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Abstract— Medical ultrasound imaging is a widespread high-
resolution (both spatial and temporal) method to gather live
images of the interior of the human body. Its potential as
a human-machine interface for the disabled — amputees in
particular — is being explored in the rehabilitation robotics
community.

Following up the recent discovery that first-order spatial
features of the ultrasound images of the human forearm are
linearly related to the hand configuration, we hereby push the
approach to a realistic scenario. We show that an extremely
simple calibration procedure can be used to obtain a linear re-
gression system which will effectively predict the forces required
by a human subject at the fingertips, using live ultrasound
images of the forearm. In particular, the system can be trained
on minimum and maximum forces only, thereby dramatically
shortening the calibration phase; and it will generalise to
intermediate force values. This phenomenon is uniform across 5
intact subjects whom we examined in a controlled experiment.
Moreover, it is not necessary to use any force sensor, as learning-
by-imitation, namely using a visual stimulus, yields similar
results.

This result is particularly useful in the case of amputees, who
normally cannot perform graded-force tasks as proprioception
may be lost since decades. Applications of this system include,
among others: advanced prosthetics, phantom pain therapy and
smart teleoperation.

I. INTRODUCTION

Medical ultrasonography (US) is a non-invasive technique
to visualise structures inside the human body [1], exploiting
the principle of wave reflection. Piezoelectric transducers
are used to generate a focused wave of ultrasound which
penetrates the body part of interest; partial reflection of the
wave at the interfaces between tissues with different acoustic
impedance is converted to a grey-scale 2D image (in the so-
called B-mode). High values of grey denote tissue interfaces.
Modern US machines are portable or even hand-held, can be
as cheap as 5000EUR and can achieve sub-millimeter spatial
resolution and 40Hz temporal resolution, penetrating several
centimeters below the subject’s skin. US imaging has no
known side effects [2] and is routinely used in all hospitals.

Recently, extensive work by Zheng [3], [4], [5] and our-
selves [6], [7] has revealed that US imaging can also be used
as a human-machine interface (HMI). In [6] in particular, we
have for the first time shown that a linear relationship exists
between the angles at the metacarpophalangeal joints of the
human hand and spatial first-order features extracted from
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Fig. 1. A bird’s eye view of the setup. The subject sits in front of a screen
on which the stimulus is shown as vertical coloured bars; meanwhile force
data and US images are recorded.

US images of the forearm. Since the metacarpophalangeal
joints are those at the basis of the fingers (linking each
finger to the palm), it is possible to reconstruct the hand
configuration using the US images of the forearm. As the
information is strictly positional, the system works fine
irrespective of the velocity of the subject’s movement, the
only limitation being the imaging rate of the ultrasound
machine. In a nutshell, US images can be used to reconstruct
the kinematic configuration of a human hand. The only piece
of machinery which must be in contact with the subject is the
US transducer placed on the forearm, thus leaving the hand
completely free (no obstructions from sensors) to perform
any movement. Interesting potential applications range from
teleoperation and hand prosthetics (as a very ergonomic
and precise HMI) to visualising the imaginary limb of an
amputee, or of a nerve-injury patient.

In this paper we propose a further, more detailed and more
realistic analysis of the possibilities given by US imaging as
an HMI. In particular, we show that (a) a linear relationship
also exists between spatial first-order US image features and
forces at the fingertips; and that (b) to build this relationship
it suffices to gather data from a human subject only when
resting and exerting maximum force; the model will then be
able to correctly predict the intermediate force values, too.
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Predicting forces rather than positions, as it was the case in
[6], [7], is probably even more useful, since a prosthetic hand
(and a hand, indeed!) will usually be employed in grasping
objects, therefore benefiting from force control more than
position control. Moreover, that a simple ”on-off” training
generalises to graded force values has at least two desirable
implications: firstly, a much shorter training time is required,
with respect to what is shown in our previous work; secondly,
the system is potentially applicable to amputees, who in
the general case retain no proprioception and are therefore
unable to perform graded-task forces with the imaginary
limb. This latter possibility goes in the direction of phantom
pain treatment: it is well-known since the 90s [8], [9] that
restoring the visual feedback loop from the missing limb has
beneficial effects.

