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Abstract— We address the problem of tracking the 6-DoF
pose of an object while it is being manipulated by a human
or a robot. We use a dynamic Bayesian network to perform
inference and compute a posterior distribution over the current
object pose. Depending on whether a robot or a human
manipulates the object, we employ a process model with or
without knowledge of control inputs. Observations are obtained
from a range camera. As opposed to previous object tracking
methods, we explicitly model self-occlusions and occlusions
from the environment, e.g, the human or robotic hand. This
leads to a strongly non-linear observation model and additional
dependencies in the Bayesian network. We employ a Rao-
Blackwellised particle filter to compute an estimate of the object
pose at every time step. In a set of experiments, we demonstrate
the ability of our method to accurately and robustly track the
object pose in real-time while it is being manipulated by a
human or a robot.
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I. INTRODUCTION

Manipulation of objects is one of the remaining key
challenges of robotics. In recent years, tremendous progress
has been made in the area of data-driven grasp synthesis [2].
Given an object, the goal is to infer a suitable grasp that
adheres certain properties, e.g. stability or functionality.
In many cases, this grasp is then performed in an open-
loop manner without taking any feedback into account, e.g.
in [18, 1, 4]. This approach can lead to a very poor success
rate especially in the presence of noisy and incomplete sensor
data, inaccurate models, or in a dynamic environment. We
have recently shown that the robustness of grasp execution
can be greatly increased by continuously taking tactile sensor
feedback into account [14]. This enables the robot to adapt
to unforeseen situations.

In this paper, we use visual sensing to continuously track
the 6-DoF pose of an object during manipulation, which
could enable the robot to adapt its actions according to
the perceived state of the environment. In contrast to our
previous work [14], such adaptation would not rely on being
in contact with the object. Visual tracking is also crucial
for precision manipulation tasks such as drilling a hole or
inserting a key into a lock [17]. These tasks require precise
alignment of a tool in the robot hand with objects in the
environment.

We present a real-time marker-less object tracking algo-
rithm as a basis for these kinds of systems. We consider the
movement of an object as a stochastic process and model it
in a dynamic Bayesian network. We perform inference in this
network to compute a posterior distribution over the current
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Fig. 1. The robot is tracking an impact wrench (left image) in real-time
using a depth sensor (red object model in the right image). Fiducial markers
are used for baseline comparison only.

object pose. We follow the general paradigm of a Bayes
filter [19] in which we (i) predict the current object pose
given the previous pose and then (ii) update the prediction
given an observation. For the first step, we use a process
model that can either be dependent on control inputs (in case
the robot is moving the object) or be based on the simple
assumption that the object pose will not change significantly
in a short time (in case the object is not being held by the
robot). We use a range camera to obtain dense depth images
of the scene. For the update step, we develop an observation
model that, given the current estimate of the object pose,
determines the likelihood of the observed depth data. We
explicitly model self-occlusions and occlusions from the
environment. Therefore, the algorithm becomes more robust
to these effects. However, the observation model is strongly
non-linear and new dependencies are introduced in the Bayes
network. We therefore employ a Rao-Blackwellised particle
filter [5] to compute a posterior distribution over the current
object pose.

The paper is structured as follows. In the next section, we
review existing approaches to object tracking, especially in
the context of robotic manipulation. We then briefly review
the Bayes filter and associated inference methods in Sect. III.
In Sect. IV and V the observation and process models are
derived. In Sect. VI we formulate the proposed algorithm.
Experimental results are presented in Sect. VII. Finally, we
conclude and present ideas for future work in Sect. VIII.

II. RELATED WORK
Existing approaches to real-time 6-DoF pose tracking

can be divided into two groups according to the type of
data used. The first group consists of algorithms which
mainly rely on 2D images, e.g. [7, 11, 3]. This kind of
approaches may be sensitive to the amount of texture on
the tracked object and in the scene as well as to lightning
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conditions. It has been shown that using depth data can add
robustness to tasks such as SLAM [13], object detection
and recognition [12, 9]. Therefore it is worth exploring the
second group of methods for 6 DoF pose tracking that rely
on range data. In this section, we review those which aim for
real-time performance and use dense depth data as sensory
input.

