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Abstract—Concurrently estimating the 6-DOF pose of multiple
cameras or robots—cooperative localization—is a core problem
in contemporary robotics. Current works focus on a set of
mutually observable world landmarks and often require inbuilt
egomotion estimates; situations in which both assumptions are
violated often arise, for example, robots with erroneous low
quality odometry and IMU exploring an unknown environment.
In contrast to these existing works in cooperative localization, we
propose a cooperative localization method, which we call mutual
localization, that uses reciprocal observations of camera-fiducials
to obviate the need for egomotion estimates and mutually ob-
servable world landmarks. We formulate and solve an algebraic
formulation for the pose of the two camera mutual localization
setup under these assumptions. Our experiments demonstrate the
capabilities of our proposal egomotion-free cooperative localiza-
tion method: for example, the method achieves 2cm range and 0.7
degree accuracy at 2m sensing for 6-DOF pose. To demonstrate
the applicability of the proposed work, we deploy our method
on Turtlebots and we compare our results with ARToolKit [1]
and Bundler [2], over which our method achieves a tenfold
improvement in translation estimation accuracy.

I. INTRODUCTION

Cooperative localization is the problem of finding the rel-
ative 6-DOF pose between robots using sensors from more
than one robot. Various strategies involving different sensors
have been used to solve this problem. For example, Cognetti
et al. [3], [4] use multiple bearning-only observations with a
motion detector to solve for cooperative localization among
multiple anonymous robots. Trawny et al. [5] and lately Zhou
et al. [6], [7] provide a comprehensive mathematical analysis
of solving cooperative localization for different cases of sensor
data availability. Section II covers related literature in more
detail.

To the best of our knowledge, all other cooperative localiza-
tion works (see Section II) require estimation of egomotion.
However, a dependency on egomotion is a limitation for sys-
tems that do not have gyroscopes or accelerometers, which can
provide displacement between two successive observations.
Visual egomotion, like MonoSLAM [8], using distinctive im-
age features estimates requires high quality correspondences,
which remains a challenge in machine vision, especially in
cases of non-textured environments. Moreover, visual egomo-
tion techniques are only correct upto a scale factor. Contempo-
rary cooperative localization methods that use egomotion [5],
[6], [9] yield best results only with motion perpendicular to
the direction of mutual observation and fails to produce results
when either observer undergoes pure rotation or motion in
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Figure 1: Simplified diagram for the two-camera problem.
Assuming the length of respective rays to be s1, s2, s3, s4
respectively, each marker coordinates can be written in both
coordinate frames {p} and {q}. For example M1 is s1p̂1 in
frame {p} and q1 in {q}, where p̂1 unit vector parallel to p1.

the direction of observation. Consequently, in simple robots
like Turtlebot, this technique produces poor results because
of absence of sideways motion that require omni-directional
wheels.

To obviate the need for egomotion, we propose a method for
relative pose estimation that leverages distance between fidu-
cial markers mounted on robots for resolving scale ambiguity.
Our method, which we call mutual localization, depends upon
the simultaneous mutual/reciprocal observation of bearing-
only sensors. Each sensor is outfitted with fiducial markers
(Fig. 1) whose position within the host sensor coordinate sys-
tem is known, in contrast to assumptions in earlier works that
multiple world landmarks would be concurrently observable
by each sensor [10]. Since our method does not depend on
egomotion, hence it is instantaneous, which means it is robust
to false negatives and it do not suffers from the errors in
egomotion estimation.

The main contribution of our work is a generalization
of Perspective-3-Points (P3P) problem where observer and
the observed points are distributed in different reference
frames unlike conventional approach where observer’s refer-
ence frame do not contain any observed points and vice versa.
In this paper we present an algebraic derivation to solve for
the relative camera pose (rotation and translation) of the two
bearing-only sensors in the case that each can observe two
known fiducial points in the other sensor; essentially giving
an algebraic system to compute the relative pose from four
correspondences (only three are required in our algorithm
but we show how the fourth correspondence can be used
to generate a set of hypothesis solutions from which best
solution can be chosen). Two fiducial points on each robot
(providing four correspondences) are preferable to one on one
and two on the other, as it allows extension to multi-robot
(> 2) systems ensuring that any pair of similarly equipped
robots can estimate their relative pose. In this paper, we focus

ar
X

iv
:1

30
1.

37
58

v2
  [

cs
.R

O
] 

 1
 A

pr
 2

01
3



on only two robot case as an extension to multi-robot case as
pairwise localization is trivial yet practically effective.

