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Abstract— Mobile service robots are envisioned to operate
in environments that are populated by humans and therefore
ought to navigate in a socially compliant way. Since the desired
behavior of the robots highly depends on the application, we
need flexible means for teaching a robot a certain navigation
policy. We present an approach that allows a mobile robot to
learn how to navigate in the presence of humans while it is being
tele-operated in its designated environment. Our method applies
feature-based maximum entropy learning to derive a navigation
policy from the interactions with the humans. The resulting
policy maintains a probability distribution over the trajectories
of all the agents that allows the robot to cooperatively avoid
collisions with humans. In particular, our method reasons about
multiple homotopy classes of the agents’ trajectories, i. e., on
which sides the agents pass each other. We implemented our
approach on a real mobile robot and demonstrate that it is able
to successfully navigate in an office environment in the presence
of humans relying only on on-board sensors.

I. INTRODUCTION

Mobile robots are expected to populate our human envi-
ronments for numerous applications in the near future. These
service robots should navigate in a socially compliant way
that does not disturb nearby humans. The desired navigation
behavior of a robot highly depends on the application at
hand. For example, a cleaning robot should be unobtrusive
and not unnecessarily hinder people, whereas a transportation
robot that supplies an emergency room in a hospital must
not delay its task by being overly cautious. Furthermore,
since humans are likely to react differently to a robot than
to a human, it is not always desirable to simply make the
robot replicate human navigation strategies. Therefore, we
need flexible means for non-experts to teach a robot how to
navigate in its particular application.

Autonomous mobile robot navigation in an environment
that is populated by humans is a challenging problem.
Humans tend to cooperatively avoid collisions by mutually
evading each other. To enable socially compliant human-robot
interaction, mobile robots need to be able to engage in such
cooperative navigation. However, since the behavior expected
from robots may differ from typical human behavior, robots
cannot learn how they are supposed to interact with humans
by observing interacting humans. Consequently, teaching
the desired behavior to a robot is difficult without actually
having the robot experience interactions with humans in its
designated environment.
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Fig. 1. Left: We teach a mobile robot an appropriate navigation behavior
when interacting with humans via tele-operation. Right: Our approach learns a
policy that allows the robot to autonomously navigate in a socially compliant
way predicting the interaction behavior of nearby pedestrians.

This paper proposes a method that allows a mobile robot to
learn an appropriate navigation policy from interactions with
people that the robot experiences while being tele-operated
in its designated environment. The robot thereby observes
its own behavior, the behavior of nearby pedestrians, and,
in particular, the interactions with these pedestrians. Our
approach learns preferences of the robot and preferences of
the humans in terms of accelerations, velocities, and timing.
Furthermore, our method learns the expected human-robot
interaction behavior, such as an adequate clearance between
the agents. The robot can then use the learned policy to
predict interactions with humans and to behave cooperatively,
as illustrated in Fig. 1.

This paper builds on our previous work on feature-
based prediction of human trajectories [14], which applies
inverse reinforcement learning (IRL) to capture the navigation
behavior of pedestrians in terms of a probability distribution
over their trajectories. In this paper, we apply our behavior
learning framework to mobile robot navigation in realistic
environments with obstacles that are populated by humans.
Our method enables teaching a mobile robot a navigation
policy that explicitly takes into account human-robot interac-
tion. Our model reasons about multiple homotopy classes of
the agents’ trajectories, i. e., on which sides the agents pass
each other. Unfortunately, in general, the number of these
homotopy classes grows exponentially with the number of
agents, which hinders mobile robot navigation in realistic
settings. To overcome this limitation, we propose to restrict
the number of homotopy classes to consider by ignoring
interactions that are highly unlikely in the current situation.
Our experimental evaluation demonstrates a mobile robot
that uses our approach to successfully navigate in an office
environment in the presence of humans using only on-board
sensors.



II. RELATED WORK

There is a wide range of literature on learning policies
from demonstrations [1, 3, 4, 21]. In contrast to direct
approaches to imitation learning that infer a mapping from
state features to actions [4], inverse reinforcement learning
(IRL) recovers a cost function that explains observed behavior.
In particular, Abbeel and Ng [1] suggest to match features
that capture relevant aspects of the behavior. However, feature
matching does not yield a unique cost function. To resolve
this ambiguity, Maximum Entropy IRL [21] computes the
policy with the highest entropy subject to feature matching.

