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Abstract— This paper presents an undelayed range-only si-
multaneous localization and mapping (RO-SLAM) based on the
Extended Kalman filter. The approach is optimized for working
in 3D scenarios, reducing the required computational payload
at two levels: first, using a reduced spherical state vector
parametrization and, second, proposing a new EKF update
scheme. The paper proposes a state vector parametrization
based on Gaussian-Mixture to cope with the multi-modal
nature of range-only measurements and a reduced spherical
parametrization of the range sensor positions that allows to
shorten the length of the state vector for a given number of
hypotheses. The approach is firstly tested and discussed in
simulation, followed by experimental results involving a real
robot and radio-based range sensors.

I. INTRODUCTION

Range-only simultaneous localization and mapping (RO-
SLAM) is an emerging application that aims to localize a
mobile system at the same time it maps the position of a set
of range sensors. In contrast with others SLAM approaches
based on cameras or LIDAR, RO-SLAM has the advantage
of integrating non-line-of-sight (NLOS) measurements into
the localization and mapping approach when radio-based
range sensing is used. In addition, the data association
problem is intrinsically solved by using unique identifiers
for each range sensor into the system. RO-SLAM poses
serious challenges mainly related with its low-informative
measurements (distance between two sensing elements) that
leads to multiple localization hypotheses that do not fit well
with the usual linear/gaussian approximations, the reason
why researchers had explored different approximations to
solve this problem: neural networks, particle filters, spectral
algorithms, etc.

Thus, [1] presents a localization solution where a neural
network is used to learn the observation model of a set of
fixed radio emitters in order to get the location of a mobile
ground robot by learning the signal power associated to each
location in a map (fingerprinting methods). The inputs of this
neural network are the distance measurements of each sensor
and the output is the 2D location of the mobile robot. The
mapping problem is not considered in that work. Despite
results are very accurate, this method requires a training
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process for a specific set of nodes, so an online scalable
wireless sensor network is not consider in that solution,
additionally, this method requires an accurate localization of
the robot during such training stage. Authors of [2] proposes
a distributed 3D mapping solution using independent particle
filters for an initial position estimation on each range sensor.
The particle filter takes into account the multi-modality of
the observation model since it is a sample-based bayes filter.
The position can be estimated with the range measurements
between a sensor and a moving robot by registering the
position of the robot with a DGPS. An Extended Kalman
Filter (EKF) or Unscented Kalman Filter (UKF) is used when
the particle filter has converged to a Gaussian distribution.
This solution does not take into account the inter-sensor
measurements, which can be used to reduce their estimation
uncertainty, and also presents a delayed filter initialization,
so sensor information cannot be integrated into the filter until
it converges to a Gaussian distribution.

Several solutions have been proposed in the last decade
for 2D RO-SLAM. In [3] a novel solution is presented
using a spectral SLAM algorithm which estimates the mo-
bile robot and nodes location using a SVD decomposition
of the observation matrix. This solution presents accurate
results similar to those obtained in classical EKF solutions
and batch optimization algorithms, and reduces considerably
the required computational burden. However, this method
is oriented to batch processing, making very difficult its
implementation in online RO-SLAM approaches.

A comparison of most common SLAM frameworks is
done in [4]. In that paper it is shown how the unscented Fast-
SLAM presents better results over other classical methods
based on EKF or UKF. In [5] and [6], a FastSLAM solution
is proposed using a particle filter for robot localization and
other particle filter for each feature (i.e. for each radio
beacon). In [5] an optimization on the particle filter is
proposed to estimate the feature position without needing
much hypotheses and hence reducing the computational
complexity. On the other hand, [6] optimize the problem
using an adaptive resampling method for features position
estimation. Another FastSLAM solution is considered in [7]
and [8], where the authors use a particle filter to initialize
an EKF filter for each map feature of the FastSLAM. The
use of an EKF for each map feature reduces the computa-
tional burden of the problem. The main drawback of those
solutions is the delayed initialization of features, so that first
measurements are not integrated into the EKF, waiting until
an initial trilateration is performed by each individual particle
filter. This is an important aspect in RO-SLAM because the
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convergence of map features to Gaussian distributions will
significantly depend on the trilateration made by the vehicle.