Our derivation, although inspired by the linear pose es-
timation method of Quan and Lan [11], is novel since all
relevant past works we know on P3P problem [12], assume all
observations are made in one coordinate frame and observed
points in the other. In contrast, our method makes no such as-
sumption and concurrently solves the pose estimation problem
for landmarks sensed in camera-specific coordinates frames.

We demonstrate the effectiveness of our method, by analyz-
ing its accuracy in both synthetic, which affords quantitative
absolute assessment, and real localization situations by deploy-
ment on Turtlebots. We use 3D reconstruction experiments
to show the accuracy of our algorithm. Our experiments
demonstrate the effectiveness of the proposed approach.

II. RELATED WORK

Cooperative localization has been extensively studied and
applied to various applications. One of the latest works in this
area comes from Cognetti et al. [3], [4] where they focus
on the problem of cooperatively localizing multiple robots
anonymously. They use multiple bearing-only observations
and a motion detector to localize the robots. The robot detector
is a simple feature extractor that detects vertical cardboard
squares mounted atop each robot in the shadow zone of the
range finder. One of oldest works come from Karazume et.
al. [13] where they focus on using cooperative localization
as a substitute to dead reckoning by suggesting a “dance” in
which robots act as mobile landmarks. Although they do not
use egomotion, but instead assume that position of two robots
are known while localizing the third robot. Table I summarizes
a few closely related works with emphasis on how our work
is different different from each of them. Rest of the section
discusses those in detail.

Howard et al. [14] coined the CLAM (Cooperative Localiza-
tion and Mapping) where they concluded that as an observer
robot observes the explorer robot, it improves the localization
of robots by the new constraints of observer to explorer
distance. Recognizing that odometry errors can cumulate over
time, they suggest using constraints based on cooperative
localization to refine the position estimates. Their approach,
however, do not utilizes the merits of mutual observation as
they propose that one robot explores the world and other
robot watches. We show in our experiments, by comparison
to ARToolKit [1] and Bundler [2], that mutual observations of
robots can be up to 10 times more accurate than observations
by single robot.

A number of groups have considered cooperative vision
and laser based mapping in outdoor environments [15], [16]
and vision only [17], [18]. Localization and mapping using
heterogeneous robot teams with sonar sensors is examined
extensively by [19], [20]. Using more than one robot enables
easier identification of previously mapped locations, simplify-
ing the loop-closing problem [21].

Fox et al. [22] propose cooperative localization based on
Monte-Carlo localization technique. The method uses odome-

Related work \ Tags NoEM BO NoSLAM MO
Mutual localization X X X X
Howard et al. [14] 7 X X X
Zou and Tan [10] X X 7 7
Cognetti et al. [3] 7 X X 7
Trawny et al. [5] 7 X X X
Zhou and Roumeliotis [6], [7] 7 X X X
Roumeliotis et al. [24] 7 7 7 X

where

Tag meaning
NoEM Without Ego-Motion. All those works that use egomo-

tion are marked as 7.
BO Localization using bearing only measurements. No

depth measurements required. All those works that
require depth measurements are marked with 7.

NoSLAM SLAM like tight coupling. Inaccuracy in mapping
leads to cumulating interdependent errors in localiza-
tion and mapping. All those works that use SLAM like
approach are marked with a 7

MO Utilizes mutual observation, which is more accurate
than one-sided observations. All those works that do
not use mutual observation, and depend on one-sided
observations are marked as 7

Table I: Comparison of related work with Mutual localization

try measurements for ego motion. Chang et al. [23] uses depth
and visual sensors to localize Nao robots in the 2D ground
plane. Roumeliotis and Bekey [24] focus on sharing sensor
data across robots, employing as many sensors as possible
which include odometry and range sensors. Rekleitis et al.
[25] provide a model of robots moving in 2D equipped with
both distance and bearing sensors.

Zou and Tan [10] proposed a cooperative simultaneous lo-
calization and mapping method, CoSLAM, in which multiple
robots concurrently observe the same scene. Correspondences
in time (for each robot) and across robots are fed into an
extended Kalman filter and used to simultaneously solve the
localization and mapping problem. However, this and other
“co-slam” approaches such as [26] remain limited due to the
interdependence of localization and mapping variables: errors
in the map are propagated to localization and vice versa.