The approach presented by Ziebart et al. [22] and our
previous work [14] apply Maximum Entropy IRL to infer
models of pedestrian navigation behavior. Kitani et al. [13]
use Maximum Entropy IRL to infer human preferences
with respect to vision-based physical scene features, such
as sidewalks, and to predict the trajectories of pedestrians
including their destinations. In addition to these probabilistic
learning approaches, many researchers have proposed various
models to capture the navigation behavior of humans [6–8].
Steering models describe human navigation behavior as a dy-
namical system, in which a set of rules determines the agent’s
immediate action given its current state in the environment
[9, 10, 20]. Optimization models cast pedestrians as utility-
optimizing agents that minimize a cost function comprising
relevant properties of human navigation [2, 12, 15].

The abovementioned approaches aim at modeling the
navigation behavior of humans and can therefore be used to
foster efficient and socially compliant mobile robot navigation
in populated environments. The objective of this paper is to
teach a robot a specific navigation behavior that is suitable
for its task and that takes into account the behavior of the
pedestrians in the vicinity of the robot. In particular, our
approach implicitly learns how pedestrians typically react
when interacting with robots.

Trautman and Krause [18] demonstrate that mobile robot
navigation fails in densely populated environments unless the
robot takes into account the interaction between the robot and
the humans. Van den Berg et al. [19] present an approach to
reciprocal collision avoidance that allows a set of mobile
robots to navigate without collisions. Our approach also
models cooperative navigation behavior.

Representing homotopy classes of trajectories is an impor-
tant problem in motion planning [5, 11, 16]. Bhattacharya
et al. [5] propose to integrate an obstacle marker function,
which is given rise to by a representative point per obstacle.
They show that two trajectories are homotopic if and only
if they yield the same integral. Our approach reasons about
homotopy classes of trajectories with respect to multiple
agents.

III. LEARNING NAVIGATION POLICIES FOR MOBILE
ROBOTS IN POPULATED ENVIRONMENTS

The objective of this work is to teach a robot how to interact
with humans by tele-operation in the designated environment.
The robot observes its behavior and the reaction of nearby
pedestrians and learns a policy of the desired interaction.

To derive the policy from the demonstrations, we extend
our previous work [14] of learning cooperative navigation
behavior of pedestrians, which we will shortly recap in the
next section.

A. Feature-Based Prediction of Trajectories

In this section, we summarize our previous work [14]
on feature-based prediction of human trajectories. Given
observations of interacting pedestrians, we learn a policy
that induces a distribution over the trajectories of all the
agents. This distribution depends on the current situation, i.e.,
the start and goal positions, and on a weight vector θ. This
weight vector determines the importance of features f that
characterize relevant aspects of the agents’ behavior. During
the learning process, we compute the value for θ such that
the expected feature values of the distribution match their
corresponding empirical values of the observations.

More precisely, we define the trajectory xa of an agent a
as a continuous function

t 7→ xa(t) ∈ X (1)

that maps each point in time t to a configuration. We use
cubic splines to represent these trajectories. The trajectories
of all N agents traveling from their start positions to their
target positions are captured by the composite trajectory

x = (x0, . . . , xN ) ∈ XN . (2)

To characterize relevant properties of the behavior, we use
features

fi : XN → R (3)

that map composite trajectories x to feature values fi(x). We
refer to the vector of all features as f(x). Following the idea
of maximum entropy inverse reinforcement learning [21], we
assume that the behavior of the agents can be described by a
probability distribution over composite trajectories

pθ(x) =
1

Z(θ)
e−θ

T f(x) (4)

that depends on these feature values. In this model, learning
the interaction behavior of the agents translates to finding val-
ues of θ such that the expectations of the features Epθ(x)[f(x)]

match their empirical values f̃ from the observations. The
gradient of θ that leads to feature matching corresponds to
the difference between the empirical and the expected feature
values f̃ − Epθ(x)[f(x)], which allows us to apply gradient
based methods to learn the desired interaction behavior.

Evaluating the gradient requires repeatedly computing
the expected feature values, which is infeasible in practice.
However, our experiments suggest that the modes of the
probability distribution pθ(x) coincide with the homotopy
classes of the interactions, which are subsets of XN in which
all pairs of agents choose the same side when passing each
other. Our method approximates the distribution using a
weighted sum over Dirac delta functions at the most likely
interaction of each homotopy class. Unfortunately, the number
of homotopy classes increases exponentially with the number



Algorithm 1 Computing the set of relevant homotopy classes
1: for all agents a do
2: xa ← globalPath(xastart, x

a
goal)

3: x← (x1, . . . , xN )
4: Ψ′ ← {x}
5: while unresolvedCollisions(Ψ′) do
6: for all x ∈ Ψ′ do
7: for all a, b with a 6= b do
8: if a and b interact in x and x±2πab /∈ Ψ′ then
9: Ψ′ ← Ψ′ ∪ x±2πab

of agents, which hinders mobile robot navigation in realistic
applications. In this paper, we propose an approach that
disregards unlikely homotopy classes and, therefore, is able
to cope with many more agents.