We substantiate these claims by showing the results of
a graded-force task exercise performed by 5 intact subjects,
who train the system by only resting and applying maximum
force. The linear predictor so obtained achieves a normalised
root-mean-squared-error of 10% on graded tasks, a result
which is in line with previous studies. The results are uniform
across subjects and fingers. As an aside result, we show that
the training/testing works as well when only a visual stimulus
is used as the ground truth, thereby eliminating the need of
any force sensors whatsoever. This is all the more useful
in the case of amputees, when position/force ground truth is
not available in principle. An amputee could train the system
simply by following a simple on-off pattern appearing on a
PC screen.

The paper is organised as follows: Section II describes
the experiment; Section III describes the data analysis and
experimental results, and lastly Section IV draws some
conclusions.

II. EXPERIMENT DESCRIPTION

A psychophysical experiment was set up in order to prove
that (a) force at the fingertips can be linearly predicted using
ultrasound images, and (b) an on-off training schema (that
is, only resting and applying maximum force) is enough to
predict graded forces.

A. Ultrasound imaging

Ultrasound images were gathered using a General Elec-
tric Logiq-e portable ultrasound machine (www.gehealthcare.
com) equipped with a 12L-RS linear transducer. The machine
is set to B-mode, resulting in a gray-valued image represent-
ing a section of what lies directly under the probe. Similarly
to [7], we chose the following settings: ultrasound frequency
of 12MHz, edge enhancement on, focus point at a depth of
about 1.3cm, minimum depth of field. This results in a frame
rate of 38Hz.

Movement of the probe with respect to the subject’s skin,
which would have severely hampered the system (see [6],
[7] again) was avoided using a custom-built plastic cradle
obtained via rapid prototyping. The cradle hosts the trans-
ducer’s head on one side (velcro straps attach the transducer
to the cradle), while being lightly but firmly tied to the

forearm on the other side by means of a biocompatible elastic
band and a side-release buckle. Figure 2(a,b,c) show the
transducer, the cradle and the transducer+cradle fixed on a
subject’s forearm.

After extensive initial visual checks, we fixed the trans-
ducer on the ventral side of the forearm, at a distance
of about 10cm from the elbow. The typical output image
(consider Figure 3) contains the ulna and the main flexor
muscles and tendons. The images are captured from the
ultrasound machine’s VGA video output using a commercial
PCIe video capture card, running at 60 frames per second.
As the frames are captured asynchronously with respect to
the ultrasound machine, not all of them are whole ultrasound
images. In order to avoid considering torn or repeated frames,
we enforced the same kind of filtering of [7], obtaining a
valid frame rate of slightly less than 30 frames per second.

B. Fingertip forces

An ATI Mini45 SI-290-10 force sensor (www.ati-ia.com)
with guaranteed linear output and a resolution of 1

8N was
used to gather forces at the fingertips. The sensor was
taped onto the setup table at a convenient distance from
the subject’s hand, so that a minimal movement would be
involved in pressing it with each finger. The sensor was
connected to a DAQ card, and its values read and streamed
over on a UDP stream on the local network. Figure 2(d)
shows the force sensor.

C. Experiment subjects and protocol

Five healthy, intact human subjects (age 29.8±6.8, max
40, min 23, all right-handed) joined the experiment. All
of them received a thorough description of the experiment,
both in oral and written form, and signed an informed
consent form prior to starting. Each subject was then asked
to press the sensor once with each finger, applying the largest
possible force without feeling discomfort or pain. This way
we gathered an indication, Fmax, of the maximum forces
applicable by each subject at each finger.

At the beginning of the experiment, each subject sat
comfortably on an adjustable office chair, maintaining an
upright body posture with both feet on the floor and the
elbow bent at 90◦. The subjects were then asked to simply
lean their dominant hand on the table next to the sensor
and, during the experiment, do as instructed by the stimulus
displayed on a computer screen. Figure 1 shows a bird’s eye
view of the setup.