Recently Zhou and Roumeliotis [6], [7] have published
solution of a set of 14 minimal solutions that covers a wide
range of robot to robot measurements. However, they use
egomotion for their derivation and they assume that observable
fiducial markers coincide with the optical center of the camera.
Our work does not make any of the two assumptions.

III. PROBLEM FORMULATION

We use the following notation in this paper, see Fig. 1.
Cp and Cq represent two robots, each with a camera as a
sensor. The corresponding coordinate frames are {p} and {q}
respectively with origin at the optical center of the camera.
Fiducial markers M1 and M2 are fixed on robot Cq and
hence their positions are known in frame {q} as q1,q2 ∈ R3.
Similarly, p3,p4 ∈ R3 are the positions of markers M3

and M4 in coordinate frame {p}. Robots are positioned such
that they can observe each others markers in their respective
camera sensors. The 2D image coordinates of the markers M1



and M2 in the image captured by the camera {p} are measured
as p̄1, p̄2 ∈ R2 and that of M3 and M4 is q̄3, q̄4 ∈ R2

in camera {q}. Let Kp,Kq ∈ R3×3 be the intrinsic camera
matrices of the respective camera sensors on robot Cp, Cq .
Also, note the superscript notation. 2D image coordinates are
denoted by a bar, example p̄. Unit vectors that provide bearing
information are denoted by a caret, example p̂.

Since the real life images are noisy, the measured image
positions p̄i and q̄i will differ from the actual positions p̄i0
and q̄i0 by gaussian noise ηi.

p̄i = p̄i0 + ηpi ∀i ∈ {1, 2} (1)
q̄i = q̄i0 + ηqi ∀i ∈ {3, 4} (2)

The problem is to determine the rotation R ∈ R3×3 and
translation t ∈ R3 from frame {p} to frame {q} such that
any point pi in frame {p} is related to its corresponding point
qi in frame {q} by the following equation.

qi = Rpi + t (3)

The actual projections of markers Mi into the camera image
frames of the other robot are governed by following equations,

p̄i0 = f(KpR
−1(qi − t)) ∀i ∈ {1, 2} (4)

q̄i0 = f(Kq(Rpi + t)) ∀i ∈ {3, 4} (5)

where f is the projection function defined over a vector
v =

[
vx, vy, vz

]>
as

f(v) =
[ vx
vz
,
vy
vz

]>
(6)

To minimize the effect of noise we must compute the optimal
transformation, R∗ and t∗.

(R∗, t∗) = arg min
(R,t)

 ∑
i∈{1,2}

‖p̄i − f(KpR
−1(qi − t))‖2

+
∑

i∈{3,4}

‖q̄i − f(Kq(Rpi + t))‖2
 (7)

To solve this system of equations we start with exact
equations that lead to a large number of polynomial roots.
To choose the best root among the set of roots we use the
above minimization criteria.

Let p̂i, q̂i ∈ R3 be the unit vectors drawn from the camera’s
optical center to the image projection of the markers. The
unit vectors can be computed from the position of markers in
camera images p̄i, q̄i by the following equations.

p̂i =
K−1

p

[
p̄>i , 1

]>
‖K−1

p

[
p̄>i , 1

]>
‖
∀i ∈ {1, 2} (8)

q̂i =
K−1

q

[
q̄>i , 1

]>
‖K−1

q

[
q̄>i , 1

]>
‖
∀i ∈ {3, 4} (9)

Further let s1, s2 be the distances of markers M1, M2 from
the optical center of the camera sensor in robot Cp. And s3,
s4 be the distances of markers M3, M4 from the optical center

of camera sensor in robot Cq . Then the points q1, q2, s3q̂3,
s4q̂4 in coordinate frame {q} correspond to the points s1p̂1,
s2p̂2, p3, p4 in coordinate frame {p}.

q1 = t+ s1Rp̂1

q2 = t+ s2Rp̂2

s3q̂3 = t+Rp3

s4q̂4 = t+Rp4

(10)

These four vector equations provide us 12 constraints (three
for each coordinate in 3D) for our 10 unknowns (3 for rotation
R, 3 for translation t, and 4 for si). We first consider only the
first three equations, which allows an exact algebraic solution
of the nine unknowns from the nine constraints.

Our approach to solving the system is inspired by the well
studied problem of Perspective-3-points [12], also known as
space resection [11]. However, note that the method cannot be
directly applied to our problem as known points are distributed
in both coordinate frames as opposed to the space resection
problem where all the known points are in the one coordinate
frame.