To avoid this issue, an undelayed method which uses a
gaussian-mixture model (GMM) with multiple hypotheses
is presented in [9]. The use of a GMM allows to integrate
the multi-modality of the observation model for each new
map feature, integrating all received measurements since the
very first time. As in [10], [9] uses a polar parametrization
which adapts better for 2D range-only localization problems.
The use of a GMM to model the multi-modality of the
observation model is also employed in [11], but in this
case a FastSLAM solution is used instead. Hence, map
features are initialized using multiple hypotheses, and each
map feature is integrated in an independent EKF. Despite the
efficiency of this solution, inter-sensor measurements cannot
be integrated taking into account the correlation between
each pair of detected map features since the FastSLAM
framework considers map features completely independent.

This paper proposes extending the 2D solution presented
in [9] to 3D RO-SLAM. On the advantages, this method
allows integrating range measurements between sensors (not
only between vehicle and sensors), a key issue in RO-SLAM
as concluded in [12]. Another important advantage, and the
main difference with a direct extension of [9] to 3D, is
that this solution proposes a state vector parametrization that
allows reducing the required computational load, specially in
the correction stage of the EKF.

The document is structured as follows. Section 2 will make
an overview of the method proposed to solve the RO-SLAM
problem. Section 3 will detail each stage of the EKF-based
RO-SLAM algorithm. In section 4 and 5 some simulations
and experiment results will be presented, and finally some
conclusions and future work will be presented in section 6.

II. OVERVIEW OF THE METHOD

As in [9], a centralized EKF will be used, solving the
mapping problem with Gaussian Mixture Models (GMMs).
Gaussian mixture models allows to model the multi-modality
of the observation model, integrating a non-Gaussian distri-
bution into a Gaussian filter like the Extended Kalman Filter
(EKF).

Probability mixture models are probability distributions
that are combination of other distributions, they form a semi-
parametric alternative to non-parametric distributions like
particle filters, providing a better flexibility and precision
when modelling the underlying statistics of range measure-
ments. In Gaussian mixture models each mode i is a normal
distribution N (µi, σi) weighted by ωi, where 0 ≤ ωi ≤ 1
and

∑k
i=1 ωi = 1. So for a random variable X with k modes,

the probability mass function fX(x) will look like:

fX(x) =

k∑
i=1

ωiN (µi, σi) (1)

As it is shown in Fig. 1, this work will use a spherical
parametrization to extend the polar parametrization idea
used in [10] and [9]. To model the parameters of this

X
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Fig. 1. Spherical parametrization of features. The yellow area represents
the uniform spherical distribution where the feature can be located once a
first range measurement is received. The green object represents the real
position of the range-sensor. The center of the sphere is composed by the
position where the robot was located when the first range measurement was
received.

spherical parametrization, two Gaussian mixtures are used
to represent the azimuth angle θi and the elevation angle φi
of a particular map feature (range-only sensor), so that with
a single measurement ri only the distance ρi = ri and the
center of the spehere [xi, yi, zi]

T (i.e. position of the robot
at the time ri was received) are known.

Despite a direct extension of the method used in [9]
requires a large state vector, which is not efficient when
using an Extended Kalman Filter, this work proposes a
parametrization reduction which considers θi (azimuth) and
φi (elevation) independent. This assumption will also imply
an optimization on the update stage of the EKF since requires
smaller matrices to be computed.

As in other approaches like [11], an adaptive initialization
will be used in order to improve the initial belief of map fea-
tures. This adaptive initialization generalize the initialization
process used in [9], making the Gaussian Mixture Model fit
better to the real uniform distribution of bearing parameters.

On the other hand, a centralized EKF solution will allow
to keep the correlation between features estimation, making
possible the integration of inter-sensor measurements. This is
an important aspect that cannot be provided by FastSLAM
solutions where each map feature is assumed to be com-
pletely independent from others. The correlation between
different map features is interesting specially in those cases
where the application has some constraints on the relative
position of map features. This is the case when several range
sensors are part of the same structural element and, hence,
an intrinsic constraint of their relative pose implies a high
correlation between them.

III. EKF-BASED 3D RO-SLAM

A. State Vector: Reduced spherical parametrization

The state vector of the EKF is composed by the robot
state xr (for example, xr = [xr, yr, zr]

T for a 3D Cartesian
position of the robot) and the features position fi, so that,
for each instant t, the state vector will look like:

x = [xtr, f
t
1, f

t
2, . . . , f

t
m]T (2)

In this state vector, the position of map features is ex-
pressed in a reduced spherical representation with respect the
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position xi = [xi, yi, zi]
T from which the robot received the

first range measurement. Thus, when the parameters of the
map feature position i are completely known, it is expressed
as fi = [xti, ρi, θi, φi]

