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Incremental Light Bundle Adjustment for Robotics Navigation
Vadim Indelman, Andrew Melim, and Frank Dellaert

Abstract— This paper presents a new computationally-
efficient method for vision-aided navigation (VAN) in au-
tonomous robotic applications. While many VAN approaches
are capable of processing incoming visual observations, incorpo-
rating loop-closure measurements typically requires performing
a bundle adjustment (BA) optimization, that involves both
all the past navigation states and the observed 3D points.
Our approach extends the incremental light bundle adjust-
ment (LBA) method, recently developed for structure from
motion [10], to information fusion in robotics navigation and
in particular for including loop-closure information. Since in
many robotic applications the prime focus is on navigation
rather then mapping, and as opposed to traditional BA, we
algebraically eliminate the observed 3D points and do not
explicitly estimate them. Computational complexity is further
improved by applying incremental inference. To maintain high-
rate performance over time, consecutive IMU measurements
are summarized using a recently-developed technique and
navigation states are added to the optimization only at camera
rate. If required, the observed 3D points can be reconstructed at
any time based on the optimized robot’s poses. The proposed
method is compared to BA both in terms of accuracy and
computational complexity in a statistical simulation study.

I. INTRODUCTION

The increasing usage of autonomous robots to carry out
different types of tasks has urged development of advanced
methods for reliable long-term localization and navigation.
In particular, navigation in unknown environments has been
at the focus of many research efforts for the past two
decades. Indeed, many simultaneous localization and map-
ping (SLAM) and navigation-aiding methods have been
developed over the years.

One of the key challenges in long-term operation is ever-
growing computational complexity. Typically, in order to in-
corporate loop-closure measurements (such as in the scenario
shown in Figure 1), new variables are constantly added to the
estimation process, which can be considered as a nonlinear
optimization. These usually include the robot’s navigation
state, as well as the observed 3D points. The optimization,
also known as bundle adjustment (BA) in computer vision
and full SLAM in robotics, is thus performed over a large
set of variables, and while efficient incremental optimization
approaches have been recently developed, reducing the com-
putational complexity is important for many practical robotic
applications.

In this paper we address this challenge and propose a
new method for navigation aiding in which the number of
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Fig. 1: Trajectory used for analyzing processing time, shown
for illustration purposes in Google Earth.

variables is significantly reduced. Motivated by the observa-
tion that in many robotic applications the prime focus is on
navigation rather on the mapping, we suggest a method that
reduces the variable count in the optimization by avoiding
explicit estimation of the observed 3D points.

In our previous work [10], we showed in the context of
structure from motion (SfM), that algebraic elimination of
3D points allows substantial improvement in the computa-
tional complexity while maintaining similar levels of accu-
racy. While the proposed method avoids explicitly estimating
the observed map, this map or any part of it can be always
reconstructed, if required, based on the optimized robot’s
navigation states [10]. Here, we extend that work to robotics
navigation where additional sensors are usually available
and images are provided in a known order. Specifically, we
consider the challenging setup of an inertial measurement
unit (IMU) and a monocular camera. We also present the
use of pre-integration methods developed in [21] to reduce
computational complexity when used to initialize camera
positions in a navigation context.

This paper presents the following contributions: a) Re-
duced computational complexity and similar levels of accu-
racy performance as full bundle adjustment ; b) Loop-closure
capable vision-aided navigation; c) Method validation using
a statistical simulation study.

The remainder of this paper is organized as follows. After
discussing related work, we formulate the robotics navigation
problem and present our general approach in Section III.
Section IV reviews the incremental light bundle adjustment
method, which is then extended to robotics navigation in Sec-
tion V. Statistical simulation results comparing the method to
full bundle adjustment, as well as a comparison of processing
time, are given in Section VI. Main conclusions and future
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work are suggested in Section VII.

II. RELATED WORK

Early SLAM methods [24], [25] applied the extended
Kalman filter (EKF) to simultaneously estimate the current
robot’s pose and the observed 3D points. However due to its
quadratic computational complexity and since it was realized
that marginalizing out past poses in EKF-SLAM causes
fill-in in the information matrix [26], [2], recent SLAM
approaches use smoothing for inference. Today SLAM al-
gorithms can be divided into two main categories: feature-
and view-based SLAM.