The experiment consisted of two identical sessions, and
each session was likewise divided in two parts: an on-off
phase (OO) and a graded phase (GR). In the OO phase,
the stimulus induced the subject to either rest or apply
maximum force with each finger; in the GR phase, the
subject was induced to exert forces following a squared
sinusoidal pattern, i.e., to apply a full range of forces from
none to maximum. The complete structure of the stimulus
for one of the sessions is displayed in Figure 4(a). The
different phases will be hereafter denoted as OO1 and GR1
(for session 1) and OO2 and GR2 (for session 2).
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(a) (b) (c) (d)
Fig. 2. Parts of the setup: (a) the linear ultrasound transducer GE 12L-RS; (b) the custom-made transducer cradle; (c) the transducer fixed onto a subject’s
forearm, using the cradle; (d) the ATI Mini45 force sensor, taped to the table. The subjects press on its top.

Fig. 3. (left) A typical ultrasound image obtained during our experiment.
The ulna is clearly visible in the bottom-left corner, while the flexor muscles
and tendons are seen in the upper part. (right) A graphical representation of
the human forearm and hand (right forearm; dorsal side up). The transducer
is placed onto the ventral side; plane ”B” corresponds to the section of
which the transducer would return an image.

In the on-off phases (OO1 and OO2), the stimulus con-
sisted of a series of large banners and vertical coloured
bars appearing on the screen, representing the force pattern
to be applied; e.g., ”rest”, ”press with the index finger”
or ”press with the thumb”. (Notice that pressing with the
thumb in this configuration is tantamount to rotating it, for
example when hitting a piano key with the thumb.) The
subject was instructed to press with the required finger on the
sensor applying ”a reasonably large amount of force”. This
intentionally fuzzy indication reflects what can be asked of
an amputee.

In the graded phases (GR1 and GR2), two coloured bars
were displayed on the screen: one bar representing the
required force, one showing the force actually applied at
the sensor’s surface. The stimulus for the required force
was chosen as 0.8Fmax sin

2(t). Figure 4(b) shows the force
measurements of the sensor for a typical subject during one
of the sessions.

During the on-off phases the subject was told to rest or
apply maximum force with each finger in turn (little, ring,
middle, index and thumb), and the whole cycle was repeated
5 times. Each flexion lasted 4.5s, and 4.5s of rest were
allowed in-between flexions. Additionally, the transition of

the coloured bars from rest to maximum force and vice versa
lasted 1s each. This results in a duration of 5× 5× (4.5s+
1s+4.5s+1s) = 275s for each on-off phase. In the graded
phases the same sequence was administered; in this case each
pattern (from rest, increasing the force to maximum then
decreasing again to rest according to the sin2 pattern) lasted
again 4.5s, and 1.5s of rest was allowed in-between flexions.
This results in 5× 5× (4.5s+1.5s) = 150s for each graded
phase.

All in all the experiment lasted 275s + 150s + 275s +
150s = 850s = 14′10s. No subjects reported discomfort of
fatigue during or after the experiment.

D. Data preprocessing

All data was collected on a Windows PC. Visual inspection
revealed that there was no measurable delay during the UDP
transmission, which enabled us to use the valid frame rate,
30Hz, as the global sampling frequency. Notice anyway that
the bandwidth of the signals we are interested in (i.e., frames
and force data) is directly dependent on the stimulus, that is
way less than one Hertz.

From each ultrasound image the same kind of features
used in [7] were extracted; namely, 181 uniformly distributed
circular regions of interest (ROIs) of radius 20 pixels were
selected on the image. Let the ith ROI be centered around
(xi, yi); then from each ROI three real numbers (αi, βi, γi)
were computed, such that the grey values of each pixel
(x, y) ∈ ROIi would be approximated by αi(xi−x)+βi(yi−
y) + γi. Intuitively, αi denotes the mean image greyscale
gradient along the x direction (rows of the image), βi is
the same value along the y (columns) direction, and γi is
an offset. The three features represent a first-order spatial
approximation of the grey values of the ROI, accounting for
the morphological structure of that region. In order to extract
these features (and for all other image-related computations
and evaluations) we used the HALCON v10.0 library by
MVTec (see www.mvtec.com/halcon). Since three numbers
were extracted from each ROI, the dimension of one US
sample is 543.