The basic flow steps of our approach are to first solve for the
three range factors, s1, s2 and s3 (Section III-A). Then we set
up a classical absolute orientation system on the rotation and
translation (Section III-B), which is solved using established
methods such as Arun et al. [27] or Horn [28]; finally, since our
algebraic solution will give rise to many candidate roots, we
develop a root-filtering approach to determine the best solution
(Section III-C).

A. Solving for s1, s2 and s3

The first step is to solve the system for s1, s2 and s3. We
eliminate R and t by considering the inter-point distances in
both coordinate frames.

‖s1p̂1 − s2p̂2‖ = ‖q1 − q2‖
‖s2p̂2 − p3‖ = ‖q2 − s3q̂3‖
‖p3 − s1p̂1‖ = ‖s3q̂3 − q1‖

(11)

Squaring both sides and representing the vector norm as
the dot product gives the following system of polynomial
equations.

s21 + s22 − 2s1s2p̂
>
1 p̂2 − ‖q1 − q2‖2 = 0 (12a)

s22 − s23 − 2s2p̂
>
2 p3 + 2s3q

>
2 q̂3 + ‖p3‖2 − ‖q2‖2 = 0

(12b)

s21 − s23 − 2s1p̂
>
1 p3 + 2s3q

>
1 q̂3 + ‖p3‖2 − ‖q1‖2 = 0

(12c)

This system has three quadratic equations implying a Bezout
bound of eight (23) solutions. Using the Sylvester resultant we
sequentially eliminate variables from each equation. Rewriting



(12a) and (12b) as quadratics in terms of s2 gives

s22 + (−2s1p̂
>
1 p̂2)︸ ︷︷ ︸

a1

s2 + (s21 − |q1 − q2|2)︸ ︷︷ ︸
a0

= 0

(13)

s22 + (−2p̂>2 p3)︸ ︷︷ ︸
b1

s2 − (s23 − 2s3q
>
2 q̂3 − ‖p3‖2 + ‖q2‖2)︸ ︷︷ ︸

b0

= 0

(14)

The Sylvester determinant [29, p. 123] of (13) and (14) is given
by the determinant of the matrix formed by the coefficients of
s2.

r(s1, s3) =

∣∣∣∣∣∣∣∣
1 a1 a0 0
0 1 a1 a0
1 b1 b0 0
0 1 b1 b0

∣∣∣∣∣∣∣∣ (15)

This determinant is a quartic function in s1, s3. By definition
of resultant, the resultant is zero if and only if the parent
equations have at least a common root [29]. Thus we have
eliminated variable s2 from (12a) and (12b). We can repeat
the process for eliminating s3 by rewriting r(s1, s3) and (12c)
as:

r(s1, s3) = c4s
4
3 + c3s

3
3 + c2s

2
3 + c1s3 + c0 = 0

−s23 + (2q>1 q̂3)︸ ︷︷ ︸
d1

s3 + s21 − 2s1p̂
>
1 p3 + ‖p3‖2 − ‖q1‖2︸ ︷︷ ︸

d0

= 0

(16)

The Sylvester determinant of (16) would be

r2(s1) =

∣∣∣∣∣∣∣∣∣∣∣∣

c4 c3 c2 c1 c0 0
0 c4 c3 c2 c1 c0
1 d1 d0 0 0 0
0 1 d1 d0 0 0
0 0 1 d1 d0 0
0 0 0 1 d1 d0

∣∣∣∣∣∣∣∣∣∣∣∣
= 0. (17)

Solving (17) gives an 8 degree polynomial in s1. By Abel-
Ruffini theorem [30, p. 131], a closed-form solution of the
above polynomial does not exist.

The numeric solution to (17) gives eight roots for s3. We
compute s1 and s2 using (12c) and (12b) respectively. Because
the camera cannot see objects behind it, only real positive roots
are maintained from the resultant solution set.

B. Solving for R and t

With the solutions for the scale factors, {s1, s2, s3} we can
compute the absolute location of the Markers {M1,M2,M3}
in both the frames {p} and {q}.

pi = sip̂i ∀i ∈ {1, 2}
qi = siq̂i ∀i ∈ {3}

These exact correspondences give rise to the classical problem
of absolute orientation i.e. given three points in two coordinate
frames find the relative rotation and translation between the
frames. For each positive root of s1, s2, s3 we use the method
in Arun et. al [27] method (similar to Horn’s method [28]) to
compute the corresponding rotation R and translation value t.

C. Choosing the optimal root

Completing squares in (12) yields important information
about redundant roots.