Ren and Reid [16] represent the object surface as the zero
level in a level-set embedding function. Specifically, it is
based on a truncated 3D distance map. The pose of the
object is found by minimizing over the sum of all points
in the 3D point cloud back-projected into the object frame
and evaluated in the embedding function. Optimization is
performed through the Levenberg-Marquardt algorithm. The
GPU implementation of this approach performs in real-time.
Through the choice of a robust estimator and a robust variant
of the 3D distance map it seems to work well even in
the presence of heavy occlusions. There are however no
experiments provided where an occluding object is in contact
with the tracked object. It is not clear how the algorithm
would perform in that situation since points from the oc-
cluding object might be mistaken for the tracked object. Our
method, in contrast, is formulated in a Bayesian framework
that allows us to fuse different sources of information in a
probabilistic manner, we fuse for example the knowledge of
the control inputs with the depth measurements in order to
estimate the pose of the object. Furthermore, we explicitly
model occlusions in this framework and finally, we obtain
a posterior distribution over the pose instead of just a point
estimate.

Hebert et al. [8] fuse sensory data from stereo cameras,
monocular images and tactile sensors for simultaneously
estimating the pose of the object and the robot arm with
an Unscented Kalman Filter (UKF). Using all these sensor
modalities, the approach allows to track the object well while
it is being held by the robot. It is not clear how well it
works when the object is not being held by the robot, since
in that case less information about the motion is available.
Our method uses the knowledge of the control inputs as well,
when available, but it is able to track an object even when
it is not being held by the robot.

Ueda [20] uses a sampling-based approach. The object is
represented as a partial point cloud and tracking is performed
using a particle filter. The likelihood of an observation is
computed using a function of the squared distance between
each point in the object model and its closest point in the
observed point cloud, as well as the distance between their
respective colors. This approach neither models noise in the
sensor nor occlusion. Since in terms of experimental results
there is only a video available, it is not clear how well this
method performs in general settings.

In contrast to the mentioned algorithms, occlusion is
modeled explicitly in our observation model. As we will
show in Sect. IV in more detail, this leads to strong non-
linearities. We therefore use a sampling-based approach to
filter the pose of the object. This has the advantage that even
non-Gaussian multi-modal distributions can be represented.

The main drawback of sampling-based approaches is that
they are computationally expensive. Nevertheless we show in
the experimental section that we achieve real time tracking
using only one CPU core.

III. BAYES FILTER

In this section, we briefly discuss the Bayes filter and a
number of techniques to perform inference in cases where
the problem cannot be solved analytically.

The assumptions made in a Bayes filter are twofold.
Firstly, the Markov assumption asserts that each state only
depends on the previous state. Secondly, it is assumed that
the state is sufficient to predict the (potentially noisy) obser-
vation [19]. These independence assumptions are represented

Fig. 2. This graph represents the independence assumptions made by a
Bayes filter.

in a probabilistic graphical model (PGM) in Fig. 2. The goal
in state estimation is to find the posterior p(xt|z1:t, u1:t) over
the state xt given all the observations z1:t and the control
inputs u1:t. There are different approaches for performing
inference in this model that depend on the form of the
process model p(xt|xt−1, ut) and the observation model
p(zt|xt). For a linear process and observation model and
each being subject to Gaussian noise, the inference problem
can be optimally solved with a Kalman Filter.

If the process and observation model can be approximated
as being locally linear and the noise can be assumed to
be Gaussian, then an Extended Kalman Filter (EKF) or an
Unscented Kalman Filter (UKF) can be used. In the EKF,
the process and observation model are linearized to compute
the covariance matrix of the current state estimate. In the
UKF, samples around the mean of the current state estimate
or prediction are drawn and pushed through the non-linear
models. The projected samples serve as the base to estimate
the Gaussian posterior distribution.