In feature-based SLAM, both the observed 3D points and
the robot’s past and current poses are optimized. Several
efficient optimization methods that exploit the sparsity of
typical SfM and SLAM problems have been developed in
recent years, including [19], [16] and [14]. Lourakis et al.
[19] perform efficient optimization by exploiting the sparse
connections between the pose and the landmark variables,
while in [16] the inter-pose sparsity is also taken into
account. As opposed to the commonly applied batch opti-
mization, the incremental smoothing and mapping approach
[14], also used in this paper, recovers the exact solution
while recalculating only part of the variables each time a
new measurement is added into the optimization, resulting
in a significant reduction of computational cost.

The second SLAM category is view-based SLAM [20],
[2], or pose-SLAM, in which, similar to the proposed
method, only the current and past robot’s poses are main-
tained. In pose-SLAM approaches, pairs of poses are linked
using relative pose constraints that are straightforward to
estimate in a stereo camera setup [7], [17], but become
more challenging when relying only on a single camera.
In the latter case, the relative constraints can be estimated
only up to a scale, which encodes the magnitude of the
relative translation [2]. This scale parameter can be set based
on the previous frames as in [1]. However, to avoid scale
drift the scale parameters should be part of the optimization
as well [4]. In contrast to conventional pose-SLAM, we
formulate multi-view geometry constraints for each feature
match, thereby not relying on uncertainty estimates obtained
by the intermediate (and separate) process of image-based
relative-pose constraints estimation.

In the context of navigation-aiding, despite the close
relation to SLAM, only a few methods have been presented
in recent years that are capable of incorporating loop closure
measurements. These include [22] where visual observations
are incorporated into the navigation solution using an EKF
formulation with a sliding window of past poses. In a later
work [23], the authors applied a conventional batch BA that
involved explicit structure estimation in order to handle loop
closure measurements.

More recently, incremental smoothing [14] was proposed
for inertial navigation systems in [12], [13] and a method was
developed to incorporate loop closures while maintaining a
real time navigation solution [15]. Our method is formulated
within the same framework of [15], [12], [13] but replaces

the explicit estimation of the 3D points with a set of 2-
view and 3-view constraints. Other work involving the use of
incremental smoothing in a navigation context was presented
in [6] in which Doppler Velocity Log (DVL), and IMU
measurements were integrated with sonar and monocular
camera measurements to perform real-time SLAM relative
to the hull of large ships.

III. PROBLEM FORMULATION AND APPROACH

In this paper we consider a robotics navigation applica-
tion, where measurements from different sensors should be
fused, and focus on IMU and visual monocular sensors, a
commonly used configuration. Denote the navigation state,
comprising the robot’s pose and velocity, at time tk by xk
and the set of past and current navigation states, up to time
tk by Xk

.
=
[
xT1 . . . xTk

]T
. Also, let Zk represent all

the available measurements up to time tk, which includes
both the IMU measurements and the visual observations of
3D points. We denote the set of observed 3D points until
time tk by Lk.

SLAM and the corresponding robot navigation problem
can be described referring to the joint probability distribution
function p (Xk, Lk|Zk). Full SLAM calculates the maximum
a posteriori (MAP) estimate of both the robot past and
current state and the map

X∗k , L
∗
k = arg max

Xk,Lk

p (Xk, Lk|Zk) ,

which corresponds, conventionally assuming Gaussian distri-
butions, to a non-linear least square optimization. As seen,
both the robot’s navigation states Xk and the observed 3D
points Lk are involved, and thus if Xk ∈ RNk×1 and
Lk ∈ RMk×1, then there are Nk + Mk variables in the
optimization at time tk.

However, in the context of navigation, we only want
the density of Xk, and mainly the density of the current
navigation state xk. This could be done by marginalizing
out the 3D points

p (Xk|Zk) =

ˆ
p (Xk, Lk|Zk) dLk, (1)

however that requires the joint p (Xk, Lk|Zk) to be available
and is expensive to calculate.