(s1 + s2)2 − 2s1s2(1 + p̂>1 p̂2)− ‖q1 − q2‖2 = 0 (18a)

(s2 − p̂>2 p3)2 − (s3 − q>2 q̂3)2

+ (p3 − p̂2)>p3 − q>2 (q2 − q̂3) = 0

(18b)

(s1 − p̂>1 p3)2 − (s3 − q>1 q̂3)2

+ (p3 − p̂1)>p3 − q>1 (q1 − q̂3) = 0

(18c)

Equations (18) do not put any constraints on positivity of
terms (s2−p̂>2 p3), (s3−q>2 q̂3), (s1−p̂>1 p3) or (s3−q>1 q̂3).
However, all these terms are positive as long as the markers
of the observed robot are farther from the camera than the
markers of the observing robot. Also, the distances si are
assumed to be positive. Assuming the above, we filter the real
roots by the following criteria:

s1 ≥ ‖p3‖ (19)
s2 ≥ ‖p3‖ (20)
s3 ≥ max(‖q1‖, ‖q2‖) (21)

These criteria not only reduce the number of roots signifi-
cantly, but also filter out certain degenerate cases.

For all the filtered roots of (17), we compute the correspond-
ing values of R and t, choosing the best root that minimizes
the error function, (7).

D. Extension to more than three markers

Even though the system is solvable by only three markers,
we choose to use four markers for symmetry. We can fall back
to the three marker solution in situations when one of the
markers is occluded. Once we extend this system to 4 marker
points, we obtain 6 bivariate quadratic equations instead of the
three in (12) that can be reduced to three 8-degree univariate
polynomials. The approach to finding the root with the least
error is the same as described above.

The problem of finding relative pose from five or more
markers is better addressed by solving for the homography
when two cameras observe the same set of points as done by
[31]–[34]. The difference for us is that the distance between
the points in both coordinate frames is known hence we can
estimate the translation metrically which is not the case in
classical homography estimation. Assuming the setup for five
points such that (10) becomes

q1 = t+ s1Rp̂1

q2 = t+ s2Rp̂2

s3q̂3 = t+Rp3

s4q̂4 = t+Rp4

s5q̂5 = t+Rp5

(22)



Markers

Camera

Figure 2: The deployment of markers on Turtlebot that we
used for our experiments

If the essential matrix is E, the setup is the same as solving
for

[q1,q2, q̂3, q̂4, q̂5]>E[p̂1, p̂2,p3,p4,p5] = 0 (23)

The scale ambiguity of the problem can be resolved by one of
the distance relations from (11). Please refer to [32] for solving
(23). For more points refer to [35] for the widely known 7-
point and linear 8-point algorithms.

IV. IMPLEMENTATION

We implement our algorithm on two Turtlebots with fiducial
markers. One of the Turtlebots with markers is shown in
Fig. 2. We have implemented the algorithm in Python using
the Sympy [36], OpenCV [37] and Numpy [38] libraries. As
the implementing software formulates and solves polynomials
symbolically, it is generic enough to handle any reasonable
number of points in two camera coordinate frames. We have
tested the solver for the following combination of points: 0-3,
1-2, 2-2, where 1-2 means that 1 point is known in the first
coordinate frame and 2 points are known in the second.

We use blinking lights as fiducial markers on the robots and
barcode-like cylindrical markers as for the 3D reconstruction
experiment.

The detection of blinking lights follows a simple thresh-
olding strategy on the time differential of images. This ap-
proach coupled with decaying confidence tracking produces
satisfactory results for simple motion of robots and relatively
static backgrounds. Fig. 3 shows the cameras mounted with
blinking lights as fiducial markers. The robots shown in 3
are also mounted with ARToolKit [1] fiducial markers for the
comparison experiments.

V. EXPERIMENTS

To assess the accuracy of our method we perform a lo-
calization experiment in which we measure how accurately
our method can determine the pose of the other camera. We

Median Trans. error Median Rotation error
ARToolKit [1] 0.57m 9.2◦

Bundler [2] 0.20m 0.016◦

Mutual Localization 0.016m 0.33◦

Table II: Table showing mean translation and rotation error for
ARToolKit, Bundler and Mutual Localization

compare our localization results with the widely used fiducial-
based pose estimation in ARToolKit [1] and visual egomotion
and SfM framework Bundler [2]. We also generate a semi-
dense reconstruction to compare the mapping accuracy of our
method to that of Bundler. A good quality reconstruction, is
a measure of the accuracy of mutual localization of the two
cameras used in the reconstruction.