T , where ρi is the distance (first range
measurement ri received) between the map feature (range
sensor) and the robot, θi is the azimuth angle and φi is the
elevation angle. However, θi and φi are completely unknown
with a single range measurement. Thus, this work propose
sampling the space θi in nθ possible samples and φi in nφ
possible samples. Although a direct extension of the method
proposed in [9] would introduce all nθnφ hypotheses of a
feature in the state vector using 4 + nθnφ parameters, here
it is proposed a reduced parametrization that only requires
4 + nθ + nφ parameters to represent the same number of
hypotheses. Then, in this work, the state vector of a map
feature is expressed with the following reduced spherical
parametrization:

fi = [xti, ρi, θi1, θi2, . . . , θinθ , φi1, φi2, . . . , φinφ ]
T (3)

While the representation of the state vector using a direct
extension of [9] would be expressed as:

fi = [xti, ρi, θi1, φi1, θi2, φi2, . . . , θik, φik]
T (4)

Here, samples θijθ and φijφ , together with their weights
ωθijθ and ωφijφ , compose a pair of Gaussian Mixture Models
such as the probability mass function of θi, fθi(x), will
be uniformly distributed in the range of [0, 2π) and the
probability mass function of φi, fφi(x), will be uniformly
distributed in the range of (−π/2, π/2):

fθi(x) = U(0, 2π) ≈
∑nθ
jθ=1 ωθijθN (θijθ , σθijθ ) (5)

fφi(x) = U(-π2 ,
π
2 ) ≈

∑nφ
jφ=1 ωφijφN (φijφ , σφijφ ) (6)

With this reduced representation, the combination of all
samples as pairs {θijθ , φijφ} composes the complete uniform
sphere distribution of hypotheses as depicted in Fig. 2 for
15 hypotheses (5 θijθ samples and 3 φijφ samples). One
of the main issues to properly cover this uniform spherical
distribution with the proposed parametrization is the initial-
ization stage, which will be detailed in the following sections
together with prediction and update stage and a method to
prune hypotheses.

B. Feature initialization

Once the first measurement ri of a range sensor i has
been received, the distribution of all possible azimuth (θi)
and elevation (φi) angles are uniformly distributed around
a sphere centered in the current robot position [xi, yi, zi]

T

as depicted in Fig. 1. This uniform distribution on θi and
φi can be approximated by two independent GMMs using
(5) and (6) respectively. Then, each hypotheses of a map
feature is composed by the parameters xi, yi, zi, ρi and a
combination {θijθ , φijφ} from the set of all combinations of
θi and φi samples.
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Fig. 2. Filter initialization for 15 hypotheses with a range measure of about
1 meter.

With this parametrization, the number of hypotheses h are
related with the number of samples in θi (nθ) and the number
of samples in φi (nφ) as h = nθnφ, where nθ = d

√
2h∗e

and nφ = dnθ/2e. The number of optimal hypotheses h∗ is
initialized from the first distance measurement ri received as
h∗ = 4πr2i d, where d is the optimal density of hypotheses.
Different experiments showed that d = 0.18 is a good
value to initialize the number of hypotheses. This value was
selected empirically performing several simulations where
the robot follows a circular trajectory in plane XY and
moving with a sinusoidal trajectory in Z axis, the range
sensor was placed in the middle of the circular trajectory
using a fixed value of ρ and different values of h. Then,
the optimal hypotheses density is selected considering the
hypotheses absolute error and the computational load in each
simulation. Table I shows some results of these experiments.

TABLE I
EXPERIMENTAL RESULTS FOR OPTIMAL HYPOTHESES DENSITY

SELECTION USING ONE RANGE SENSOR WITH σρ = 50cm

ρ (meters) Num.Hypotheses Error (cm) Hypotheses Density
5 62 3.8 0.19
10 240 9.3 0.18
20 1200 12.5 0.23
40 3000 11.56 0.15
60 6500 24.2 0.15

Once the number of θi and φi samples is defined, and
hence, the number of hypotheses h too, the next step is
to define the value of weights ωθijθ and ωφijφ , the mean
value of each mode θijθ and φijφ , and their associated
deviation σθijθ and σφijφ . As the GMM should approximate
an uniform distribution, the values of ωθijθ and ωφijφ are set
up as ωθijθ = 1/nθ and ωφijφ = 1/nφ.

The mean value of each Gaussian mode should be placed
uniformly with nθ modes on the range [0, 2π) for θi and nφ
modes on the range (-π/2, π/2) for φi as depicted in Fig.2
for 15 hypotheses and a range measurement near to 1 meter
(number beside beacon label).

