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Abstract— Map based navigation is a crucial task for any
mobile robot. On many platforms this problem is addressed
by applying Simultaneous Localization and Mapping (SLAM)
based on metric grid-maps. Such solutions work well on robots
with adequate resources and limited workspaces. Platforms
with limited payload which operate in unbounded workspaces,
do often have insufficient resources to keep a metric world
representation. Nevertheless, many applications demand that
the robot can autonomously navigate between different oper-
ation areas. In this work the Landmark-Tree map (LT-map),
a resource efficient topological map concept, is for the first
time applied to a mobile robotic platform equipped with an
omnidirectional camera. It enables the robot to efficiently adapt
the acquired map online to the available memory. During
map acquisition and navigation the motion is estimated by the
Z∞-algorithm. Both methods are based on similar concepts,
which results in a mutual benefit. An efficient navigation
strategy based on the LT-map allows the robot to reliably
follow previously recorded paths. The presented approach is
evaluated on a mobile robot in indoor and outdoor scenarios.
The experiments prove its feasibility and show that pruning the
map just smooths the trajectories, which is the expected and
desired behaviour.

I. MOTIVATION

Autonomous navigation is a highly complex task, which
often requires most resources on mobile robots. In general,
robotic platforms build metric maps during exploration and
localize themselves within these maps. A large variety of
approaches for this so called Simultaneous Localization and
Mapping (SLAM) concept exist in literature [1]. They differ
in the way the map is organized and the localization is
performed, but they, in general, have in common to rely
on a metric representation of the environment. While such
a metric map eases many computation steps, e.g. accurate
planning of new trajectories, it requires a significant amount
of memory to represent the environment.

Many applications require resource limited robots to cover
long distances, which connect different workspaces: a Micro
Aerial Vehicle (MAV), which starts at the rescue team and
flies in a specific direction to detect people who require help,
or a rover on a foreign planet which has to find back to
the base station after some time for analysing the collected
probes. Such applications do not require a complete metric
representation of the environment, but rather local metric
maps at the locations of operation and resource efficient

This work was supported by the Institute of Robotics and Mechatronics
of the German Aerospace Center (DLR).

All authors are with the German Aerospace Center (DLR), Institute of
Robotics & Mechatronics, D-82234 Wessling, Germany
elmar.mair at dlr.de

roadmaps which connect these workspaces and guarantee
that the robot can reliably switch between them. Adaptive
tree data structures, like quadtrees, octrees or k-d trees [2],
suffer from computation overheads if the space-usage is not
balanced or by high map maintenance costs for re-balancing.
Hence, they are also not adequate to represent such stretched
passages.

In contrast to these approaches, biological systems, like
insects, animals, or humans, do not seem to rely on met-
ric maps for navigation [3]. They would, in general, not
even possess accurate senses for metric navigation. Their
behaviour suggests a topological navigation based on so
called cognitive maps, where the visual perception often
plays the most important role. Inspired by these insights and
aiming for a similar robustness and efficiency, we introduced
the Landmark-Tree map (LT-map) and illustrated its func-
tionality in simulations [4]. It represents a topological map,
which relies on the measurements of a goniometer where
no metric distance information is available. The algorithm
is designed to be highly scalable and to dynamically adapt
to the provided memory. The hierarchical structure of the
landmark tree and its advantages are discussed in more detail
in Section III.

Home

WS 1

WS 2

L1(∞)

L2

L4

L5

L6(∞)

L7

L3

Fig. 1. This graphic depicts the problem we address in this work.
A mobile robot, represented by the grey box, needs to move between
different workspaces, denoted by the red areas. While for these regions
high resolution metric maps may be required, the limited resources on
some mobile robotic platforms may prevent a full metric representation
of the complete operation space. We present a roadmap navigation, which
efficiently adapts to the available memory and allows a mobile robot to move
between different workspaces, solely based on bearing only measurements
denoted by the crosses on the surrounding sphere pointing at the landmarks
L.

In this work we realized an LT-Map based navigation
on a mobile platform. The autonomous navigation is solely
based on the measurements of an omnidirectional camera
and enables an efficient switching between workspaces as



illustrated in Fig. 1. The motion is computed using the Z∞-
algorithm which allows an efficient and robust estimation [5].
The LT-Map and the Z∞-algorithm mutually benefit from
each other due to a similar clustering of the data into close
and far distant landmarks. We show that simple control
strategies are sufficient to realize the behaviour required
for route following. We will also discuss the modifications
necessary to deal with noisy sensor measurements and the
effect of map pruning in case of memory shortage.

