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Abstract— Mobile manipulators have brought a new level
of flexibility to traditional automation tasks such as tabletop
manipulation, but are not yet capable of the same speed and
reliability as industrial automation. We present approaches to
3D perception and manipulator motion planning that enable a
general purpose robotic platform to recognize and manipulate
a variety of objects at a rate of one pick-and-place operation
every 6.7 s, and work with a conveyor belt carrying objects at
a speed of 33 cm/s.

I. INTRODUCTION

Robotics researchers regularly endow robot platforms with
new capabilities that increase the breadth of potential appli-
cations and push the boundaries of autonomy. In contrast,
industrial automation is driven by a pragmatism dictated by
the need to optimize throughput and reliability. The hope of
both is that, as multi-purpose robotic platforms become more
capable, they will be able to take over an increasing fraction
of the tasks currently handled by application specific, fixed
installation automation, thereby granting all applications
greater levels of modularity and adaptability.

We are now seeing an acceleration of the rate at which
research robotics feeds into engineering practice. This
crossover is arguably being led today by Rethink Robotics’s
Baxter platform: a movable manipulation platform with many
of the characteristics of general purpose research platforms,
but sold to industry customers. On the research side, general
purpose robotics has taken a large step forward over the past
few years, driven in no small part by the development of
Willow Garage’s ROS software ecosystem, Willow Garage’s
PR2 mobile manipulation platform, and Microsoft’s Kinect
sensor that has made RGB-D perception ubiquitous in robot
perception.

We apply these technologies to the problem of tabletop
manipulation at performance levels relevant to industrial use.
Performing this task involves 3D object recognition, pose
estimation, and the planning of collision-free manipulator
trajectories to first grasp an object, then move it to its
destination. We present a high performance, high precision
perception and planning combination that enables the PR2
to perform pick-and-place operations on dynamic objects by
working with a conveyor belt that drives objects past the
robot at a speed of 33 cm/s.
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II. RELATED WORK

Factory automation typically relies on careful environment
control and predictable inputs. Industrial perception has
historically relied on 2D visual sensing where vision sensing
is required [1]. This state of affairs is changing as general
purpose robots lead the shift to less structured environments,
a greater variety of behaviors, and full 3D perception and
planning.

Recent approaches to perception for manipulation has
moved beyond standard 2D image processing by applying
a variety of new sensing modalities to the problem. A multi-
flash camera sensor has been used to observe depth edges
of parts piled in a bin [2]. This work focused on fine
manipulation in a highly cluttered environment, and was able
to achieve a 94% success rate with just under one second
spent on object pose estimation. Object recognition and pose
estimation in complex, noisy scenes is also demonstrated in
[3] by relying on an RGB-D sensor.

An example of a responsive general purpose robotic plat-
form interacting with moving objects may be found in [4], in
which a mobile humanoid robot is given the ability to catch
balls tossed toward it. This application requires great care
and attention be given to processing time, as being late is
not an option. In this case, the software performs real-time
circle detection at 35 ms per image.

The aforementioned PR2 has been used extensively in
tabletop manipulation research [5]. This work focused on
reliability and modularity, and has been demonstrated to
enable the PR2 to pick up a variety of objects, including
those previously unknown to the software.

Raw performance of perception for manipulator planning
was a primary consideration in [6], in which a signed
truncated distance field computed from Kinect data on a
high-end GPU is used to drive manipulator planning. The
result is the ability of a manipulation system to execute a
planned, collision free path three seconds after first exposure
to the scene.

III. PERCEPTION

The perception system employed here is made up of a
staged processing pipeline based on RGB-D sensor data,
and the PR2’s own pose estimation, Figure 1. The system
is given information about objects of interest at startup, then
takes its input from ROS, and publishes localized, identified
objects as they are detected. The overall procedure is that
table geometry is extracted to perform an initial interpretation
of the scene that disregards a large fraction of sensor data.
Detected points that lie above the work surface are clustered,
and those clusters are recognized and localized to provide



Fig. 1. The perception system is driven by registered depth and color
images paired with an estimate of the RGB-D sensor’s pose in the robot’s
coordinate frame. The dimensionality of the data processed by each stage
is indicated in the figure, illustrating places where dimensionality reduction
is used to improve efficiency.

a pose estimation of identifiable objects. The individual
components of the perception pipeline are described in detail
below.

