resulting in a mixture of Gaussian

products organizing the different Gaussian components in

a principled manner, and speeding up the retrieval process.

VII. CONCLUSION AND FUTURE WORK

By building up on previous work in PGMM/PHMM,

multi-steams GMR and GPR with trajectory models, we

presented a statistical model and an associated EM algorithm

to encode and reproduce task-parameterized movements. We

showed that the proposed approach has several advantages.

It ameliorates PGMM/PHMM adaptability by parameterizing

not only the centers of the Gaussians but also the covariances.

It is faster and more consistent than multi-streams GMR by

relying on a single EM process rather than learning separated

models. It shows extrapolation capability that go beyond

approaches relying on interpolation principles such as GPR.

This generalization capability is crucial for scaling up imita-

tion learning challenges to skills of increasing complexity, for

which it can be difficult to guarantee that the demonstrations

cover a sufficient range of situations.

Our future work include several perspectives. The frames

of reference considered in the experiment were defined by

Cartesian coordinate systems. The approach, however, does

not require this assumption to be made, and the candidate

frames do not need to have the same dimensions. Non-

squared A matrices could also be considered, which could

for example be exploited to learn skills requiring joint space

and task space coordinates. Also, the current paper focused

on acquiring trajectories. We will study in future work if

such models could similarly learn reflex behaviors that are

shaped by task parameters (including force signals), which

would be relevant for robots faced with continuous sources

of perturbation.
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