B. Reasoning About Relevant Homotopy Classes

The policies learned by our approach induce a probability
distribution over interactions x ∈ XN that comprise the
trajectories of all the agents from their start to their target
positions. As described in the previous section, we approx-
imate this distribution using the most likely interaction of
each homotopy class. The number of these homotopy classes
increases exponentially with the number of agents. However,
typically, most of the homotopy classes are highly unlikely.
In this section, we propose a method to consider only relevant
homotopy classes.

We refer to a homotopy class ψ ∈ Ψ as a set of interactions
in which all pairs of agents pass each other on the same
sides as they travel to their target positions. We denote the
homotopy class of interaction x as ψ(x). To capture on which
side two agents a and b pass each other, we integrate the
derivative of the angle αba(t) of the vector xb(t)− xa(t) over
time, leading to

κba(x) =

∫
t

α̇ba(t) dt. (5)

All the interactions that are homotopy equivalent yield the
same κba for all pairs of agents. Thus, computing κba for all
pairs of agents a and b yields a fingerprint

F (ψ) := F (x) = (κba(x))a 6=b for x ∈ ψ (6)

that allows us to describe and recognize the homotopy classes.
Furthermore, we can enumerate the homotopy classes since
we have

κba(ψ1)− κba(ψ2) ≡ 0 (mod 2π). (7)

For example, two agents a and b that swap positions by
passing each other on the right side yield κba = π, whereas
passing on the left yields κba = −π.

In the following, we describe how our approach maintains
a set Ψ′ ⊆ Ψ of relevant homotopy classes for given start
and target positions of all agents. The key idea is to identify
potential evasive maneuvers of the agents and to consider
both outcomes, i.e., the agents passing each other on the left
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Fig. 2. Learning the policy (left) and using the policy for navigation (right).
The learning approach computes the weight vector θ such that the expected
feature values match the empirical feature values of the observations. When
navigating, the robot uses the policy to determine the most likely interaction
in each time step and behaves accordingly.

or on the right side. In this way, interactions between agents
that are highly unlikely are ignored.

Algorithm 1 outlines how our method computes Ψ′. For
brevity of notation, we use x and ψ(x) interchangeably. First,
our algorithm computes global paths for all agents from their
start positions to their target positions, which leads to the
initial interaction x0. Subsequently, our algorithm identifies
a potential evasive maneuver when two agents a and b come
close to each other at some point in an interaction x ∈ Ψ′. For
such a potential evasive maneuver, we want to reason about
both possible outcomes, i.e., passing left or passing right.
We can efficiently compute the fingerprint of the homotopy
class where the agents pass each other on the other side by
adding ±2π to κba(x). As a consequence, we can efficiently
check whether our algorithm already takes into account the
corresponding homotopy class ψ̃. If this is not the case, we
compute an interaction of ψ̃ in which the agents a and b pass
on the other side as compared to ψ. Our algorithm repeatedly
looks for potential evasive maneuvers in Ψ′ as described
above until there are no unresolved collisions.

C. Learning Human-Robot Interaction in Realistic Environ-
ments

Our previous method [14] learns the interaction behavior
of pedestrians by averaging over all the agents. Instead,
in this paper, we learn individual behavior patterns for
the robot and the humans. To do so, we use features that
individually capture the preferences of the robot and the
preferences of the pedestrians. Furthermore, we use features
that capture the interaction behavior between the agents. To
derive the policy from the demonstrations, we apply the
learning method described in Sec. III-A, as illustrated in Fig. 2.
We approximate the expected feature values using a weighted
sum of Dirac delta functions that correspond to the homotopy
classes. We apply the technique presented in the previous
section to only consider relevant homotopy classes.

In our previous work, we proposed features accounting
for velocities, accelerations, the time to reach the target, and
distances between the agents, which allow us to reason about



pedestrian interactions in free space. In this paper, to navigate
a robot in realistic environments with static obstacles, we
additionally propose to use a feature

fobstacle(x) =
∑
a

1

fatime

∫
t

1

‖xa(t)− oamin(t)‖2
dt (8)

that represents the agents’ intent to keep clear of obstacles,
such as walls, where oamin denotes the position of the obstacle
that is closest to agent a at time t. The integral in Eq. (8) is
normalized by the travel time of agent a to achieve invariance
with respect to the agent’s velocities.