Instead, inspired by a recently-developed approach, in-
cremental light bundle adjustment (iLBA) [10], we propose
to approximate p (Xk|Zk) by algebraically eliminating the
observed 3D points. The resulting probability distribution
function (pdf), that we denote by pLBA (Xk|Zk) and further
discuss in the next section, does not involve 3D points, and
thus the corresponding optimization is performed over only
Nk variables. Applying incremental smoothing [14] only part
of these variables are actually recalculated each time a new
measurement is added.

Optimizing only over the navigation states (and the IMU
calibration parameters, as discussed in Section V) results in
reduced computational complexity, while the actual accuracy,
although somewhat degraded with respect to BA, is suffi-
cient in many cases. Avoiding having the landmarks in the
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optimization eliminates the need for landmark initialization,
which is often not trivial, as well as having less tuning
parameters in the incremental smoothing approach.

Furthermore, since IMU measurements are high-rate, the
number of navigation states Nk rapidly increases with time
and high-rate performance quickly becomes infeasible even
when optimizing only pLBA (Xk|Zk). To address this chal-
lenge, we adopt a recently-developed technique for IMU pre-
integration [21], and incorporate navigation states into the
optimization only at camera rate.

IV. INCREMENTAL LIGHT BUNDLE ADJUSTMENT

Incremental light bundle adjustment (iLBA) [10] combines
the following two key-ideas: algebraic elimination of 3D
points, and incremental smoothing. In this section we review
each of these concepts.

A. Algebraic Elimination of 3D points

The joint pdf p (Xk, Lk|Zk) can be explicitly written in
terms of the prior information and the actual process and
measurement models. If we consider for a moment only the
visual observations, then:

p (Xk, Lk|Zk) = priors ·
∏
i

∏
j

p
(
zji |xi, lj

)
,

where we denote the measured image observation of the jth

3D point lj in the ith image by zji . Assuming Gaussian
distributions, MAP estimation corresponds to the following
nonlinear optimization

JBA (Xk, Lk) =
∑
i

∑
j

∥∥∥zji − proj (xi, lj)
∥∥∥2

Σ
, (2)

where proj (.) is the projection operator [5] for a standard
pinhole camera model, and ‖a‖2Σ

.
= aT Σ−1a is the squared

Mahalanobis distance with the measurement covariance ma-
trix Σ.

Considering the robot’s poses that observe some common
3D point l and writing down all the appropriate projection
equations, it is possible to algebraically eliminate l which
results in constraints between triplets of poses [27], [10]. One
possible formulation of these constraints, recently developed
in the context of vision-aided navigation [8], [9], are the
three-view constraints. Assuming three overlapping views
k, l and m, these constraints are

g2v (xk, xl, zk, zl) = qk · (tk→l × ql) (3)
g2v (xl, xm, zl, zm) = ql · (tl→m × qm) (4)
g3v (xk, xl, xm, zk, zl, zm) = (5)
(ql × qk) · (qm × tl→m)− (qk × tk→l) · (qm × ql)

where qi
.
= RT

i K
−1
i z for any view i and image observation

z, Ki is the calibration matrix of this view, Ri represents
the rotation matrix from some arbitrary global frame to the
ith view’s frame, and ti→j denotes the translation vector
from view i to view j, expressed in the global frame. The
first two constraints are the two-view constraints g2v between

appropriate pairs of views, while the third constraint, g3v ,
involves all the three views.

When a 3D point is observed by more than three views,
we add a single two-view and three-view constraint between
each new view and past views, as further explained in [10].

Consequently, rather than optimizing the bundle adjust-
ment cost function (2), that involves both the pose and
landmark variables, in light bundle adjustment (LBA) the
cost function is [10]:

JLBA(X)
.
=

Nh∑
i=1

‖hi(Xi, Zi)‖2Σi
, (6)

where hi represents a single two- or three-view constraint
(hi ∈ {g2v, g3v}) that is a function of several views Xi ⊂ X
and image observations Zi in these views, and Nh is the
overall number of such constraints.

The LBA cost function (6) corresponds to a probabil-
ity distribution pLBA (X|Z) , which approximates the pdf
p (X|Z) from Eq. (1) [11]. One can observe that Eq. (6)
indeed does not contain any structure parameters, and hence
the overall number of variables in the optimization is sig-
nificantly reduced compared to the bundle adjustment cost
function (2).