Finally, there are nonparametric methods to solve the
inference problem. The most well known is the particle
filter which represents the posterior over the state at time
t, p(xt|z1:t, u1:t), by a set of samples {x(l)t } which are dis-
tributed accordingly. Such a set of samples can be obtained
by sampling from the distribution over the entire sequence
of states p(x1:t|z1:t, u1:t) and then dropping all the previous
states x1:t−1. Consequently, the previous states do not have
to be marginalized out in a particle filter, we can thus express
p(x1:t|z1:t, u1:t) instead of p(xt|z1:t, u1:t) [19].

As will be discussed in more detail in Sect. IV, we
introduce a variable ot describing which parts of the image



are occluded, therefore our state xt consists of the 6-DoF
pose and the occlusion (rt, ot). The posterior distribution
p(x1:t|z1:t, u1:t) can then be written as

p(r1:t, o1:t|z1:t, u1:t) = p(o1:t|r1:t, z1:t, u1:t)p(r1:t|z1:t, u1:t).
As a result of the functional form of our observation model,
derived in Sect. IV, and our process model, discussed in
Sect. V, the variables o1:t can be marginalized out analyti-
cally while the variables r1:t cannot. In a dynamic Bayesian
network with these properties, inference can be performed
using a Rao-Blackwellised particle filter [5]. Integrating out
the previous occlusions o1:t−1 we obtain

p(r1:t, ot|z1:t, u1:t)=p(ot|r1:t, z1:t, u1:t)p(r1:t|z1:t, u1:t) (1)

Since the variables r1:t−1 cannot be integrated out analyti-
cally, the second term is represented, as in a common particle
filter, with a set of samples. In a Rao-Blackwellised particle
filter the posterior over the full state p(rt, ot|z1:t, u1:t) is
thus represented by a set of particles r(l)1:t distributed accord-
ing to p(r1:t|z1:t, u1:t), each associated with a probability
p(ot|r(l)1:t, z1:t, u1:t).

Before we apply this method to object tracking we will
derive the observation and the process model.

IV. OBSERVATION MODEL

The objective is to infer the 6-DoF pose rt of an object
assuming that we have a 3D model. The observation model
p(zt|rt) expresses what depth image we expect to observe
given the pose of the object. However, if it is not known
whether the object is occluded or not, we cannot predict the
depth which should be measured. Therefore, we introduce
a set of binary variables ot = {oit} modelling occlusion.
oit = 0 means that the object is visible at time t in pixel
i, whereas oit = 1 indicates that it is occluded. Thus, the
full state xt = (rt, ot) consists of the 6-DoF pose and the
occlusion for each pixel i. The graphical model in Fig. 2 can
be expanded as shown in Fig. 3. The depth measurements

Fig. 3. This graph represents the independence assumptions made by a
our filter. The box is a plate which represents the I pixels.

{zit} at each pixel (including the noise) are assumed to be
independent given the state. This assumption is reasonable
since the pose and the occlusion variables allow us to predict
the observation. Furthermore, we assume the occlusions oit

of different pixels to be independent. Although we thereby
ignore relations between neighboring pixels, inference be-
comes more efficient as will be described in Sect. VI.

We can now write p(zt|rt, ot) =
∏
i p(z

i
t|rt, oit) as the

product of measurement likelihoods at each pixel i given
the pose and whether the object is occluded in pixel i.
By marginalizing out the occlusion variables p(zit|rt) =∑
oit
p(zit|rt, oit)p(oit), we obtain a model which is closely

related to beam-based models discussed in robotics literature
[19]. These consist of a weighted sum of an observation
model assuming that the object is occluded and an ob-
servation model assuming that it is visible. The important
difference to our approach is that we continuously estimate
the probability p(oit) of the object being occluded whereas
in [19] this is a parameter which is set off-line and kept
constant during execution.

To express the observation model p(zit|rt, oit), we represent
the measurement process in Fig. 4, which is a subpart of the
graphical model in Fig. 3. Two auxiliary variables ai and bi

Fig. 4. This graph shows the measurement process of the camera. It is a
subpart of the graph in Fig. 3, zoomed in on one observation.

have been introduced. These variables will be integrated out,
but they are convenient for the formulation of the observation
model. Since we are looking at only one time step, the time
index is omitted here. ai is the distance to the tracked object
along the beam defined by pixel i and bi is the distance to
the object which is seen in pixel i; this might not be the
tracked object, depending on whether it is occluded.