A. Conventions

The robot coordinate frame is used to identify features of
the system and the environment in the following discussion.
The convention followed is that common to ROS: a right-
handed coordinate system with the X axis extending forward
from the robot, the Y axis extending to the robot’s left,
and the Z axis extending up from the base. Objects may
be positioned anywhere on the table surface, and are free to
rotate about their vertical axes.

B. Work Surface Extraction

During execution, the table height, direction, and extents
are periodically re-estimated from direct observation. This
process is run every ten seconds to allow for robot movement
during operation without requiring a reset of the system. In
this stage, we search for a connected component of the depth
image that is dominated by points within a narrow range
of heights above ground level using a recursive histogram
analysis.

The inliers of a successful analysis – consisting of a
significant fraction of points within 2 cm of each other when
projected onto the Z axis – are then used to extract the table
orientation and extents which are used in subsequent object
extraction. The table orientation is calculated as the eigen-
vector corresponding to the largest magnitude eigenvalue of
the covariance matrix of the inlier points projected onto the
XY plane. When a new table estimate is computed, it is
atomically swapped into a memory cell referenced at the
start of each new object detection update.

C. Coarse Recognition and Localization

Upon arrival of a pair of registered depth and color images,
all points not within a space above the table geometry

previously extracted are immediately removed. The remain-
ing points are projected onto the line corresponding to the
table direction, and clustered using a histogram analysis.
These clusters are then run through a quick summarization
procedure to determine if they could possibly be an object of
interest. This check involves computing statistics regarding
the HSV colors of the pixels corresponding to cluster points,
and the overall spatial extents of the cluster. For instance, if
a cluster has a vertical extent of only 10 cm, it will not be
identified as an object known to be 30 cm tall. Each object
type of interest is therefore accompanied by constraints on
allowable color and bounding geometry features.

Multiple coarse recognizers corresponding to the known
object vocabulary may support any given cluster. All clusters
recognized by at least one coarse recognizer have their
centroids computed, and are fed forward in the system. When
no coarse recognizer fires, this processing stage provides an
opportunity for early exit.

D. Refined Recognition and Localization

The objects to be recognized and localized must be mod-
eled before the system will identify them as anything other
than unknown obstacles. A point cloud of an object’s surface
is first captured, then used to construct a truncated distance
field representing a uniform sampling of a cost function
whose minimal manifold corresponds to the surface of the
object model. This sampling is computed by performing a
Euclidean distance transform (EDT) on a voxel grid popu-
lated from the model point cloud. This preprocessing step
is efficiently performed across multiple CPU cores using the
approach described in [7].

Observed point clusters are recognized by finding a
2D transformation that minimizes this cost function when
summed over all observed points. This approach is similar to
[8], but the nonlinear optimization technique employed here
is Powell’s dogleg method [9]. The optimization procedure
iteratively evaluates 2D transformations applied to 3D points
whose transformed coordinates are used to index into the
sampled cost function until a local minimum is found.

The necessary arithmetic and memory access patterns for
this operation lie squarely within the core competencies of
hardware designed for graphics acceleration. By loading the
sampled cost function into a 3D texture in OpenGL, the cost
of each transformed point is obtained by looking up a floating
point value in a texture. The graphics processing unit (GPU)
is used to perform linear interpolation along each axis of
this texture lookup to further smooth the search space, and
texture coordinates are clamped to truncate the cost function
out to infinity, thereby mitigating the deleterious effects of
outliers.

First, the image coordinates of the relevant points are
translated to a cropped coordinate frame containing only the
observed points. These coordinates are then paired with the
3D points reconstructed from the depth data, transformed
into the object’s coordinate frame using the points’ centroid
as the origin, and loaded onto the GPU. The 2D projection
of the original data is used to address the output data as it



is, by construction, an injective mapping from 3D points to
2D coordinates.