The remainder of this paper is structured as follows. First
we describe the LT-Map and Z∞ concepts in Sections III
and IV. The combination of these methods, their applica-
tion to the measurements of a catadioptric camera as well
as the implemented navigation strategies are explained in
Section V. Finally, we evaluate the approach in Section VI,
based on results of indoor and outdoor experiments with a
mobile robot.

II. RELATED WORK

On many mobile platforms conventional metric SLAM
algorithms are realized, which allow for straight-forward map
updates and trajectory planning. The PTAM algorithm [6],
e.g., realizes parallel tracking and mapping for a monocular
camera in real-time. It has been designed for augmented
reality workspaces and creates a quite dense map of the
environment. In order to use such an approach on resource
limited systems, which are able to cover long distances,
the map can be implemented as rolling map [7]. In that
way an accurate local positioning can be provided, but the
inherent drift of the global pose may prevent the robot from
finding back to its origin, once the limits of the map are
exceeded. For many applications it is crucial to return to a
certain location and, thus, in case of limited memory, a global
connectivity of different locations should be preferred over
local information.

Topological maps have a better spatial scaling than grid
based metric maps, but the missing geometric information
bears also some drawbacks, e.g. it prevents the computation
of shortcuts. Hence, most topological methods still contain
and make use of metric information [8]. Another popular
approach is to use sub-maps, where several small metric
maps are connected by a topological graph [9], [10]. Such
hybrid approaches combine the strengths of both paradigms.
In our work we focus on how to connect such sub-maps with-
out any metric information. We solely rely on bearing only
measurements for the path which links different workspaces.
The path is stored as a topological roadmap, which offers not
as much navigation flexibility as a grid-based representation,
but it provides the least overhead and, thus, the most efficient
way to store the required information.

Several approaches in the literature use omnidirectional
cameras for topological navigation. Winters et. al. intro-
duce a topological map, which triggers a visual servoing
mechanism at crucial locations, like narrow passages [11].
Lui and Jarvis present a mobile robot which is equipped
with two omnidirectional cameras [12]. The system builds a
metric topological map based on Haar-wavelet signatures of

unwarped images. The metric pose is computed by a three
degree of freedom (DOF) visual odometry module which
uses stereo correspondences from the cameras, processed
on a GPU. In [13], Murillo et al. present a combination
of topological and metric localization, where a pyramidal
kernel of a large set of descriptors is used to detect the
rough location and the 1D trifocal tensor is then used to
compute an accurate metric localization estimate. Like in
these approaches, topological maps are in general used for
loop closure detection, rough localization or to trigger some
behaviours. The locations are defined by signatures derived
from the images, like histograms [14], linear PCA [15], or
Haar wavelet coefficients [16]. In other implementations,
landmarks are extracted and a set of feature descriptors is
used to define a specific location, like in the bag-of-words
models [17]. However, none of these approaches allows an
easy pruning of the information in case of memory shortage.
To identify the information in the map, which is redundant
or not crucial for localization, is computationally expensive
and requires a cumbersome evaluation of the complete map.
Hence, in general, whole nodes (locations) are discarded or
the map is equally thinned out in the metric space, if such
information is available.

The robot control concept which we adopt in this work is
similar to [18], but instead of estimating the Essential matrix,
we make use of the robust Z∞ based pose estimation to
implement an efficient but reliable velocity control paradigm.

III. THE LANDMARK-TREE MAP

The LT-map algorithm has been designed to enable an
efficient online scaling of a roadmap to the available memory
on a system [4]. A non-metric representation of the route is
used, which requires only the measurements of a goniometer
without any distance information. The landmarks are stored
in a tree like structure, providing a hierarchy of global
and local landmarks. This is achieved by extending each
landmark descriptor with the bearing angle under which
it is measured. This angle has to be compensated for the
rotational motion of the robot, e.g. with a compass, in order
to contain only translational information. In that way, far
distant features, like landmarks on the horizon, consist of
the same extended descriptor even after long trajectories.
Local landmarks, which are close to the sensor, change their
viewing angle already with small translational motions due to
the motion parallax. Pure rotational motion does not change
the descriptor-angle tuples and, hence, does not affect the
map. In the following we denote these tuples as landmarks,
with Li =(di,φi), where di is the descriptor vector and φi

the vector containing azimuth and elevation under which the
landmark i is measured after compensation for the rotational
motion. A viewframe V is defined as a set of landmarks as
perceived from a certain location and, thus, describes that
location.