A. Localization Experiment

a) Setup: Two turtlebots were set up to face each other.
One of the turtlebot was kept stationary and the other moved
in 1 ft increments in an X-Z plane (Y-axis is down, Z-axis
is along the optical axis of the static camera and the X-
axis is towards the right of the static camera). We calculate
the rotation error by extracting the rotation angle from the
differential rotation R>gtRest as follows:

Eθ =
180

π
arccos

(
Tr(R>gtRest)− 1

2

)
(24)

where Rgt is the ground truth rotation matrix, Rest is the
estimated rotation matrix and Tr is the matrix trace. The
translation error is simply the norm difference between two
translation vectors.

b) Results in comparison with ARToolKit [1]: The AR-
ToolKit is an open source library for detecting and determining
the pose of fiducial markers from video. We use a ROS [39]
wrapper – ar_pose – over ARToolKit for our experiments.
We repeat the relative camera localization experiment with
the ARToolKit library and compare to our results. The results
show a tenfold improvement in translation error over Bundler
[2].

B. Simulation experiments with noise

A simple scene was constructed in Blender to verify the
mathematical correctness of the method. Two cameras were
set up in the blender scene along with a target object 1m from
the static camera. Camera images were rendered at a resolution
of 960 × 540. The markers were simulated as colored balls
that were detected by simple hue based thresholding. The two
cameras in the simulated scene were rotated and translated to
cover maximum range of motion. After detection of the center
of the colored balls, zero mean gaussian noise was added to
the detected positions to investigate the noise characteristics
of our method. The experiment was repeated with different
values of noise covariance. Fig 6 shows the translation and
rotation error in the experiment with variation in noise. It can
be seen that our method is robust to noise as it deviates only
by 5cm and 2.5◦ when tested with noise of up to 10 pixels.

"http://www.ros.org/wiki/ar_pose"
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Figure 3: Diagram of the two camera setup for mutual localization 3D metric reconstruction, along with images from each
camera for two poses of the mobile camera. Cameras have distinctive cylindrical barcode-like markers to aid detection in each
others image frames. Also depicted is the triangulation to two example feature points.
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Figure 4: Translation error comparison between the ARToolKit
and our mutual localization. The translation error is plotted to
ground truth X and Z axis positions to show how error varies
with depth (Z) and lateral (X) movements. We get better results
in localization by a factor of ten. Also note how the translation
error increases with Z-axis (inter-camera separation).
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Figure 5: Rotation error comparison between the ARToolKit
and Mutual localization. Rotation error decreases with Z-axis
(ground truth inter-camera separation). See (24) for computa-
tion of rotation error.

C. 3D Reconstruction experiment

The position and orientation obtained from our method
is inputted into the patch based multi-view stereo (PMVS-
2) library [40] to obtain a semi-dense reconstruction of an
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Figure 6: Rotation and translation error as noise is incremen-
tally added to the detection of markers.

indoor environment. Our reconstruction is less noisy when
compared to that obtained by Bundler [2]. Fig. 7 shows a side-
by-side snapshot of the semi-dense map from Bundler-PMVS
and, our method, Mutual Localization-PMVS. To compare the
reconstruction accuracy, we captured the scene as a point
cloud with an RGB-D camera (Asus-Xtion). The Bundler
and Mutual Localization output point clouds were manually
aligned (and scaled) to the Asus-Xtion point cloud. We then
computed the nearest neighbor distance from each point in
the Bundler/Mutual localization point clouds discarding points
with nearest neighbors further than 1m as outliers. With this
metric the mean nearest neighbor distance for our method was
0.176m while that for Bundler was 0.331m.

VI. CONCLUSION

We have developed a method to cooperatively localize two
cameras using fiducial markers on the cameras in sensor-
specific coordinate frames, obviating the common assumption
of sensor egomotion. We have compared our results with the
ARToolKit showing that our method can localize significantly
more accurately, with a tenfold error reduction observed in our
experiments. We have also demonstrated how the cooperative
localization can be used as an input for 3D reconstruction of
unknown environments, and find better accuracy (0.18m versus
0.33m) than the visual egomotion-based Bundler method. We
plan to build on this work and apply it to multiple robots for
cooperative mapping. Though we achieve reasonable accuracy,
we believe we can improve the accuracy of our method by
improving camera calibration and measurement of the fiducial
marker locations with respect to the camera optical center.

We will release the source code (open-source) for our method
upon publication.
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