B. Incremental Smoothing

The second component in iLBA is incremental smoothing
[14], which re-calculates only part of the robot’s poses each
time a new measurement is incorporated into the optimiza-
tion. Although a detailed description of the incremental
smoothing approach is beyond the scope of this paper, we
briefly discuss the essentials next.

The factorization of the joint pdf into individual process
and measurement models can be represented using a graph-
ical model, known as the factor graph [18], upon which
incremental smoothing is performed.

In the context of LBA, the probability distribution
pLBA (X|Z) can be factorized as

pLBA (X|Z) ∝
Nh∏
i=1

f2v/3v (Xi) , (7)

with f2v/3v ∈ {f2v, f3v}. The two- and three-view factors
f2v and f3v , respectively, are defined for the three-view
constraints (3)-(5) as

f2v (xk, xl)
.
= exp

(
−1

2
‖g2v (xk, xl, zk, zl)‖2Σ2v

)
, (8)

and

f3v (xk, xl, xm)
.
= (9)

exp

(
−1

2
‖g3v (xk, xl, xm, zk, zl, zm)‖2Σ3v

)
,

with appropriate covariance matrices Σ2v and Σ3v [10]. In
practice, in order to avoid the trivial solution of zero trans-
lation, each of the constraints g2v and g3v are normalized by
a translation vector and the Jacobian matrices are modified
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Fig. 2: Factor graph representations: (a) iLBA: incorporating
two- and three-view factors instead of projection factors
algebraically eliminates the observed 3D points from the
optimization; (b) Inertial navigation based on IMU measure-
ments and modeling IMU bias dynamics using conventional
and equivalent IMU factors.

accordingly. Figure 2a illustrates a simple factor graph that
corresponds to Eq. (7), with 4 camera poses observing 2
different 3D points.

In incremental smoothing, the factor graph is converted
into a directed junction tree, which represents a factorization
of the square root information matrix I = ATA at a given
linearization point. Batch optimization performs factorization
from scratch each time a new measurement is received.
In contrast, incremental smoothing updates the previous
factorization with the new information contributed by the
received measurements, eliminating only part of the vari-
ables. Incremental smoothing performs selective linearization
of variables that exceed certain thresholds, typically using
different threshold for each variable type (e.g. position,
bias etc.) [14]. Choosing appropriate thresholds can be thus
considered as a tuning process, since too loose thresholds
might result in degraded performance but too tight thresholds
will lead to high computational time. In contrast to BA,
LBA does not involve thresholds for the landmark variables,
resulting in an easier tuning process.

V. INCREMENTAL LBA FOR ROBOTICS NAVIGATION

While iLBA considers only visual observations, in actual
robotic applications different additional sensors are usually
available. Combining all the available measurements from
different sensors then becomes a matter of information
fusion and can be handled in the very same framework of
incremental smoothing [12].

Rather than focusing on robot localization we consider
the more complete problem of navigation, where parame-
ters such as velocity and inertial measurement unit (IMU)
calibration parameters are estimated as well. An additional
challenge is being able to incorporate the high-rate IMU
measurements into the optimization, while maintaining high-
rate performance.

Next we discuss how to incorporate IMU and visual
measurements using the iLBA concept, and adapt a recently-
developed technique for summarizing consecutive IMU mea-

surements to avoid adding navigation variables into the
optimization at IMU frequency. Denote the IMU bias by b.

A. iLBA and Inertial Navigation Process

The time evolution of the navigation state x can be
described as a set of nonlinear differential equations [3]

ẋ = hIMU
c

(
x, b, zIMU

k

)
,

where zIMU is the IMU measurement. Different numerical
schemes, ranging from a simple Euler integration to high-
order Runge-Kutta integration, can be applied for solving
these equations. In this work we use a simple Euler integra-
tion prediction function with an associated integration un-
certainty, allowing the underlying nonlinear optimization in
incremental smoothing to adjust the individual state estimates
appropriately. The discrete representation is thus [12]:

xk+1 = hIMU
(
xk, bk, z

IMU
k

)
.

In a similar manner, the dynamics of the IMU bias can be
described as bk+1 = hb (bk) for some known function hb.
For example, hb can be represent a first order Gauss-Markov
process.