During map generation, i.e. when a path is traversed
for the first time, landmarks are computed for each new
measurement. Each time the weighted average angle, δt,
between two corresponding landmarks exceeds a specified



threshold, a new viewframe is defined by the current set of
landmarks. This similarity measure between two landmark
sets of size N is computed using a Pseudo-Huber cost
function, such that

δt =
1

N

N∑
i=1

2b2

√1 +

(
1− lTi l′i

b

)2

− 1

 , (1)

where li and l′i denote the unit vectors pointing to the
same landmark i at different locations. The unit vector can
be easily computed from φi. This cost function includes
a control parameter b to weight small errors quadratically,
but large errors linearly with slope 2b. Only new landmarks,
compared to the previous viewframe, are added as a new
leaf at the latest branch. Hence, the persistent landmarks lie
in the upper nodes, close to the root, and contain translation
invariant information, which we denote as global information
in the following. The so called local, translation dependent
information, is represented by the landmarks in the lower
nodes, down to the leaves. The stepwise transition from
global to local information is as fine as the environment
requires and implicitly realized by the different layers. At this
point we want to emphasize that, in practice, the landmarks
are not only ordered based on their distance, but also accord-
ing to their stability. The nodes close to the root contain only
really stable landmarks, whereas the more unstable ones,
which cannot be tracked continuously, are located closer to
the leaves. Each complete branch in the tree, from the root
to the leaf, represents a viewframe. The structure of such a
tree is illustrated in Fig. 2. For a more detailed explanation
please refer to [4].
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Fig. 2. The two dimensions of the landmark tree represent the travel
distance (time) and the distance of the landmarks to the robot. Each branch
of the tree is a viewframe (as highlighted in blue for V4). The nodes N
along the branch contain the landmarks acquired at a certain location.

IV. THE Z∞ ALGORITHM

The LT-map requires rotationally aligned landmarks to
build the map. The algorithm is designed for long-distance
navigation and, hence, for outdoor scenarios. The Z∞-
algorithm, an efficient feature-based motion estimation tech-
nique, also greatly benefits from such environments and
only relies on the measurements of a goniometer [5], [19].
It uses a RANSAC [20] framework to separate far dis-
tant, translation-invariant landmarks from local, translation-
variant ones and rejects features on dynamic objects which

do not fit a common rigid motion model. In that way,
the rotation estimation is separated from the translation
estimation which allows to apply efficient closed-form so-
lutions for both motion components as described in [5].
However, the translation estimation presented there is based
on a projective camera. In order to estimate the translation
based on omnidirectional measurements, we minimize the
following cost function over the current landmark set:

E(t) =

N∑
i=0

wi ·
(

(l′i × li)
T
t
)2
− λ

(
‖t‖2 − 1

)
, (2)

where li and l′i denote the rotation compensated direction
vectors to landmark i of the reference and the current
measurement. The translation t is forced to have unit length
by the Lagrangian multiplier λ and each landmark vector
can be weighted by a factor wi, e.g. if different tracking
accuracies apply. After replacing mi = l′i × li we get
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(
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Substituting M=
∑N

i=0 wimim
T
i and setting the derivative

of E(t) to zero results in an eigenvector problem, defined by

0 = 2Mt− 2λt

λt = Mt . (4)

Hence, up to sign, t is the eigenvector corresponding to the
smallest eigenvalue of the matrix M and can be computed
by a singular value decomposition (SVD), such that

t̃ = VM ;:,3 with SVD (M) = UMΣMV
T
M , (5)

whereas the subscripts in VM ;:,3 refer to the last column of
the matrix. The sign is determined by

t =

{
−t̃ if

∑N
i=0 (l′i − li)

T
t̃ < 0

t̃ else
. (6)

To ensure a proper rotation estimation we added another
constraint for a set of landmarks to be selected by RANSAC
as best inlier set. We reject all sets for which the maximum
angle between two neighbouring landmarks is larger than
180◦. This prevents, that a translational motion is misinter-
preted as rotation. We also evaluated the use of a visual
compass for rotation estimation. However, it is known that in
unbalanced environments the visual compass achieves only
poor results [21]. In presence of much closer objects on
one side, compared to the opposite side, the visual compass
fails and is greatly outperformed by the model based rotation
estimation of the Z∞-algorithm.