We can now describe the process which leads to the
observation. Given the pose r, we can compute the distance
to the tracked object ai for a given pixel i. Then given the
distance to the tracked object and the information whether it
is occluded, we can predict the distance to the object bi seen
in pixel i, which might or might not be the tracked object.
Knowing this distance, it is easy to predict a measurement
zi. Using the independence assumptions from Fig. 4, this
process can be formally written as

p(zi|r, oi) =
∫
a,b

p(zi|bi)p(bi|ai, oi)p(ai|r). (2)

In the following, we express each of these terms going from
right to left. p(ai|r) is the probability distribution over the
distance to the tracked object given the pose. This is simply
the distance di(r) to the intersection of the beam defined by
pixel i with the object model in pose r. Additionally, there
is some noise due to errors in the object model:

p(ai|r) = N (ai|di(r), σm). (3)



p(bi|ai, oi) expresses the distance to the object measured
in pixel i given the distance to the tracked object and the
occlusion. If the oi = 0 the object is visible, therefore ai

and bi have to be identical. Otherwise bi has to be smaller
than ai, since the occluding object is necessarily in front of
the tracked object. Formally we can write this as

p(bi|ai, oi) =

{
δ(bi − ai) if oi=0

I(bi > 0 ∧ bi < ai) λe−λb
i

1−e−λai
if oi = 1

(4)

where I is the indicator function which is equal to one if
the condition is true and zero otherwise. δ denotes the Dirac
delta function. We assume that the probability of a beam
intersecting with an object other than the tracked object is
equal for any interval of equal length. This implies that the
probability of the beam hitting the first object at a distance bi

decays exponentially if the observed object is not the tracked
object, see Eq. 4. The parameter λ is a function of the half-
life, i.e. the distance at which we expect half of the beams
to not have intersected with an object yet. The algorithm
is not sensitive to this parameter, therefore we simply set
the half-life to a number which seems reasonable. In all our
experiments we used 1 m.

Finally, we express p(zi|bi) which is the distribution over
the measurement zi given the distance of the observed object
to the camera. The difference in these two quantities is due
to noise in the measurement of the range camera. We used an
Asus XTION Pro depth sensor in our experiments and thus
attempted to model its noise. Khoshelham and Elberink [10]
estimated the noise in the depth measurements of a Microsoft
Kinect which is based on the same design as the sensor we
used. The authors showed that the noise increases with the
depth squared. We define the camera standard deviation σc
accordingly. Fallon et al. [6] model the noise in the Kinect
camera by the sum of a Gaussian distribution and a constant
term to shift more weight to the tails than in a purely normal
distribution. We also found it to be advantageous to have a
heavy tailed distribution and thus define the distribution in a
similar fashion as

p(zi|bi)=(1− β)N (zi|bi, σc) + β
I(zi > 0 ∧ zi < m)

m
(5)

where I is the indicator function and m is the maximum
depth which can be measured by the range camera, 6 m in
our case. In all our experiments the weight of the tails β was
set to 0.01, as proposed in [6] and σc was defined according
to [10].

Now the observation model is fully specified. We plot
the likelihood of the pose p(zi|r) =

∑
oi p(z

i|r, oi)p(oi) in
Fig. 5 as a function of the depth measured in pixel i, given
that the predicted distance to the object di(r) is equal to
1 m. For a small probability of the object being visible the
function is almost constant in observed depth zi with a steep
decrease at the predicted depth di(r) = 1. This intuitively
makes sense since the occluding object has to be closer to
the camera than the tracked object. As the probability of the
object being visible increases, a more and more pronounced
spike appears at the predicted depth. At the same time the

0.90 0.95 1.00 1.05 1.10

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0

0.005

0.01

0.3

0.9

Fig. 5. This graph shows the probability of an observation given a pose
p(zi|r) =

∑
oi p(z

i|r, oi)p(oi). The pose r is such that the distance to
the object model di(r) is equal to 1 m. There are five curves for different
probabilities of the object being visible p(oi = 0).

probability of measuring a depth which is smaller than the
predicted depth diminishes as we become more certain that
the object is not occluded.