Finally, the standard deviation value of each Gaussian
mode θijθ and φijφ is identically initialized according to the
following expressions:
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Fig. 3. Experiments performed for the optimal selection of kθ and kφ
factors. Y axis represents the Kullback-Leibler divergence factor and the
X axis represents the standard deviation used in the simulated GMM. Each
series represents the simulation for a fixed number of modes in the GMM.
(a) shows the results for a GMM in the range [0, 2π) (θi range) and (b)
shows the results for a GMM in the range (−π/2, π/2) (φi range).

σθijθ =
2π

kθnθ
jθ = 1, . . . , nθ (7)

σφijφ =
π

kφnφ
jφ = 1, . . . , nφ (8)

Here, values kθ and kφ are proportional factors which were
selected empirically, performing different simulations where
a GMM is compared with the desired uniform distribution.
The simulations were performed using different number of
modes within the range [0, 2π) for kθ and (-π/2, π/2) for kφ,
and different values of the standard deviation σ associated
to these modes. The GMM obtained in each simulation was
compared with the desired uniform distribution using the
Kullback-Leibler divergence factor. The results are depicted
in Fig. 3, where the X axis represents the standard deviation
and the Y axis represents the Kullback-Leibler divergence
factor. The values that gave a better fit of the uniform
distribution are kθ = 1.9 and kφ = 2.5.

The main advantages of this initialization process, in
contrast to other approaches commented at the introduction,
are three: the undelayed initialization which allows the inte-
gration of all measurements in the filter since the very first
measurement, secondly, it allows the online integration of
new range sensors without having to prior select the number
of map features that will be used in the EKF, and finally, it
adapts the parameters of the GMMs automatically by only
employing the first range measurement received from a range

sensor.

C. Update stage

Once the first measurement of a map feature fi has
been received and its state vector has been initialized, next
measurements ri will be used to update map features’ belief
(EKF filter) and weights (ωθijθ and ωφijφ ) associated to both
GMMs. But, in this work, instead of using nθnφ equations to
update the EKF filter for each new range measurement, as it
would require a direct extension of method implemented in
[9], here only nθ+nφ equations are used. Thus, once a new
range measurement ri from map feature fi has been received,
the following measurement equation is used to update each θi
and φi sample according to the state vector parametrization
described in (2):

ri =
√
(xfi − xr)2 + (yfi − yr)2 + (zfi − zr)2 (9)

Where xfi , yfi and zfi stand for:

xfi = xi + ρicos(θi)cos(φi) (10)
yfi = yi + ρisin(θi)cos(φi) (11)
zfi = zi + ρisin(φi) (12)

Given the previous measurement equation, the problem is
how to integrate (9) into the EKF to update each sample
independently from each other since (9) depends on both
values θi and φi. The solution proposed in this work updates
the state vector using n = nθ + nφ update equations so
that each sample θijθ is updated using an averaged elevation
angle φi computed according to the current state of the GMM
of φi as follows:

φi =

nφ∑
jφ=1

φijφωφijφ (13)

Similarly, to update a sample φijφ , the following averaged
azimuth angle θi is used:

θi =

nθ∑
jθ=1

θijθωθijφ (14)

Other problem is how to integrate the associated measure-
ment deviation σri (see Fig. 1) into these n updates since,
as stated in [9], the variance σ2

ri cannot be used n times
from a single measurement ri, otherwise, the EKF will tend
to diverge. In this work, as in [9], the standard deviation
will be split into n variance values σ2

rij
which are computed

as σ2
rij

= σ2
ri/λij , where λij is the proportional likelihood

computed for each update equation such us
∑n
j=1 λij = 1.

Then, once the n likelihoods lij have been computed, the
proportional likelihood can be computed as follows:

lij =

{
p(ri|xtr,xti, ρi, θij , φi) j ∈ [1, nθ]

p(ri|xtr,xti, ρi, θi, φi(j-nθ)) j ∈ [nθ+1, nθ+nφ]
(15)
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λij = lij/

n∑
k=1

lik (16)

Here, conditional probabilities are modeled with a Gaus-
sian distribution, with mean obtained evaluating eq. (9) for
a pair of angles {θijθ , φi} or {θi, φijφ}, and propagating the
corresponding state covariances through the Jacobian of the
cited equation.