However, in order to apply the Z∞-algorithm, far
translation-invariant features have to be identified. On one



hand, the LT-map allows to easily access these landmarks
by simply extracting the ones stored in the upper nodes of
the tree. This gives an initial set of landmarks for efficient
rotation estimation and reduces the number of random sam-
pling steps as required by RANSAC. On the other hand,
the set of translation-invariant features, which is returned by
the Z∞-algorithm, can be used to find correspondences in
the upper nodes of all viewframes. The resulting matches
allow to identify loop closures or viewframes where some far
distant landmarks could not be tracked and, thus, are missing.
If such gaps are detected, they can be filled by shifting the
respective landmark to a common node in a higher level of
the tree. At the end, both algorithms, the LT-map and the Z∞-
algorithm, split the landmarks into far-distant and local ones.
The LT-map does this stepwise, whereas the Z∞-algorithm
provides a binary splitting.

V. LT-MAP BASED NAVIGATION USING AN
OMNIDIRECTIONAL CAMERA

First off, we would like to motivate our sensor choice.
All algorithms used in the presented navigation framework
are based on the measurements of a goniometer. We are
focusing on an efficient algorithm which can run on resource
limited platforms. For that, also the sensor should be compact
and lightweight with low power consumption. A camera
fulfils these criteria and allows to realize large aperture
angles. Increasing the field of view while keeping the pixel
resolution constant, one can see that the accuracy has an
optimum around 100◦ [19]. Nonetheless, we chose to use a
catadioptric camera, as presented in [22], because large field
of views significantly increase the robustness. Especially in
case of roadmap navigation algorithms, where the paths are
traversed in both directions, it is crucial to look not only
to the front, but also to the back, in order to keep the
heading of other sensors in driving direction. Furthermore, an
omnidirectional camera minimizes the risk to lack far distant
features for rotation estimation. This allows to operate also
in narrow passages and in front of walls.

We evaluated different global feature trackers, ASIFT [23],
SIFT [24], SURF [25], and BRISK [26], on omnidirectional
images. While there was not much difference between SIFT,
SURF, and BRISK, the most reliable tracking was achieved
using ASIFT. However, it requires the most processing
time and, hence, we chose to use BRISK, due to its high
efficiency. The experiments also revealed an improved per-
formance of all trackers if the omnidirectional images are
unwarped to a panorama image before processing. This
allowed us to use U-BRISK, the rotational-variant version
of the algorithm, to increase performance.

A. Roadmap Learning

If a robot explores an environment for the first time,
the path is learned as LT-map. The starting point and the
initial orientation of the robot define the origin. The optical
flow vectors which represent a pure translational motion
are estimated by the Z∞-algorithm and used to determine
whether a new viewframe should be added according to δt

introduced in Eq. 1. If a new viewframe is triggered, the
features of the current frame are matched with the ones of the
previous image in order to reject volatile landmarks before
adding them as new viewframe.

One advantage of the tree structure in the LT-map is, that
removing local or unstable information comes at low cost.
Once the memory limits are reached, the lowest level of the
tree is simply truncated and memory is freed. Therefore, the
robot does not have to know in advance how long the path
will be, which it is going to acquire. It can simply start with
a small value for δt and just prune the tree as soon as it is
required. In that way, the map dynamically adapts its spatial
resolution in a non-metric way to the available memory. In
case of a completed map, the landmarks in the nodes of the
first and last branch are not discarded, since we would like
to have higher accuracy for finding the goal or start location.
The idea is, that during path navigation, the accuracy to stay
exactly on the trajectory is not so much of interest. However,
we would like to have a high accuracy when finding the goal
location, because it could be a key location within the aspired
workspace. Also the starting point should provide as much
information as possible in order to reliably hook onto the
trail, in cases where the starting location is not accurately
known within the current workspace. Hence, the landmarks
of the nodes in the first and the last branch are not discarded,
but shifted upwards into the parent node as illustrated in
Fig. 3. If the map is pruned during acquisition, also the
last branch is trimmed, because it does not require a higher
accuracy. After pruning, we check all branches whether they
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Fig. 3. If the tree has to be trimmed to free some space, the nodes in
the lowest level are removed as illustrated in the left drawing. If the outer
branches represent an endpoint of the path, the landmarks are shifted into
the parent node, as illustrated by the red arrows, such that N ′3=N3 ∪N4