IV. ROBOT NAVIGATION IN POPULATED ENVIRONMENTS

This section describes how the learned policy allows a
mobile robot to navigate in populated environments, as
illustrated in Fig. 2. The robot utilizes the learned policy
to maintain a probability distribution over interactions of
all the agents from their current positions to their target
positions. Given this distribution, the robot computes the
most likely interaction argmaxx pθ(x) of all the agents and
behaves accordingly.

A. Global Path Planning

The time to compute the probability distribution over
interactions for a certain situation scales linearly to the overall
travel time of the agents. To allow for real time planning,
we utilize the learned policy to represent the immediate,
joint behavior of all the agents and represent more distant
behavior by globally planned paths independently for each
agent. At time t0, we evaluate the learned policy in the time
interval [t0, t0 + tp] and represent the behavior in the time
interval (t0+tp, tend] by a globally planned trajectory for each
agent. More specifically, for a pedestrian a that is detected
by the robot the first time, we estimate its target position
and generate an initial trajectory xaglobal using A∗ search. The
cost function for global path planning comprises the time
to reach the target and the distance to obstacles, which is a
subset of the features used for the learned policy, as described
in Sec. III-C. Based on this global path, we set intermediate
target positions given by xaglobal(t0+tp) and utilize the learned
policy to compute a probability distribution of the composite
trajectory of all agents from their current position to their
intermediate target positions.

In each planning cycle, the robot updates the intermediate
targets along this global path and executes the trajectory
that corresponds to the most likely interaction. Our current
implementation allows the robot to replan at a frequency of
5 hz, which means that the robot adapts its plan in real time
to changes in the environment.

B. Perception

In order to perceive the environment, we localize the
robot in a static map using laser-based Monte Carlo Lo-
calization [17]. To estimate the position and velocity of
nearby pedestrians, we extract objects in the laser image that
show typical characteristics of pedestrians. We then assign
these observations to existing tracks of pedestrians, or add

Fig. 3. Left: The trajectory that the robot has planned to travel to its
target position. The trajectory from the current position of the robot to
its intermediate goal is computed by our policy. The trajectory from the
intermediate goal to the target position of the robot is computed by an A∗-
planner. Right: Trajectories driven by the robot using the policy learned by our
approach. The robot successfully reached its goal position in 10 successive
runs.

a new track if the observation cannot be assigned to any of
the existing tracks. To prevent false positive detections, we
disregard all laser observations in occupied space according
to the static map. Our implementation allows the robot to
observe its environment during tele-operation as well as
during autonomous navigation only relying on on-board
sensors.

V. EXPERIMENTAL EVALUATION

The goal of this section is to demonstrate that our approach
allows a mobile robot to learn a navigation policy from
demonstrations and to use it to autonomously navigate in an
office environment shared with humans. In the experiments,
we used a Pioneer-3 robot as well as a robotic wheelchair
that were equipped with laser range finders. The robots used
their laser ranger finder to track pedestrians and to localize
themselves in the environment with a particle filter.

A. Cooperative Navigation in an Office Environment

We tele-operated the robot in our office environment to
teach the robot a particular behavior, as illustrated in Fig. 1.
In the process, the robot repeatedly encountered people and
engaged in joint collision avoidance. In total, the robot
recorded 12 minutes of interactions. During the first half
of the demonstrations, we controlled the robot at a speed of
0.25 m

s , in the remaining time at a speed of 0.5 m
s . For each

of these two demonstration sets the robot learned a policy
using the method proposed in this paper.

In a first set of experiments, we evaluated the ability of our
approach to replicate the demonstrated navigation behavior.
The robot applied the learned policies to repeatedly navigate
through our office environment. Both policies allowed the
robot to reach its goal position in 10 successive runs without
colliding with an obstacle. Fig. 3 (right) depicts the trajectories
driven by the robot. The policies resulted in average velocities
of 0.25 m

s , and 0.46 m
s , respectively. These results suggest that

our approach accurately replicates the demonstrated behavior.
In a second set of experiments, we evaluated the ability

of our approach to cooperatively navigate in an office
environment in the presence of humans. An autonomous
robotic wheelchair controlled by the method proposed in this
paper passes two pedestrians in a hallway. Fig. 4 depicts the



Fig. 4. Autonomous mobile robot navigation in a realistic scenario in which a robotic wheelchair passes two pedestrians in a hallway using the approach
presented in this paper. The bottom images depict the driven trajectories (gray) and the interaction of the robot (red) with the pedestrians (blue) that is
considered to be most likely by the robot at different time steps. At first, the pedestrians block the hallway such that a traditional path planning algorithm
would be unable to find a path to the target position. In contrast, our method expects the pedestrians to cooperatively engage in joint collision avoidance
with the wheelchair, and, hence, is able to find a path to the target position. Left: The robot assigns highest probability to evading on the right before the
pedestrians begin to evade to either side. Middle left and middle right: The robotic wheelchair and the pedestrians evade each other in a natural manner.
Right: After the situation has been resolved, the wheelchair proceeds to its target position.