A GLSL vertex shader applies the candidate transforma-
tion, while passing through the 2D coordinates for each point
unchanged. The fragment shader looks up the distance value
from the cost function texture, and writes the interpolated
value it arrives at to that point’s location in the cropped 2D
coordinate frame. Additionally, the optimization procedure
lends itself to a batch interface, wherein several choices of
parameters are evaluated in an overlapping fashion, thereby
allowing the GPU to compute a cost function evaluation
while asynchronously transferring the results of previous
evaluations back to the CPU.

When the optimization process has finished, the aver-
age distance from each point in the observation under the
minimal-cost transformation to the object model is consid-
ered to determine if we have a successful identification.
Multiple optimizations may be performed to resolve the am-
biguity of multiple coarse recognizers positively identifying
point cluster summaries. An additional gain in efficiency
is found by considering the rotational symmetry of each
object. The general problem of identifying a 2D translation
and 1D rotation is, for example, reduced to just the 2D
translation optimization for objects that are fully symmetric.
The rotational symmetry of each object is therefore recorded
along with the object model information used by the coarse
recognition step.

E. Tracking

The above process is applied to a small number of ob-
served point clusters, while the rest are left as unidentified.
All clusters are then passed to a tracking component that
models the kinematics of both identified and unidentified
point clouds. Observation integration is achieved by main-
taining a track state that includes both object position and
velocity in a Kalman filtering framework.

Inspired by the linear arrangement of objects on a long ta-
ble, observations are aligned with existing estimates using the
Needleman-Wunsch optimal matching algorithm [10]. This
algorithm provides a principled way to match predictions of
a linear chain of states to observations while taking potential
object identification as well as position into account. In the
usual application of this algorithm to string alignment, skip
characters may be added at any point in one or the other
strings. These are points at which two strings do not align,
but whose removal from one string allows a likely match
to continue beyond the missed location. The algorithm thus
prevents us from aligning a track identified as one object
with an observation identified as a different object type, and
provides the necessary mechanism to inject new tracks and
deal with data dropout.

The motion model used for tracking is one of zero
acceleration. Furthermore, we are interested in the problem
of tracking objects undergoing identical motion. We take
advantage of this commonality by initializing the position
covariance estimate of a new track by a sensor noise model
as is usual, but carry over both velocity value and covariance

from previous tracks. This causes the velocity estimate of
successive tracks to adhere very tightly to a robust running
average.

Final reporting from the tracker is governed by a con-
figuration parameter indicating how many observations of
any given track are needed before reporting is warranted.
When a recognized object track is reported, a bounded
history of orientation estimates provided by the localization
optimization is passed through a RANSAC [11] procedure to
compute a robust mean. The special consideration given to
object yaw is due to the expectation that yaw measurements
will be the noisiest axis of observation due to varying
geometry occlusion as the view of an object changes over
time. Consider, for example, a round watering can with a
long spout. The yaw estimate for such an object will likely
be much better when computed from views in which the
spout is visible than those where it can not be seen.

IV. MANIPULATION

When an object is detected, the pick-and-place manip-
ulation pipeline gets called to pick up the approaching
object and move it to a desired location. The manipulation
pipeline is comprised of three main components, namely
grasping, motion planning and execution. In this section we
will discuss each component in depth. Before the pipeline
is called, an arm is chosen to pick up the object. In our
experiments, we are using a PR2 robot with two arms.
Currently we are simply alternating between the arms. If no
feasible grasps for the first arm are computed, we have found
that quite often the other arm is capable of performing the
pick-and-place action after receiving the next observation.

Note, that the same exact system is used for manipulating
both static and dynamic objects. In the case of the static
object, the entire pipeline just executes immediately, instead
of waiting for the object to enter the robot’s workspace.