and N ′11 = N11 ∪ N13. The right drawing sketches the corresponding
exemplary path with the viewframe locations denoted as circles. The less
local information is available, the larger the circle, which depicts the caption
area of a viewframe. The blue circles correspond to the original viewframes
and the red ones to the trimmed tree.

contain sufficient landmarks for reliable homing, otherwise
the new leaves of these branches are deleted and the tree is
compressed.

B. Roadmap Following

The route defined by an LT-map can be followed by simply
moving from viewframe to viewframe and, thus, sequentially
extracting the landmarks of each branch from the start to the



goal viewframe. These landmark sets are used as reference
for the pose estimation, which is computed by applying
again the Z∞-algorithm. Hence, outliers in the landmark
set are filtered by the RANSAC framework. The resulting
translation vector t is applied as input for the motion control.
In order to suppress erroneous translation estimates, we apply
a median filter for the azimuth and elevation angle over K
most recently acquired vectors t. The circular problem for
the median rotation calculation of setting the 360◦ incision
properly is solved as follows:

φ̂ = med
({

mod
(
φk − φ̄+ π, 2π

)}K
k=0

)
+ φ̄− π (7)

with φ̄ = 1
K

K∑
k=0

φk, where φ = (φa, φe)
T consist of the

azimuth and elevation of the vector t. The median and
the modulo function are applied elementwise. Finally, the
median 2D heading vector can be computed by

t̂ =
(

cos
(
φ̂a

)
, sin

(
φ̂a

)
, sin

(
φ̂e

))T
. (8)

Assuming that more measurements result in a higher
confidence, we scale the vector t̂ by the number of elements
in the median filter, K, and the number of landmarks used
for its estimation, N , such that

v =
K

Kmax
min

(
N

Nmax
, 1

)
t̂ , (9)

where Nmax denotes the specified number of landmarks
which is sufficient for a reliable motion estimation and
Kmax is an empirically chosen value for the maximum filter
size which depends on the sensor, feature tracker, and the
environment. The resulting vector v is used to control the
velocity of the robot with a simple PID controller. It is
interpreted as scaled velocity, which is multiplied with a
constant maximum velocity. Thus, the robot continuously
adapts its direction to follow the path and moves faster if
it is confident about the direction estimate and slower if
the uncertainty increases. This behaviour allows to acquire
more measurements, e.g., in case of poor conditioning of the
environment.

The switching to the next viewframe is triggered in two
cases. Either the translational flow vectors are small enough
according to Eq. 1, meaning that the robot is close to
the reference viewframe, or the estimated direction vector
changes by more than 90◦, meaning that the robot just passed
the viewframe and wants to head backwards. The second
constraint may be problematic if the orientation between
consecutive viewframes changes by more than 90◦. The robot
would immediately find the second viewframe located in its
back after switching to the first one, which would trigger
another viewframe switch. Hence, it requires some time to
turn to the new heading direction after viewframe switching.
This can be easily realized by a short timeout after each
viewframe switch or by waiting until the heading direction
matches.

VI. EXPERIMENTS

As platform for our experiments we use the Pioneer-3DX
robot as illustrated in Fig. 4. The platform is equipped
with different ground truth sensors and markers. For our
indoor experiments we rely on the ART tracking system1

and outdoors we use the measurements of a tachymeter2,
which provide the most accurate measurements. Navigation
commands are sent to the velocity interface of the robot’s
motor controller board via serial interface. As middleware,
for the communication between the different modules, we
use ROS3. All the processing is done on-board and can be
monitored via WiFi. To stop the robot in an emergency or
for manual operation, it can be controlled via a gamepad.
The exploration trajectories are controlled manually.