V. PROCESS MODELS

The pose process model p(rt|rt−1, ut) describes how
we expect the object pose to change over time given the
last pose and the control inputs. The occlusion process
model p(oit|oit−1) describes how the occlusions propagate. In
this section we will model these two probability distributions.

A. Pose Process Model

The process model for the pose p(rt|rt−1, ut) depends of
course on the underlying process. In our experiments we test
two different scenarios. In the first case where the object is
moved by a human arm, we do thus not have access to the
control inputs and therefore simply propagate the pose by a
small random rotation and translation drawn from a Gaussian
distribution.

In the second case, the object is moved by a robot and
we thus make use of the control inputs. From the control
inputs, we can compute the expected velocity of the object
being held for every time step. Since this velocity is not
entirely accurate, we model the noise as being Gaussian in
the translational as well as the rotational velocity. When the
object is being moved by a robot, the uncertainty is of course
much smaller than when it is being moved by a human arm.

B. Occlusion Process Model

The distribution p(oit|oit−1) has only two parameters since
the variables are binary. We have to determine the probability
of the object being visible in pixel i given that it was visible
in the last time step, p(oit = 0|oit−1 = 0) and the probability
that the object is visible given that is was occluded in the
last time step p(oit = 0|oit−1 = 1). In all our experiments we
set p(oit = 0|oit−1 = 0) = 0.9 and p(oit = 0|oit−1 = 1) = 0.3
for a time delta of one second. This represents the fact that
if the object was observed in the last time step we expect
to observe it again in the current time step. The algorithm
proved to not be very sensitive to these parameters, so their



values were simply set by hand without any tuning. A more
systematic estimation is the subject of future work.

VI. FILTERING ALGORITHM

Since we have introduced a new set of variables, we do
not only infer the pose of the object rt but also the occlusion
ot. As can be seen from Fig. 5, our observation model
is highly nonlinear and results in a likelihood of the pose
p(zt|rt) which does not fit well to a normal distribution.
With a Gaussian distribution, we can essentially express that
a variable should be somewhere close to a certain value.
However as discussed in Sect. IV, for the proposed algorithm
it is central to also be able to express that a variable should
be larger than a certain value. This requirement discards
algorithms which approximate the p(zt|rt) with a normal
distribution such as KF, EKF and UKF. Therefore, we use
sampling to solve the inference problem for the pose rt.
As shown below, marginalizing out the occlusion variables
ot is tractable. We can thus perform inference using a
Rao-Blackwellised particle filter as described in Sect. III.
Rewriting Eq. 1 for convenience, we have

p(r1:t, ot|z1:t, u1:t)=p(ot|r1:t, z1:t, u1:t)p(r1:t|z1:t, u1:t) (6)

We are mainly interested in the second term which expresses
the distribution over the poses given all the measurements
and control inputs. As we will see shortly, the estimate of the
pose depends on the estimate of the occlusion i.e. the first
term in Eq. 6. In the following, we will therefore express
these two terms recursively.

From Fig. 3 we can see that the first term in Eq. 6 factor-
izes as p(ot|rt, z1:t, u1:t) =

∏
i p(o

i
t|r1:t, z1:t, u1:t). Taking

the independence assumptions from Fig. 3 into account, we
can express each factor in a recursive form.

p(oit|r1:t, z1:t, u1:t) = (7)∑
oit−1

[
p(zit|rt, oit)p(oit|oit−1)p(o

i
t−1|r1:t−1, z1:t−1, u1:t−1)

]∑
oit,o

i
t−1

[
p(zit|rt, oit)p(oit|oit−1)p(o

i
t−1|r1:t−1, z1:t−1, u1:t−1)

]
where p(zit|rt, oit) represents the observation model (see
Sect. IV), and p(oit|oit−1) is the occlusion process model (see
Sect. V).