A. Grasping

Reliable grasping of a static object by a robot’s end-
effector can be a difficult task given the uncertainty in each
part of the system, from the object pose estimation to the
robot’s mechanical calibration. Additional problems arise
when the object is moving at a fast speed. To simplify the
grasp planning, we exploit the fact that we have a well-
defined set of objects to be manipulated. This allows us to
restrict the set of grasps for each type of object to ones that
we have previously tested and saved in a database. Once an
object is detected, the grasps are retrieved and checked for
feasibility. We will now explain each component of the grasp
selection process.

Types of Grasps. The process of picking up an object
requires the end-effector to move between three different 6-
DOF poses:
• pregrasp - An end-effector pose that is offset from

the object (see Figure 2, left). The motion planner is
used to plan a collision free trajectory from the arm’s
waiting configuration to a valid configuration with the
end-effector at the pregrasp pose.



Fig. 2. From left to right, the user moves the end-effector to the pregrasp
pose and then to the grasp pose. The pair of grasps is added to the database
as they appear on the right.

• grasp - The pose of the end-effector in which its fingers
are in position to reliably enclose part of the object (see
Figure 2, middle).

• postgrasp - The end-effector pose after it moved away
from the surface with the object grasped. The motion
planner is then used to compute a feasible motion for
the arm that takes the end-effector from the postgrasp
to the desired place location.

Recording Grasps. Prior to manipulating a new object, we
create a set of grasps for it. We found the grasp recording
process to be simple and reliable. The process begins by
placing the object within the workspace of either one of the
arms and within the RGB-D sensor’s view. Once the item
is localized, the user is asked to move the end-effector to
the desired pregrasp pose and the 6-DOF pose of the end-
effector in the coordinate frame of the object is recorded.
The process is repeated for the grasp pose. The pregrasp
and grasp pair are then added to the set of grasps for that
object type in the grasp database. In general, we found that
a single set of postgrasp positions can be used for all object
types so the user is not required to record a postgrasp for
each object. Instead, the grasp orientation is paired with a
set of postgrasp translations above the object for each object
type. In our experiments, the set of grasps for each object
contains between two and twenty pregrasp-grasp pairs. See
Figure 2 for an example.

Grasp Selection. Upon detection of a new object, we use
its estimated pose and velocity to predict tpred and xpred.
tpred is the time at which the object will be at the center of
the workspace of the arm and xpred is the predicted 6-DOF
object pose in the world. The object type is used to retrieve
a set of pregrasps and grasps from the database. For each
pregrasp, pi, we use xpred to compute xpi

, the pregrasp pose
in the world frame for when the object will be at its predicted
pose. The same is done for each grasp gi to compute xgi .

Before we add {xpi
, xgi} to Xpg , the set of feasible

pregrasp-grasp tuples, the following two feasibility checks
are performed on each tuple:
• chase grasps - It is very difficult to pick up a moving

object using a grasp motion that is chasing it along
the direction of its velocity, vobject. It rarely succeeds
if vobject is equal to or greater than the maximum
speed of the end-effector along the grasp motion. Thus,
we chose to filter out the chase grasps completely by
detecting if the pregrasp to grasp motion is moving in
the same direction as vobject. We do this by computing
c = ‖vobject‖ · ‖xgi‖. If c < k◦, the tuple is deemed

Fig. 3. The end-effectors in green are included in Xpg , while the ones
shown in red are discarded by the kinematic feasibility check.

too similar to the object’s velocity and it is rejected. In
our experiments, we set k to correspond to an angular
difference of −30◦.

• kinematics - We check if each xpi
and xgi is kinemati-

cally feasible for the arm of the robot using an inverse
kinematics solver to compute the corresponding joint
configuration. If either is invalid, the tuple is rejected.
In Figure 3, six pregrasp-grasp tuples are shown for the
basket. After they are checked for kinematic feasibility,
the ones in red (darker color) are discarded because they
are unreachable by the right arm.

Given a set of valid grasps, researchers often select the
best grasp to plan to using some heurisics [12]. However,
in our domain, this approach can be overly restrictive, as
the feasibility of the grasp depends on the estimated time
of arrival of the object. The better option is to let the
planner itself figure out which grasp to plan to given the
time constraint. Thus, instead of choosing a single pregrasp-
grasp tuple to target, the entire set of pregrasps in Xpg is sent
to the motion planner, allowing the planner to determine the
{xpj , xgj} in Xpg that is feasible and optimizes costs well.
After a plan is computed by the planner, the final waypoint of
the planned path to the pregrasp, xpj

, chosen by the planner.
We use the corresponding grasp, xgj as the grasp pose.