IMU

GPS
antenna

ART
Marker

Omnidirectional
Camera

Stereo
Camera

WiFi

Prism for
Tachymeter

mITX-
Board

Pioneer
3D-X

Fig. 4. In our experiments we used a Pioneer-3DX as mobile platform.
The robot is equipped with a GPS antenna, a reference prism for the
tachymeter and an ART marker for ground truth. A further reference is
computed by fusing the measurements of an IMU and stereo odometry
as described in [27], whereas the Semi Global Matching (SGM) stereo
processing runs on a Xilinx Spartan-6 FPGA. A Kontron KTQM67/mITX
embedded motherboard is used as processing platform, equipped with an
Intel Core i7 Processor, 8 GB DDR3, and a SSD storage device. All the
processing is done on-board and a wireless network is used to monitor the
data on a host computer.

We acquired and processed images at 5 Hz with a reso-
lution of 474 × 474 pixels which can also be realized on
much smaller platforms. The images were then unwarped
to a panorama with 0.5◦/px resolution in both dimensions,
resulting in a usable image of size 720 × 172 pixels. We
continuously adapted the BRISK detector to find about 400
landmarks in the indoor scenario and 500 in the outdoor
experiments, which yielded about 200-300 valid matches.
The unwarped omnidirectional images have been extended to
include a small overlap which compensates for the descriptor
size of U-BRISK and prevents that features get lost at the
borders. Fig. 5 shows two examplary images acquired by the
catadioptric camera.

A. Indoor Evaluation
The first evaluation of the presented navigation strategy

has been performed in our lab. The robot was controlled

14 ARTtrack1 cameras from ART, http://www.ar-tracking.com
2TCRP1201 from Leica, http://www.leica-geosystems.com
3http://www.willowgarage.com/pages/software/ros-platform
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Fig. 6. These plots show the path following trajectories of the indoor experiments for the complete and the trimmed trees. The green line denotes the
mapping trajectory, the blue asterisk represent the locations where viewframes were acquired and the red trajectory illustrates the path followed by the
robot. The blue arrow depicts the travelling direction and the start point. The blue circles are the viewframes which were pruned and red markers represent
the remaining viewframe branches, whereas their location is chosen as the center of gravity of the pruned viewframes. As marker we use a red asterisk,
if enough landmarks for homing are still available, and a red circle otherwise. As threshold for this decision we chose 50 landmarks in our experiments.
The numbers next to the red asterisks indicate the amount of remaining landmarks.

(a) indoor scene

(b) outdoor scene

Fig. 5. These screenshots show two examples where the translational
optical flow vectors (blue), the landmarks used for rotation estimation
(green) and the estimated direction of translation (yellow) are visualized
for the indoor and the outdoor scenario. The grey lines depict the angles in
90◦ steps.

for building a LT-map, acquiring 34 viewframes. For this
experiment we simplified the control paradigm in the way
that the robot evaluates the images, turns into the new
heading direction and goes straight for 15 cm, before it stops
again to acquire new images. In that way the results are not
smoothed by the controller and more insights into the actual
motion estimation can be gathered. Fig. 6 shows the path
following performance for different pruning levels. The tree

is stepwise trimmed by one level and the resulting trajectories
prove that for each pruning step, the accuracy decreases. The
robot starts cutting edges but reliably finds its goal even with
only four out of eight tree levels. With only three remaining
levels, the robot gets lost after some time. It cannot find
enough features to reliably estimate the navigation direction
and starts a search pattern4 as illustrated in Fig. 6(f).

TABLE I
MAPPING STATISTICS FOR THE INDOOR SCENARIO

Height
(trim)

View-
frames

Land-
marks

Memory
usage [%]

Viewframe
error [m]

Path
error [m]

8 (0) 34 10171 100 0.057 0.055
7 (-1) 33 9732 95.7 0.052 0.057
6 (-2) 28 8322 81.8 0.133 0.099
5 (-3) 23 7193 70.7 0.145 0.108
4 (-4) 18 5832 57.3 0.208 0.1127
3 (-5) 11 3551 34.9 - 0.1547

Table I shows some statistics of the resulting LT-map, like
the number of viewframes, the total number of elements
and the percentage of memory occupied by the trimmed
trees. With almost half the memory usage, the goal could be
reliably reached. Furthermore, the performance of the path
following is evaluated by computing the average error be-
tween the location where the robot assumes to have reached
a viewframe and the true location of viewframe acquisition.