The corresponding factors to the IMU process and the
IMU bias process are defined as follows:

f IMU (xk+1, xk, bk)
.
= (10)

exp

(
−1

2

∥∥xk+1 − hIMU
(
xk, bk, z

IMU
k

)∥∥2

ΣIMU

)

f bias (bk+1, bk)
.
= exp

(
−1

2

∥∥bk+1 − hb (bk)
∥∥2

Σb

)
with ΣIMU and Σb denoting the corresponding process
covariance matrices.

Incorporating IMU measurements and three-view con-
straints, while taking causality into account, is equivalent to
the following overall joint probability distribution function
and its factorization

p (Xk, Bk|Zk) ∝
k−1∏
s=0

[
f IMU (xs+1, xs, bs) f

bias (bs+1, bs)

ns+1∏
i=1

f2v/3v (Xsi)

]

with Bk
.
=
[
bT1 · · · bTk

]T
being the overall set of IMU

calibration parameters. In practice, since these tend to only
have slow dynamics, it makes sense to describe this process
in some lower rate [12].

In the above equation, ns+1 is the number of two- and
three-view factors that are added between each current state
xs+1 and past states. Thus, if xa ∈ Xsi then a ≤ s+ 1.

The MAP estimate

X∗k , B
∗
k = arg max

Xk,Bk

p (Xk, Bk|Zk)

is obtained by applying incremental smoothing, as mentioned
in Section IV-B.
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Fig. 3: Factor graph representation for iLBA for robotics nav-
igation - inertial navigation is aided by two- and three-view
factors, which are added only between camera poses. Loop
closures are incorporated using the same factors (dashed
lines). Best viewed in color.

B. Equivalent IMU Factor

To reduce the number of variables and factors in the
optimization we adopt a recently-developed technique [21]
for IMU measurements pre-integration and introduce the
equivalent IMU factor.

The idea is to integrate consecutive IMU measurements
between two time instances ti and tj into a single component,
denoted by ∆xi→j , comprising the accumulated change in
position, velocity and orientation, represented respectively by
∆pi→j ,∆vi→j and the rotation matrix Ri

j :

∆xi→j
.
=
{

∆pi→j ,∆vi→j , R
i
j

}
= η

(
ZIMU
i→j , bi

)
,

where ZIMU
i→j is the set of IMU measurements between the

time instances ti and tj , that are corrected using the bias
bi, and η is a known non-linear function that describes the
IMU measurements pre-integration process. One can now use
∆xi→j to predict xj based on the current estimate of xi. Let
hEquiv represent this predicting function.

We can then define an equivalent IMU factor fEquiv as

fEquiv (xj , xi, bi)
.
=

exp

(
−1

2

∥∥xj − hEquiv (xi, bi,∆xi→j)
∥∥2

Σ

)
, (11)

which involves only the variables xj , xi and bi for any
reasonable1 two time instances ti and tj . Figure 2b illus-
trates the conceptual difference between the conventional and
equivalent IMU factors.

A straightforward approach for calculating ∆xi→j in-
volves pre-integrating the IMU measurements while express-
ing them in the navigation frame. However, this will require
re-calculating ∆xi→j from scratch each time the rotation
estimate changes, i.e. each re-linearization of xi. To resolve
this, as proposed in [21], the different components in ∆xi→j

are expressed in the body frame of the first time instant
(i.e. ti), which allows re-linearizing the factor (11) without
recalculating ∆xi→j . The reader is referred to [21] for
further details.

1The original derivation in [21] neglects Earth curvature and Earth
rotation, however it can be extended to the more general case which assumes
the gravity vector and the rotation rate of the navigation frame with respect
to an inertial frame are constant. The time instances ti, tj should be chosen
such that these assumptions are satisfied.

The equivalent IMU factor allows to significantly reduce
the number of variables and factors in the optimization,
and enables high-rate performance while using efficient
optimization techniques. This is illustrated in Figure 3,
that shows a factor graph with two- and three-view factors
and the equivalent IMU factor bridging between navigation
states (variables) from different time instances. Note that a
conventional IMU factor would require adding consecutive
navigation states to the graph.

Since in typical navigation systems a navigation solution
xt is required in real time, i.e. each time an IMU measure-
ment is obtained, one can predict xt using the accumulated
component ∆xi→j and the current estimates x̂i, b̂i of xi and
bi, in a parallel process and without incorporating xt into the
optimization, i.e. hEquiv

(
x̂i, b̂i,∆xi→j

)
.