All signals (force and image features) were lowpass fil-
tered with a Butterworth first-order low-pass filter, cutoff
frequency of 1Hz. From the data in the on-off phases only
the last two thirds of the on and off periods were taken into
account in order to avoid considering the transitions from
rest to maximum force and vice-versa.
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Fig. 4. (a) Structure of the stimulus shown to the subjects, first session. In the on-off phase (OO1), only rest and maximum force are induced for each
finger, each repetition consisting of 4.5s of force application, followed by 4.5s of rest. Five repetitions per finger are induced. In the graded phase (GR1)
the subjects must exert force following a squared sinusoidal pattern. (b) Forces as measured by the force sensor during the experiment for a typical subject.

III. DATA ANALYSIS AND EXPERIMENTAL RESULTS

In this work we are particularly interested in a realistic
scenario in which to conduct an experiment and the cor-
responding analysis. Thus, we will describe the analysis
separately according to which signal is considered the ground
truth: either the force, as recorded by the force sensor, or
the stimulus. In the first case we consider the force applied
by each finger during the flexion, and zero force otherwise;
in the second, the stimulus itself is used, with the hope
that the subject has followed it with a certain degree of
precision. Notice that this second scenario reflects the typical
situation with an amputee, in which no ground truth is
available in principle and one must resort to either imitation
learning or bilateral action (see, e.g., [10], [11]) — using a
visual stimulus and instructing the subjects to imitate it is
tantamount to imitation learning.

We hereby try and extend to forces the phenomenon first
described in [6], [7], according to which a linear relationship
exists between the ultrasound image features described in the
previous Section and the angles at the metacarpal hand joints.
Accordingly, we try and associate the feature vector v ∈
R543 extracted from each frame to a finger force fi ∈ R or,
alternatively, to a stimulus value si ∈ R, where i = 1, . . . , 5
denotes the fingers, in turn the little, ring, middle, index and
thumb:

fi = wT
f v

si = wT
s v

In order to find the optimal wf and ws we use the standard
technique called ridge regression, essentially a regularised
form of least-squares regression: given a matrix and vector
containing the sample and target pairs (X,y), the weight
vector w for which y = wTx holds is given by

w = (XTX + λId)
−1XTy

where d is the dimension of the input space, Id is the
identical matrix of order d and λ > 0 is the regularisation

coefficient, which we consistently set at the standard value of
1. Notice that the evaluation of w involves inverting a matrix
of dimension d× d, regardless of the number of samples in
the dataset considered.

The feasibility of the linear approximation is checked by
considering the square-root mean-square error normalised
over the range of the target values (nRMSE), between the
measured force values or stimuli and the approximation.

A. Prediction of forces using US images

In order to check whether US image features can be
used to predict finger forces, we first used data captured
during each phase separately (OO1, GR1, OO2 and GR2),
employing cross-validation on each dataset. For each phase
we used a randomly chosen 10% of the data to estimate wf

and ws; we then evaluated the forces and stimulus values
on the remaining 90% of the dataset. This procedure was
repeated for 50 times (each time with a different training
set, obviously) and then the mean and standard deviation of
the nRMSE were considered. Figure 5 shows the obtained
nRMSE values for a typical subject, according to the finger
and the chosen ground truth (force or stimulus).

This analysis was repeated for all subjects. Figure 6 shows
the obtained nRMSE values for all subjects altogether.

As is apparent from the Figures (consider especially Figure
6), the linear regression is able to approximate all required
values to a remarkable precision. All on-off values are
predicted with a nRMSE of 1% of the force ranges or less.
Graded phases (GR1 and GR2) exhibit a higher error, slightly
higher than 1.5% in case the force is used as ground truth,
and slightly higher than 2% in case the stimulus is used.
These results are consistent across subjects and fingers. We
believe this is reasonable, since in the graded case many
more different values must be predicted; moreover, in case
the stimulus is used as ground truth, there is an inevitable
discrepancy between the stimulus and the actual action
performed by the subject. This increases the uncertainty.

Notice that these error levels are obtained by training
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Fig. 5. Results for a typical subject, for each phase (OO1, GR1, OO2 and GR2) and finger. Each bar and stem represent the mean and standard deviation
of the nRMSE obtained on the 50 cross-validation folds considered. (top panel) Errors obtained with the force as ground truth; (bottom panel) errors
obtained with the stimulus values as ground truth.