Finally, the last step is to update weights ωθijθ and ωφijφ
associated to both GMM θi and φi. This work uses the
likelihood p(ri|xtr,xti, ρi, θi, φi) for each θi or φi sample to
update their weights ωθijθ and ωφijφ respectively. But, now
instead of taking the averaged azimuth and elevation angles
as in (15), weights are updated as:

ωθijθ = ωθijθmax(p(ri|x
t
r,x

t
i, ρi, θijθ , φijφ)|jφ = 1..nφ)

(17)

ωφijφ = ωφijφmax(p(ri|x
t
r,x

t
i, ρi, θijθ , φijφ)|jθ = 1..nθ)

(18)
The use of the maximum likelihood makes each weight
update for sample θi,jθ or φi,jφ completely independent from
other samples. Finally, once all weights are updated using
(17) and (18), these weights must be normalized.

D. Pruning hypotheses

In order to reduce the computational burden of this
method, as map features uncertainty decreases, this paper
uses a prune strategy where samples are pruned when satis-
fying one of the following constraints:

• The associated weight ωij is below a certain threshold:

ωθij ≤ 10−11/h (19)

ωφij ≤ 10−11/h (20)

Where h = nθnφ is the current number of hypotheses
for a map feature i. The threshold was experimentally
selected after several simulations of the method.

• The arc length between a sample angle θij1 and a set
of sample angles θij2 or between a sample angle φij1
and a set of sample angles φij2 , with j1 6= j2, is lower
than the 3% of ρi for a feature i. The one with higher
weight is conserved and those with lower weights are
removed.

Notice that, after eliminating a sample θijθ , nφ hypotheses
are actually being removed (nθ hypotheses when removing
a sample φijφ).

IV. SIMULATION RESULTS

In order to test the suitability of the mapping approach,
which is the main contribution of this paper, a set of mapping
simulations (i.e. the position of the robot is known) have
been carried out using only range measurements. The objects
simulated are an aerial robot with an embedded radio emitter
and a set of free deployed radio beacons.

The simulated wireless sensor network provides the dis-
tance measurement from the robot emitter to each beacon
using a time-of-flight-based method with a standard deviation
of σρ = 50cm. Each message received contains the distance
measurement and the RFID of the beacon from which the
measurement has been received. In order to be as realistic
as possible, the maximum transmission rate and the rate of
messages sent by each node of the network have also been
considered into the simulation.

Figure 4 shows the simulation results for an aerial robot
tracking a circular trajectory with a radius of 20 meters.
The beacon node is located at the center of this circular
trajectory. Thus, the circular trajectory ease the trilateration
of beacon on plane XY. But, for a good trilateration of
beacon’s altitude, the aerial robot moves with a sinusoidal
trajectory along Z axis as it is shown in Fig.4(c).

When the first measurement is received at the beginning
of the robot trajectory, the beacon hypotheses are initialized
as shown in Fig.4(a) (only the mean of hypotheses are
depicted without its associated covariance for simplicity).
All modes are initialized with the same weight, this weight
is represented according to the color legend shown at right
of Fig.4(a). As the robot integrates more measurements into
the filter, hypotheses position and their associated weights
evolve and some of them are pruned as shown in Fig.
4(b). The weight of each hypotheses has been computed as
the combination of associated azimuth and elevation sample
weights. At last simulation step, the most likely hypotheses
is the only hypotheses depicted in Fig.4(c), whose absolute
error evolution is plotted in Fig.4(d). The error has been
computed as the euclidean distance between the estimated
beacon position and the real one.

V. EXPERIMENTAL RESULTS

For real experiments, the complete SLAM problem has
been considered so that the mobile robot localization is
estimated based on local odometry (using linear and angular
speed of the mobile robot). In this experiment, the Pioneer
III-AT robot was used with a laptop (8GB of RAM, intel
i7 2.4GHz quad-core processor). The groundtruth of the
robot was registered using a Monte Carlo localization (MCL)
algorithm, a laser sensor (Hokuyo UTM-30LX), a map of
the CONET testbed and the initial position of the robot in
that map. As in simulations, the robot was equipped with a
radio emitter which processes distance measurements from
4 different beacons, deployed on an indoor environment of
about 15m2 as shown in Fig.5. The nodes of the network are
nanoPAN 5375 RF nodes with the following characteristics:

• ATMega 1284P microcontroller at 20MHz.
• Radio transceiver 2.4 GHz ISM band. Up to 20dB

transmission power.
• Ranging accuracy of 2 m indoors / 1 m outdoors.
• 128KB flash memory for programs and retrieved data.
• Distance measurements computed with the SDS-TWR

method, based on the ToF method but without needing
any clock synchronization between nodes.
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Fig. 4. Evolution of beacon position hypotheses where the blue rhombus represents the real beacon position, the pink cross represents the robot position
and the other crosses are the weighted hypotheses (a) - (c). The complete robot trajectory is depicted as a blue dotted line while the tracked trajectory at
current time is depicted as a pink continuous line. The tooltip of the beacon represents the current distance measure received from simulator. (d) represents
the evolution of hypotheses absolute error in the last simulation step.