Fig. 5. Example interaction of the robot (red) with a pedestrian (blue) who
walks at a low velocity in front of the robot. As a result, the robot decides
to overtake the pedestrian.

composite trajectory that the robotic wheelchair predicted to
be most likely at four different timesteps during the encounter.
First, the pedestrians walk side by side, blocking the corridor.
Note that a traditional path planner would not be able to find
a path to the target position in such a situation. In contrast,
our method expects the humans to cooperatively engage in
joint collision avoidance. During the encounter, the robot
repeatedly computes the most likely cooperative interaction
with the pedestrians, which allows the wheelchair to engage
in natural joint collision avoidance.

In a third set of experiments, a robot has learned to move
faster than the pedestrians. We evaluated the behavior of the
robot when it observes a pedestrian that walks in front of it
in the same direction. Fig. 5 shows the resulting interaction,
where the robot decides to overtake the pedestrian.

In the experiments described above, we assumed known
target positions of the pedestrians. Currently, we are inves-
tigating methods to infer the target position of pedestrians
based on the observed trajectories, which will broaden the
applicability of our approach.

B. Comparison in Simulation

We furthermore conducted a set of experiments in simu-
lation to compare the performance of our method with the
performance of a global path planning algorithm that is de-
signed for dynamic environments. We therefore implemented
an A∗ planner in configuration-time space that predicts the
motion of the pedestrians with a constant velocity model.
We set the maximum velocity to 0.5 m

s , which is similar to
the velocity learned by the policy used for our approach. To

TABLE I
COMPARISON OF OUR APPROACH TO AN A∗ PLANNER.

algorithm min dist avg velocity % blocked
our approach 0.34 0.56 0

A∗, rmin = 0.2 0.16 0.49 1
A∗ , rmin = 0.8 0.38 0.27 60

acquire realistic test data, we used the abovementioned laser-
based people tracker to record natural evasive movements of
two pedestrians that evaded a third person in a hallway. To
allow for a fair comparison, we fixed the trajectories of the
two pedestrians and let the method proposed in this paper
and the A∗ planner control the third person, respectively.

Tab. I summarizes the results of the two methods aver-
aged over 10 different scenarios. The results suggest that
our method learned a policy that safely evaded the other
pedestrians at a minimum clearance of 0.34 m and reached
its target at an average velocity of 0.5 m

s . In contrast, it
turned out that it is difficult to tune the A∗-planner to obtain
satisfactory results. Setting the minimal planned distance
between the robot and dynamic obstacles to a low value such
as 0.2 m, the planner did not sufficiently evade the pedestrians.
To achieve an acceptable clearance, the minimal planned
distance to dynamic obstacles needed to be set to 0.8 m
since the pedestrians do not always comply with the constant
velocity assumption. However, a value this large prevents the
A∗-planner from finding a path to the target in many situations.
In our experiments, the A∗-planner failed and needed to stop
the robot in 60 % of the time steps, resulting in a rather low
average velocity of 0.27 m

s . This problem is referred to as the
“freezing robot problem” [18]. Our experiment demonstrates
the shortcomings of A∗-like path planners when navigating in
the presence of humans. The approach presented in this paper
is able to predict cooperative behavior of nearby pedestrians
and is therefore able to navigate a robot efficiently and in a
socially compliant way.



VI. CONCLUSION

In this paper, we presented an approach that allows a mobile
robot that is tele-operated in its designated environment
to learn from observation how it is supposed to navigate
in the presence of humans. The robot learns a model of
its own navigation behavior, of the navigation behavior of
the pedestrians, and, most importantly, of the cooperative
interactions with the pedestrians. Our method relies on the
principle of maximum entropy inverse reinforcement learning
to compute a policy of the desired interaction behavior. The
policy maintains a probability distribution over the trajectories
of all the agents, which allows the robot to engage in
cooperative collision avoidance with the pedestrians. The
number of homotopy classes of the interactions between
the agents, however, scales exponentially with the number
of agents. We propose a technique to efficiently disregard
unlikely homotopy classes, which increases the number of
agents the robot is able to cooperate with. We demonstrated
the advantage of our cooperative approach over global path
planning algorithms. Furthermore, we carried out extensive
experiments with a real robot that successfully navigated in an
office environment shared with humans using only on-board
sensors.
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