Computing the postgrasp is a straightforward process,
generic across object types. Given the grasp, xgj , we com-
pute the postgrasp, xpoj , by searching through the set of
postgrasps for a kinematically feasible arm configuration that
is as far from the table as possible. In our experiments, we
found that the xpoj chosen was typically within 12cm of xgj .

B. Motion Planning

In an environment where robots work alongside people,
it is important that the robot’s behavior is consistent and
predictable. This way, any human workers nearby can feel
comfortable and safe around it. In particular, for a robot to
be an effective member of a team on an assembly line that
sorts moving objects into bins, the robot motions needs to be
consistent, predictable and as close to optimal as possible in
order for people to be able to work alongside and within the
workspace of the robot. With this in mind, we implemented



a heuristic search-based approach to generate motion plans
for each of the robot’s arms independently.

Heuristic searches such as A* provide strong theoretical
guarantees such as completeness and optimality or bounds
on suboptimality [13]. Their generality allows for complex
constraints and cost functions, while providing good cost
minimization and consistency in the solution. Consistency
here implies that given similar input, similar output is pro-
duced, thus making the robot’s motions more predictable.

Motion planning for pick-and-place of moving objects
needs to be performed as fast as possible so the robot has
enough time to execute the computed motions in time. To
combat the high dimensionality of the planning problem,
we employ a heuristic search based approach that uses an
anytime variant of A* called ARA* [14] that quickly finds
an initial, and possibly sub-optimal, solution and repairs it
while deliberation time allows. The approach also relies on
a compact graph representation and informative heuristics to
provide real time performance. Details on this approach and
applications to single and dual-arm motion planning can be
found in [15], [16].

We configured the planner to search in a 7 dimensional
task space, {x, y, z, roll, pitch, yaw, θ}, that represents the
6-DOF pose of the end-effector in the world frame, coupled
with θ, the position of the redundant degree of freedom in the
robot’s arm. This representation can be used when planning
for a robot with one or more 7-DOF manipulators, such as the
PR2 robot. In our experiments, we execute two independent
instances of the planner, one for each arm. The cost function
we use is aimed to minimize the 6-DOF path length of the
end-effector.

During the pick action, the planner is called to plan a
path from the waiting configuration of the arm to one of the
pregrasps in Xpg . Before planning begins, the geometry of
the fixed objects in the robot’s workspace are added to the
collision representation. In our experiments, this included the
conveyor belt and bins that surrounded the robot. After the
robot grasps the object, the collision geometry of the object
is attached to the robot’s collision model. During the place
action, a plan is requested from the postgrasp to any one of
the drop poses above the bins. Note that there is nothing
constraining the user from having the robot gently place
the item on a surface instead. Now that a potentially fragile
object (or an object filled with something) is grasped in the
robot’s end-effector, we impose an upright path constraint
on the planner when computing a path for the place action.
The constraint requires the planner to maintain the initial
{roll, pitch, yaw} of the end-effector throughout the path
with a small tolerance in each dimension.

After a path is computed, we pass it through a simple
deterministic shortcutting routine that can deal effectively
with discretization artifacts. We found that only a single
pass through the points was necessary. In our experiments,
the entire shortcutting step lasted between 5-10ms, including
checking the interpolated motions for collisions every 2◦.

The ability to accurately predict the time it takes to
execute a trajectory is essential to picking up a quickly

moving object. Being that our motion planner plans solely
for the kinematics of the arm, we then perform a final
post-processing step, in which the shortest timing intervals
between points are computed that enforce the robot’s dy-
namic constraints [17]. The waypoint locations themselves
are not moved, instead feasible velocities and accelerations
are assigned. We found in our experiments that on average,
for a given trajectory, the predicted execution timing and the
actual trajectory execution timing differ by approximately
80 ms.