C. Choosing Past Frames for New Multi-View Constraints

An important aspect in LBA is how to choose past
camera frames when adding new multi-view factors into the
optimization: Assume a new image is captured at time tk and
feature correspondences with past images are established.
Consider one such correspondence and denote byW the time
indices in which the same landmark was observed. Adding a
two-view factor f2v (xk, xl) requires choosing the past frame
l from the set W , and similarly adding a new three-view
factor f3v (xk, xm, xn) involves determining the past frames
m and n from the set W . In general, each of the frames m
and n can be different than l.

Different approaches for determining these past camera
frames yield different graph topologies and are expected
to affect both accuracy and computational complexity of
the proposed method. While a methodological method for
determining these past frames still remains an open question
and will be investigated in future research, we have observed
that since in the robotics case the captured images are time-
ordered, a good heuristic is to set l and n to the earliest
frame in W , while the second view in the three-view factor
(m) is set such that the magnitudes of relative translations
tk→m and tm→n are similar.

VI. RESULTS

The proposed method was examined in a simulated real-
istic aerial scenario, covering an area of about 2 × 1.5 km,
with a footprint of a university campus, as shown in Figure
1. A statistical performance study was conducted using a
smaller scenario (Figure 4). In both cases, the aerial vehicle
gradually explores different areas and occasionally re-visits
previously observed locations thereby providing loop closure
measurements. In these scenarios, the flight is at a constant
height of 200 meter above mean ground level, with a 40
m/s velocity. A medium-grade IMU and a single downward-
facing camera, operating at 100 Hz and 0.5 Hz, were used.

In the following we compare LBA to the BA approach,
using the equivalent IMU factors and incremental smoothing
in both cases. The two methods were implemented using the
GTSAM factor graph optimization library2. All the reported

2http://tinyurl.com/gtsam.



6

0

500

1000

1500

−800
−600

−400
−200

0
200

400

−400

−200

0

200

 

North [m]East [m]
 

H
e

ig
h

t 
[m

]

True

Inertial

Fig. 4: Trajectory used in Monte-Carlo runs and inertial
navigation drift in a typical run.

results were obtained on an Intel i7-2600 processor with
a 3.40GHz clock rate and 16GB of RAM, using a single-
threaded implementation.

The 100 Hz ideal IMU measurements were corrupted with
a constant bias and a zero-mean Gaussian noise in each
axis. Bias terms were drawn from a zero-mean Gaussian
distribution with a standard deviation of σ = 10 mg for the
accelerometers and σ = 10 deg/hr for the gyroscopes. The
noise terms were drawn from a zero-mean Gaussian distri-
bution with σ = 100 µg/

√
Hz and σ = 0.001 deg/

√
hr for

the accelerometers and gyroscopes. Visual observations of
unknown 3D points were corrupted by a zero-mean Gaussian
noise with σ = 0.5 pixels.

A. Statistical Simulation Results

We first compare the performance of the proposed method
(iLBA) and full BA based on a 50-run Monte-Carlo study.
Actual processing timing for each of the method is analyzed
in a larger scenario in Section VI-B. The trajectory used
in this study contains several loop closures (at t ≈ 80 and
t ≈ 135 seconds ) during which the same ground areas are
re-observed (Figure 4).

The results are given in Figures 5-6 in terms of standard
deviation error (1σ) and the uncertainty covariance, while a
typical inertial navigation drift is shown in Figure 4. Overall,
similar performance is obtained both for iLBA and full
BA: Position errors are confined within 5 − 10 meters in
all axes, with a significant reset upon loop closure around
t = 80 seconds; pitch and roll errors are bounded, while
yaw angle error is reduced to prior values upon loop closure;
accelerometer bias is estimated during the first segment of
straight flight, while gyroscope bias is gradually estimated
during maneuvers and loop closure. The covariance in iLBA
tends to be a bit higher than the one in full BA.