(a) CONET testbed (b) PioneerIII-AT robot equipped
with radio emitter on top of the
laptop

Fig. 5. Experiments carried out in the CONET testbed at the Escuela de
Ingenieros of the University of Seville with a mobile robot equipped with
a radio emitter. Beacon emitters are holding from ceil.

As the robot was moving on a plane, only 2D localization
was considered for robot localization, while 3D localiza-
tion was considered for features mapping. Thus, the robot
parametrization considered for this experiment was xtr =
[xr, yr, αr]

T , where xr and yr are the position of the robot
on XY plane, and αr is the robot orientation.

The final SLAM results of this experiment are shown
in Fig.6 and Fig.71. As figures show, virtually all beacons
converge to a single solution with an absolute error near to 1
meter. However, despite beacon 3 has not already converged
to a single solution due to a bad triangulation over Z axis
and because this node only produced 25 measures over
180 measures produced by other nodes, the error of the
most likely hypotheses is lower than 1 meter. As it can be
seen, beacons altitude present more variance due to a bad
triangulation on Z axis since the robot is moving with a
fixed altitude. Similar error is achieved for robot localization
with this SLAM approach, improving the results of dead-
reckoning method in more that a 50% as depicted in Fig.6
and Fig.7.

VI. CONCLUSIONS AND FUTURE WORK

This paper presented a general solution for the 3D Range-
only SLAM using a reduced spherical parametrization for
the position of map features allowing to reduce the required

1Complete results are shown in the video attached
to this paper which can also be found in the URL:
http://grvc.us.es/staff/felramfab/iros2013/video.avi

computational load. The solution is based on a centralized
EKF-SLAM which includes the position of the robot and the
position of all range sensors (map features) which allows
the integration of sensor to sensor measurements and not
only between robot to sensor keeping the correlation between
each pair of sensors and the correlation between sensor to
robot. The paper described how the multi-modal belief of
the azimuth and elevation angles of a range sensor can be
integrated efficiently in a Extended Kalman Filter employing
two independent Gaussian Mixtures. The solution proposed
not only allows to integrate measurements information since
the very first measurement, but also to initialize the posi-
tion estimation and parametrization of Gaussian Mixtures
automatically with only one range measurement. Another
important contribution of this paper is the optimization of
the EKF correction stage which is based on the consideration
of independence between all azimuth and elevation angle
parameters.

The paper has presented simulation results to validate
the mapping approach showing how this solution is able
to feasibly localize nodes of a wireless sensor network
(WSN) including the node embedded on the robot. The range
sensors considered during the experiments are based on a
wireless sensor network where each pair of nodes estimate
the distance between them using the SDS-TWR method,
which is an improved method of the ToF method. Finally,
experimental results for the SLAM approach are shown using
the same kind of range sensors considered in simulation but
with a real WSN for indoor environments and a mobile
robot moving with a fixed altitude. The robot localization
results are compared with dead-reckoning method showing
the improvement of the method presented. The mapping
results also presented good results for 4 beacons and one
radio emitter embedded on the robot.

Future research will consider the same problem with not
only robot to sensor measurements but also sensor to sensor
measurements, which is very interesting when more than
one sensor is part of the same structural element (like bars,
blocks, ...) as is the case of the ARCAS project. The results
will be tested with aerial robots in order to be able to properly
estimate the robot and beacons altitude.
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Fig. 6. Final results of proposed 3D SLAM solution with 4 radio-emitters and one mobile robot equipped with a base node. The legend shows the absolute
error for each hypotheses and robot localization estimation (SLAM and dead-reckoning). Pink cross and line represent robot groundtruth. Blue cross and
line represent robot position estimation using SLAM, where the blue ellipsoid represents the covariance associated. The black cross and line represent the
robot position estimation using a dead-reckoning method. Real positions of beacons are depicted with a dark blue rhombus, while beacon hypotheses are
depicted with crosses which color, as in Fig.4(a), depends on the hypotheses weight. Covariance associated to each hypotheses is represented with a yellow
ellipsoid.
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