C. Execution

Given that the object is moving at a reasonable pace,
the pick action is substantially more difficult to execute
than the place because very precise timing is needed to
succesfully pick up the object with a firm grasp. For example,
in our experiments the objects moved at approximately
33 cm/s across the robot’s workspace. At that velocity, if the
execution of our grasp motion is 100 ms too late, the object
will have passed xpred by more than 3 cm, and, depending
on the type of the object, it is very likely that the end-effector
will swipe and miss.

Pick Action. At this stage in the pipeline, it is confirmed
that the entire pick action is kinematically feasible. In the
case of the pick action, the following two trajectories have
been generated:

• trajp - The pregrasp trajectory begins at the waiting
configuration of the arm and ends at xpj

. It is a
collision free path generated by the motion planner, then
shortcutted and filtered. trajp has a predicted trajectory
execution duration of dppred

seconds.
• trajg - The grasp trajectory begins with the wrist at
xpj , then moves to xgj and ends at xpoj . The path is
an open loop motion in which the end-effector moves a
very short total distance. trajg is filtered to assure the
robot can execute it. Note that we define dgpred as the
predicted trajectory execution duration of the trajectory
from the start until xgj . We disregard the execution time
from xgj to xpoj because the first half of the motion is
the only time sensitive component, given that the end-
effector has to be at xgi to pick up the object at xpred
at time tpred.

The next step is to determine whether there is enough
time for the robot to execute both trajectories in time to
pick up the object at tpred. The pickup is determined to be
feasible if tpred > (tnow + dppred

+ dgpred). If the pickup
is feasible, then trajp is executed immediatly. After it is
completed, trajg will begin execution at tgexecute = tpred−
dgpred . The end-effector is commanded to start closing as it
is approaching the grasp pose. In our experiments, we found
that depending on how early the object was detected and
which arm is being used, the robot would sleep for between
0.0 and 1.5 seconds between executing the trajectories to
ensure a well-timed grasp.

Place Action. After the object is grasped and raised to the
postgrasp, there is not much work left to do. The computed



Fig. 4. The objects used for all experiments.

path with the upright orientation constraint on the end-
effector is executed immediatly. After the end-effector opens,
allowing the object to drop into the desired bin, the arm
returns to the waiting configuration. The purpose of the
waiting configuration is two fold. First, it is intended to
keep the arm that is closer to the feed edge of the belt out
of the view of the RGB-D sensor, regardless of where the
bins are located. Second, it is desirable to keep the arm in
a configuration that is close to the table to aid in quicker
reaction times by having to execute shorter trajectories.

V. EXPERIMENTS

A. Computing Platforms

All logic related to planning was executed onboard the
PR2’s own computers. The perception software was hosted
remotely on a desktop computer with an Intel Core i7-2600
quad-core CPU at 3.4GHz and an NVIDIA GeForce GT
420 GPU with 48 CUDA cores, a low-end graphics card
from 2010. The imposition of networking between these two
critical components adds a significant and variable amount
of latency to the system, however the PR2 used for these
experiments did not have a discrete GPU, and so could not
host the perception system itself. The perception pipeline was
written in the Haskell functional programming language, and
compiled with the GHC1 7.6.1 compiler.

B. Object Selection

The objects chosen, Figure 4, range in height from 15 cm
to 45 cm, and breadth from 8 cm to 25 cm. These objects
also display a variety of rotational symmetries, which affects
their localization and how the objects may be grasped. The
candlesticks and tall green bottle have an infinite order of
rotational symmetry, denoted C∞, which translates to a
freedom to grasp such an object from any angle, and frees
the localization optimization from needing to consider object
orientation. The shoe is not rotationally symmetric, denoted
C1, and must be grasped from its open end. The spritzer
bottle is also C1, but may be grasped from either side to
hook the PR2’s fingers underneath the overhanging geometry

1http://www.haskell.org/ghc

of the trigger mechanism. The various baskets are all C2, as
their handles may be grasped from either side.