Fig. 6. Results for all subjects, for each phase (OO1, GR1, OO2 and GR2) and finger. Each bar and stem represent the mean and standard deviation of
the mean nRMSE values obtained for each subject.

on one tenth of the available data, and are comparable to
those presented in [7]. From this we conclude that a linear
relationship exists between finger forces and ultrasound
images.

B. Prediction of graded forces using the on-off data

An even more interesting question is whether the linear
relationship discovered between finger forces and ultrasound
images is able to generalise to graded forces. That is, given
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Fig. 7. Results for all subjects, when training on an on-off phase and testing on a graded phase. The legend denotes the training/testing phase, e.g.,
OO1/GR2 means that the machine was trained on data gathered during the first on-off phase and tested on data gathered during the second graded phase.
(top panel) Errors obtained with the force as ground truth; (bottom panel) errors obtained with the stimulus values as ground truth. Each bar and stem
represent the mean and standard deviation of the mean nRMSE values obtained for each subject.

only data obtained while resting and applying maximum
force, will the system be able to correctly predict interme-
diate force values? In order to find an answer we estimate
the wf and ws on the on-off phases (OO1 and OO2) and
then test the performance of the linear approximant on the
graded phases (GR1 and GR2). The results for all subjects
altogether are visible in Figure 7.

The overall nRMSE is clearly much larger than in the
previous case, this time around 10% of the target range.
Notice, however, that this error is remarkably consistent over
subjects, fingers and chosen training/testing datasets (i.e.,
there is no statistically significant difference when OO1 or
OO2 is used to estimate the linear regressors, as well as there
is no difference when testing on GR1 or on GR2). This error
level is, again, comparable with that obtained in [7]. Also,
by comparing the upper and lower panels of Figure 7, it is
apparent that there is no big difference when using the force
as ground truth, or the stimulus itself.

Figure 8 shows some typical force and stimulus values,
predicted on a graded phase (GR2) using a linear predictor
trained on an on-off phase (OO2). A non-uniform delay of
300-500ms is visible in the lower panel, where the stimulus
is used as ground truth (overall nRMSE 8.27%); this is to be
expected because of the inevitable delay introduced by each
subject while following the stimulus.

IV. CONCLUSIONS

This work advances the state of the art towards the usage
of ultrasound imaging as an HMI. In particular, we hereby

pose the following two questions: (a) can we predict finger
forces from the ultrasound images of the forearm? and (b)
can we limit the data collection to minimum and maximum
finger flexion forces, and still obtain a good approximation
of graded forces? In order to answer, we have collected
data from 5 intact subjects while applying ”on-off” and
”graded” force patterns to a high-accuracy force sensor.
US images, force and stimulus values were synchronously
recorded during the experiment.

The answer to both questions is positive. In detail: the
experimental results presented in Subsection III-A show that
the US features already used in [7], namely first-order spatial
local approximants of the grey levels, are strongly linearly
related to the forces at the fingertips, leading to a prediction
error always smaller than 1% in the on-off case and between
1% and 1.5% in the graded case. In case the stimulus is used
as ground truth, instead of the force values recorded by the
sensor, the error increases only slightly, namely up to about
2%.

As far as the second question is concerned, an error rate
of about 10% nRMSE is obtained uniformly across subjects
and fingers, whenever on-off data is used to predict graded
forces. This happens regardless whether the force or the
stimulus is used as ground truth. This error level is consistent
with the existing literature. We hypothesise that this is due
to the inherent properties of a linear relationship: knowing
the values of a target in two points of interest is enough to
interpolate all remaining values.

These results pave the way to the use of US imaging as
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Fig. 8. Typical recorded and predicted signals. Training on OO2, testing on GR2.

a fully fledged HMI for the disabled. In particular we claim
that this system will be able to visualise the imaginary limb
of an amputee (whenever enough residual muscular activity
is present in the stump), as well as to constitute a novel,
totally non-invasive and ergonomic HMI for intact subjects
in, e.g., teleoperation of virtual reality. Remarkably, the
prediction is done using a linear predictor (ridge regression),
which can be easily made incremental and put online. The
fact that the system can be trained on on-off patterns only
and using just a visual stimulus, i.e., that no force sensors are
required, makes the usability in the case of amputees very
high. We plan to check if this system can in particular be
used as an enhanced form of mirror therapy [8], [9] to treat
phantom-limb pain.
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