4As search pattern we implemented a “lying 8” with 120 cm diameter.



In the last column we compare the average distance of each
measurement location to the closest point on the mapped
trajectory. Both values increase with the number of trimmed
levels, which proves a reduced accuracy due to less local
information. At this point we want to emphasize that this
algorithm does not aim at reproducing a path with high
accuracy, but to reliably reach a goal using only limited
memory.

B. Outdoor Evaluation

In our outdoor experiments we used the same setup as
for the indoor experiments, beside the application of the
velocity controller as described in Section V-B and the
use of a tachymeter as ground truth instead of the ART
tracking system. The robot was manually steered along a
path, which was recorded as LT-map, and afterwards the
robot was commanded to return to its origin using three
differently trimmed maps. Fig.7 illustrates the trajectories,
showing that the path becomes smoother by pruning the tree.
As soon as we trimmed five levels, the robot was not able
to find enough landmarks to reliably compute the direction
of motion and, hence, started to execute the search pattern.

TABLE II
MAPPING STATISTICS FOR THE OUTDOOR SCENARIO

Height
(trim)

View-
frames

Land-
marks

Memory
usage [%]

Viewframe
error [m]

Path
error [m]

9 (0) 24 8493 100 0.777 0.551
7 (-2) 23 7862 92.6 0.615 0.499
5 (-4) 18 6229 73.3 0.872 0.408

In Table II we list again some statistics of the acquired
LT-map and the achieved accuracy. Interestingly, the path
accuracy slightly improves by pruning the tree, which can be
explained by the fact that the configuration of the velocity
controller was rather conservative and, hence, the reaction of
the robot to motion changes was quite slow.

Compared to the indoor experiments we acquired less
viewframes, which can be explained by a larger average
distance of the landmarks. Hence, the similarity measure δt
triggers viewframes at larger intervals and, thus, automati-
cally adapts to the information available in the scene.

Fig. 8 shows the computed azimuth direction over time of
the run illustrated in Fig. 7(c). The angles are expressed in
the robot frame and directly used by the controller. As one
can see, the angle to the next viewframe converges to zero
after a switch as the robot turns in the new heading direction.
If the angle exceeds ±90◦ the robot assumes to have passed
the viewframe and it switches to the next one. The other
criterion for a viewframe switch is if the similarity measure
δt is below the specified threshold, which is illustrated by the
green asterisks. As motivated in Section V-B, a five seconds
timeout ensures that the robot can align to the new viewframe
before the angle criterion triggers the next switch. This is
shown by the dashed gaps in the black horizontal lines. The
timeout is chosen according to the rotation velocity of the
robot to allow for a 180◦ turn.
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Fig. 8. This plot shows the computed azimuth angles (blue line) for the
trajectory illustrated in Fig. 7(c). The red vertical lines denote viewframe
switches and the black horizontal lines depict the timeout for viewframe
switching. During the periods depicted by two close dashed lines, any
viewframe switching which is triggered by the angular constraint is blocked.

VII. CONCLUSION AND FUTURE WORK

In this work we have presented an efficient and scalable
roadmap approach, which can be applied on resource lim-
ited platforms to connect distant workspaces. It allows to
efficiently adapt the resolution of the map to the provided
memory at runtime. No metric information is required –
the presented navigation solely relies on the bearing only
measurements of a camera. The motion is estimated applying
the Z∞-algorithm to omnidirectional measurements. Both
methods benefit from each other, due to similar underlying
concepts.

In our experiments we have shown that the navigation
algorithm can be realized on small robotic systems, by
relying only on a low resolution omnidirectional camera at
low framerate. By pruning the tree of the LT-map to free
some memory, local information is discarded. This results
in smoother trajectories, which, in combination with a local
obstacle detection, completely satisfies the requirements it
is designed for. Such an obstacle avoidance can be easily
realized by directly evaluating the time-to-collision from the
optical flow [5].

As a next step, we would like to introduce a measure,
which allows us to determine up to which level we can
trim the tree and still have a sufficiently high probability
to successfully follow the path. We also want to apply
the algorithm to a MAV, which allows us to validate the
approach in 3D space. Furthermore, we think that the current
bottleneck for the approach is the feature tracker, which we
would like to improve to be able to track landmarks over
longer distances.
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