Object models were acquired using RoboEarth software
[18], a poster with fiducial markers, and a Kinect sensor. The
models gathered for the experiments described here consist
of 500 thousand to 1 million points.

C. Pick-and-Place

Figure 4 shows the conveyor belt used for testing both
static grasps, in which objects are placed on the surface in
front of the PR2 with the belt motor turned off, and dynamic
grasps, in which the belt motor is on. In the static grasp
configuration, the robot’s head is oriented so that it is looking
down at the table, and objects are rapidly placed in front of it.
As soon as the robot begins to clear the work surface with an
object in hand, a new object is placed on the surface. Objects
are placed such that at least one arm can plausibly perform
a grasp, but precise position and orientation are allowed to
vary within that constraint.

The experiment conducted in the static grasp configuration
involved 100 pick-and-place operations in which the robot
removes an object placed onto the work surface in front of
it, and places the object into one of two bins placed on
either side of it. Of the 100 attempted actions, 91 were
successful. The most common failure mode involved the
object slipping out of the robot’s gripper due to an insecure
grasp. These 100 actions were timed in blocks of 10, yielding
an average of 6.7 s per pick-and-place action. During the time
these experiments were conducted, the perception system
failed to identify an object before a two second timeout
period elapsed on two occasions. The experiments in which
perception failed are not included in the reported time, as
we did not have a consistent approach to failure recovery.

The dynamic configuration has the robot looking down
the length of the conveyor belt, as in Figure 4. Objects are
placed on the far end of the 2.13 m belt, and carried past
the robot. In this configuration, the perception system only
reports on objects it has seen a minimum of three times. This
limits system responsiveness, but is important to eliminate
spurious observations of the object being hand-placed on the
end of the belt, and to ensure stability in pose estimation.

System performance was measured over 100 pick-and-
place operation attempts with the belt at its top speed, 33 cm/s,
87 of which were successful. Six objects were effectively
ignored due to the planner being unable to compute a suitable
trajectory for either arm in the allotted time. Of these six,
five were spritzer bottles, suggesting that the grasps chosen
for this object did not leave the planner enough freedom to
maneuver. The seven other failures were fumbled grasps. As
in the static test, sometimes an insecure grasp would lead
to an object being dropped. The dynamic test added the
new failure mode of objects bouncing off of the back of
the open gripper during a catch attempt. This contribution
of momentum to the experiment was an excellent test of the
system’s overall timing: the gripper had to close around the
object as it hooked available geometry in order to absorb
all of its momentum without excessively destabilizing the
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Fig. 5. A nonlinear optimization that fits observed points to a per-object
cost function refines an initial localization estimate provided by each point
cluster’s centroid.

object. The tight timing constraints, paired with the design
of the PR2’s arms, meant that the robot’s arm farther from
where the objects were coming from was easier to utilize.
Of the 94 attempted grasps, 57 were made by the far arm.

VI. ANALYSIS

A. Perception Performance

Preprocessing includes collecting a point cloud for each
object to be identified. The raw point data is used to populate
a 0.5 cm3 resolution voxel grid, then passed through a
Euclidean Distance Transform (EDT), taking an average of
304 ms for each object.

Once the system is running, parameters describing the con-
veyor belt surface are periodically recalculated as described
in Section III-B. This process took an average of 39 ms
per update, and was run concurrently with the rest of the
perception pipeline in a separate thread.

The localization step begins by considering the centroid
of each cluster of points found above the table surface. This
is a reasonably good estimate of the object’s position, but
is biased towards the camera due to self-occlusion of the
object geometry. The goal of navigating the PR2’s finger
into an opening with approximately 1 cm clearance on either
side (e.g. underneath a spritzer bottle’s trigger) demands a
level of accuracy in object pose estimation which can be
difficult to achieve when using only point cluster centroids.
However, the localization refinement step represents a signif-
icant fraction of all the time spent in perception, so its utility
is of interest. Recovering object yaw is critical for grasping
asymmetric objects, but focusing solely on translational pose
estimation reveals further contributions made by refining
initial coarse position estimates.
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Fig. 6. Perception performance broken down by object type. The overall
mean is 53 ms.