Taking the independence assumptions from Fig. 3 into
account, we can write the second term from Eq. 6 as

p(r1:t|z1:t, u1:t) ∝ (8)
p(zt|r1:t, z1:t−1)p(rt|rt−1, ut)p(r1:t−1|z1:t−1, u1:t−1)

where p(rt|rt−1, ut) is the pose process model as discussed
in Sect. V. We can obtain a set of samples distributed
according to p(r1:t|z1:t, u1:t) by taking the samples from
the previous time step, propagating them with the process
model p(rt|rt−1, ut) and resampling using the likelihoods
p(zt|r1:t, z1:t−1). In a common particle filter the likelihood
p(zt|r1:t, z1:t−1) reduces to p(zt|rt), but here it depends on
the estimate of the occlusion:

p(zt|r1:t, z1:t−1) = (9)∑
ot−1,ot

p(zt|rt, ot)p(ot|ot−1)p(ot−1|r1:t−1, z1:t−1, u1:t−1).

The sums which marginalize out the occlusion variables
contain 2I terms, with I being the number of pixels. This
is of course intractable, but given our assumptions, all the
terms inside of the sum factorize over the pixels i, and we
can move the sum inside of the product.

p(zt|r1:t, z1:t−1) = (10)∏
i

∑
oit,o

i
t−1

[
p(zit|rt, oit)p(oit|oit−1)p(o

i
t−1|r1:t−1, z1:t−1, u1:t−1)

]
Now we only have to sum I times over 4 terms. The last
term is identical to Eq. 7, just shifted by one time step. The
estimate of the pose thus depends on the estimate of the
occlusion through the likelihood.

The initialization of the tracking is not a focus of this
paper. In practice we tackle this problem by putting the
object in a configuration where we have a strong prior over
its pose, for example when it is standing on a table or
being held by the robot. We then initialize the filter with
a very large number of particles sampled from this prior.
The initialization could also come from a different algorithm
which is better suited for a global search.

Now the algorithm is fully defined:
• From the previous time step we have a set

of particles {r(l)1:t−1} distributed according to
p(r1:t−1|z1:t−1, u1:t−1) and for each of these particles
we know p(oit−1|r

(l)
1:t−1, z1:t−1, u1:t−1). Furthermore

we know the control ut which is applied during the
current time step and we observe a depth image zt.

• For each particle in {r(l)1:t−1}
– We draw a sample r(l)t from the pose process model
p(rt|r(l)t−1, ut).

– We compute the likelihood p(zt|r(l)1:t, z1:t−1) ac-
cording to Eq. 10.

– We update the occlusion probabilities
p(oit|r

(l)
1:t, z1:t, u1:t) for each pixel according

to Eq. 7.
• We resample the particles according to the likelihoods.

We thus now have a set of particles {r(l)1:t} distributed
according to p(r1:t|z1:t, u1:t), and the corresponding
occlusion probabilities p(oit|r

(l)
1:t, z1:t, u1:t). We can now

go to the next time-step and repeat the procedure above.

VII. EXPERIMENTAL RESULTS

In the following, we describe our experimental setup and
present results. Due to the difficulty in obtaining ground truth
information, we use a previously implemented fiducial-based
object tracker as a baseline method. We want to emphasize
that our approach does not rely on the presence of these
fiducials.

A. Experimental Setup

Our experiments are based on the dual arm manipulation
platform shown in Fig. 1. The head is actuated by two
stacked pan-tilt units, and consists of the following sensors:
(a) an Asus Xtion PRO range camera, (b) a Point Grey



Bumblebee2 stereo camera, and (c) a Prosilica high reso-
lution color camera. These cameras are calibrated w.r.t each
other using an offline calibration procedure. The robot has
two 7-DoF Barrett WAM arms, each equipped with a 3-
fingered Barrett Hand as the end-effector. The WAM arms are
cable driven, and joint positions are measured using absolute
encoders on the motors and not the joints themselves. The
variable stretch of the cables depending on the robot pose
and payload imply that the kinematic model of the arm
is not accurate enough to perform manipulation tasks with
sufficient precision [15].