One should note that the initial navigation errors were
assumed to be zero in the presented MC runs. While this
is appropriate in many robotics applications that focus on
navigation relative to the initial robot position, in other
navigation applications, including aerial navigation-aiding,
the navigation solution is expressed with respect to some
other global frame. Although in the latter case the initial
navigation errors might be non-zero, the proposed method
is still capable of reducing the development of navigation
errors (not shown due to lack of space).
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Fig. 5: Monte-Carlo study comparing between LBA and
full SLAM, both using incremental smoothing: (a) Position
errors; (b) Euler angle errors.

B. Larger Scenario

We investigate the computational complexity of LBA and
compare it to BA in a larger scenario that is shown in Figure
1. This scenario contains occasional loop closures, some of
which are large loop closures, involving many navigation
and landmark variables recalculated during optimization. The
aerial vehicle travels a total distance of about 13 km in 700
seconds.

A top view of the estimated trajectory by LBA and BA,
compared to ground truth and to pure IMU integration, is
shown in Figure 7a, with position estimation errors given in
Figure 7b. One can observe the fast drift of IMU-based dead
reckoning, while both LBA and BA yield estimates close
to ground truth with similar levels of accuracy. Note that
only IMU and monocular cameras are used, without GPS
or any additional sensors, producing position estimates with
a typical estimation error of 5 − 10 meters, with a highest
estimation error of 20 meters.

While a similar estimation accuracy was obtained both
by LBA and BA, processing time is different. The latter
depends on the number of feature observations per frame
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Fig. 6: Monte-Carlo study comparing between LBA and full
SLAM, both using incremental smoothing: (a) Accelerometer
bias estimation errors; (b) Gyroscope bias estimation errors.
Best viewed in color.

γ, which affects the number of observed landmarks. We
therefore discuss processing time for two different values
of feature observations per frame, γ = {200, 500}, while
performing exactly the same trajectory. In the former case,
number of landmarks is 9.5k with total number of image
observations of about 66k, while in the latter case, number
of landmarks and total number of image observations are
23k and 165k, respectively.

Processing time for these two cases is shown in Figures
7c-7d and summarized in Table I. As seen, while BA exhibits
lower processing time now and then, in particular when far
from loop closure frames, the overall processing time is much
smaller in the LBA case. One can clearly observe the spikes
in BA, that are the result of massive variable re-elimination
and re-linearization triggered by loop closures and proceeds
for many frames afterwards. Overall, the average processing
time per frame in the shown scenario for γ = 200 features
is 0.27 and 0.59 seconds for LBA and BA, respectively.
Increasing number feature observations per frame to γ =
500, leads to further difference in average processing time,
as shown in Figure 7d: 0.57 and 1.95 seconds for LBA and

#Features #Landmarks #Observations Ave. Time [sec]
per frame BA LBA Ratio

200 9.5k 66k 0.59 0.27 2.19
500 23k 165k 1.95 0.57 3.42

TABLE I: Average processing time per camera frame.

BA. Thus, LBA is about 2 times faster, on average, than BA
for γ = 200 features, and almost 5 times faster for γ = 500
features.

VII. CONCLUSIONS AND FUTURE WORK

We presented a new computationally-efficient approach for
robotics navigation in the challenging but common setup of
a robot equipped only with an IMU and a single monocular
camera. In order to incorporate incoming visual observations
and, in particular, loop closure measurements, it is common
to apply bundle adjustment optimization that involves both
the navigation states and the observed 3D points. We instead
algebraically eliminate the observed 3D points and formulate
the cost function, using multi-view constraints, only in
terms of navigation states, leading to a considerably reduced
number of variables in the optimization. To avoid adding
navigation states to the optimization at IMU rate, consec-
utive IMU measurements are summarized using a recently-
developed technique. Applying incremental inference, only
part of the navigation states are actually re-calculated for
each new added measurement.

A statistical simulative study in which the proposed
method was compared to full bundle adjustment was pre-
sented showing similar levels of accuracy in both methods
for the considered scenario. Processing time was analyzed
in a 13 km length simulated scenario, considering different
number feature observations per frame. The analysis indi-
cated that the proposed method, incremental light bundle
adjustment, is 2 − 3.5 time faster on average, compared
to incremental bundle adjustment and this ratio increases
with number of features per frame. Future work will focus
on conducting large-scale experiments and developing a
methodology for optimally adding new multi-view factors
to the optimization.
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