Figure 5 illustrates the translation corrections made by the
optimizer to an initial localization estimate based on point
cluster centroids with a kernel density estimate of observed
refinements. Note that in this run of experiments, there were
no false identifications and no wild misses by the robot.
The two object types needing the greatest correction from
their initial centroid estimates were the big basket and the
shoe, which are the two objects with the greatest asymmetry
in the XY plane. The big basket is also a tall object,
resulting in views looking down the table that primarily
see the near side of the object. In contrast, most of the
perimeter of an item like the small basket could be seen at the
available view angle. This contrast is borne out by the effect
of the optimization on these two objects: the big basket’s
translational position was shifted an average of 3.4 cm from
the point cluster centroid, while the small basket was shifted
an average of 0.9 cm.

The average processing time for the perception system
over the 5117 object detections during the moving object
experiment was 53 ms, Figure 6. The “tall bottle” object was
the slowest to process, at an average of 77 ms per update.
Initial filtering, clustering, and coarse recognition comprise
the first perception phase, taking an average of 22.2 ms.
The second phase consists of the localization optimization
procedure, taking an average of 31.1 ms. The final tracking
phase did not take a significant amount of time.

The average processing time for the motion planner during
the moving object experiment was 182 ms, including time
spent in ROS service calls. This gives a minimum system
response time on the order of 250 ms if only one observation
of a scene is needed. For applications such as dynamic object
manipulation, multiple observations may be needed, which



pushes the delay before action to over 400 ms. The perfor-
mance of these experiments is thus completely dominated
by the speed at which the PR2 can move its arms. The PR2
requires approximately 4.5 s to perform the motions needed
for these tasks, which puts a lower limit on how quickly the
entire system can process pick-and-place tasks.

B. Robustness

Execution time – a limiting factor in system responsive-
ness – was consistent throughout the experiments described.
The longest single perception update in the dynamic test
covering 5117 updates took 132 ms. There are many sources
of variance in these timings as the perception system was
running on the GHC Haskell runtime system with its gen-
erational garbage collector, which itself was running in a
desktop Linux environment (Ubuntu 10.04).

Localization accuracy was measured by considering the
PR2’s effective “hand-eye coordination.” We used the PR2’s
proprioception to obtain an estimate of the location of one
of the robot’s fingertips with its arm extended over the work
surface and angled down so that the finger just touched the
surface. The location of this tangent was marked, and the
arm was removed from the work area. A candidate object
was then placed at the marked location, and the localization
returned by the perception system was compared with the
PR2’s own estimate of where its finger had been.

These experiments yielded an average discrepancy be-
tween proprioception and perception of 5.3 mm. A meter
stick was then used to move the object one meter down
the work surface from its starting location. The robot’s head
was turned to face this new location, and the output of
perception was again recorded. This relative motion estimate
yielded an average discrepancy between the meter stick and
the perception system of 6.7 mm.

The last metric recorded from the perception system
was the speed of the belt. This was estimated during the
experiment by tracking objects over time. The perception
system estimated the belt speed at 33.1 cm/s, with a standard
deviation of 0.08 cm/s. We were unable to obtain another
measurement of belt speed with less noise.

The reported timings include all segmentation, recogni-
tion, and localization. There is additional overhead in the
integrated system due to running the perception calculations
remotely from the PR2 itself. The net result was a ROS object
detection publisher rate that varied between 10 and 12 Hz,
the same rate at which raw depth images were received at
the perception computer.

VII. CONCLUSION

We have demonstrated pick-and-place operations per-
formed by a PR2 at a rate of 6.7 s per object at a 91% success
rate. Similar operations on a moving work surface yield an
87% success rate. Room for improvement remains in the
areas of system integration, and end-effector customization.
The speed at which the PR2’s arms can move proved to
be a limiting factor in system performance, and the gripper
design was not particularly suited to absorbing the impact

of moving objects. Despite these mechanical limitations, the
PR2 proved to be capable of responsive, high throughput
object manipulation.
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