We use the Asus Xtion as the sensor for our algorithm,
which provides depth images at a rate of 30 Hz. The
depth images produced by this camera have a resolution
of 640x480, for our purposes however an image which has
been downsampled by a factor of 5 proved to be detailed
enough. Our observation is thus an array of size 128x96
containing the depth measurements from the camera. We
would like to stress that apart from the downsampling
no preprocessing whatsoever is required by the proposed
method. Our implementation currently uses a single core of
a 3.3GHz Intel Xeon W5590 CPU, and is able to sample
and evaluate 200 poses in real-time per camera frame. We

Fig. 6. The fiducial tracker uses camera images to track the round fiducial
markers (left). The obtained pose estimate (green) is used as a baseline
comparison. The forward kinematics model (blue) is misplaced because
of deliberate disturbances (small image). The proposed approach achieves
accurate tracking (red) even in the presence of occlusions.

compare the results from our method with a previously
implemented baseline method which tracks objects based
on a known pattern of fiducials on the object, using the
Bumblebee2 stereo camera. This method is based on an EKF
which maintains a distribution over the pose of the object.
Fiducials are detected in each camera image using a local
template-matching approach1 (see Fig. 6 left). The template
for each fiducial depends on the projection of the expected
fiducial pose in the camera. The 3-D position of each fiducial
is then reconstructed from their 2-D positions in each camera.
The full 6-DoF object pose is solved for by minimizing the
squared error between the detected fiducial positions and
their corresponding positions in the object model. The object
pose thus obtained is treated as an observation which updates
the pose distribution in the EKF. This EKF uses the same

1The fiducial detector was kindly provided by Paul Hebert, Jeremy Ma,
and Nicolas Hudson from the Jet Propulsion Laboratory.

process models as the ones described in Sect. V, depending
on whether the object is in the robot hand or not. Finally, we
also contrast these visual tracking methods with estimates
of the object pose based on the kinematic model of the
robot. The position of the hand is computed using the motor
encoders. We compute a fixed offset between the hand and
the object at the time of grasping, and assume that this offset
remains constant for the entire motion.

B. Results

Our algorithm was evaluated in three scenarios: (a) object
manipulated by a human (Fig. 6 left), (b) object manipulated
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Fiducial Tracker
Proposed Method

Fig. 7. Scenario (a): 6-DoF trajectories of the object being manipulated
by a human hand, as tracked by the proposed method (red) and the baseline
fiducial tracking method (green). The fiducial tracking method is susceptible
to errors when fiducials are occluded (e.g., from t=33 to t=37), while our
method is more robust to occlusions.



−0.5

−0.4

−0.3

−0.2

−0.1

0
x

[m
]

0.8

0.9

1

1.1

1.2

1.3

y
[m

]

0.95

1

1.05

1.1

1.15

1.2

1.25

z
[m

]

−2.5

−2

−1.5

−1

−0.5

ya
w

[r
ad

]

0.4

0.6

0.8

1

1.2

1.4

pi
tc

h
[r

ad
]

5 10 15 20 25 30 35 40
−3

−2.5

−2

−1.5

−1

ro
ll

[r
ad

]

time [s]

Fiducial Tracker
Proposed Method
Forward Kinematics

The forward kinematics method fails
to account for the external perturbation

Fig. 8. Scenario (b): 6-DoF trajectories of the object being manipulated by
the robot with a secure grasp. The errors in the forward kinematics method
(blue) are due to imprecise joint position sensing under load. The proposed
approach (red) followed the baseline (green) closely.

by the robot with a secure grasp, and (c) object manipulated
by the robot (Fig. 6 right), with a human disturbing the
pose of the object in the hand. Videos of each of these
scenarios may be found in the multimedia attachment or
online at http://youtu.be/MBgggaJq1sY.

Figure 7 shows the position (x, y, z) and orientation (roll,
pitch, yaw) trajectories of the object being moved by a
human, as tracked by the baseline fiducial tracking method
(shown in green) and our proposed method (shown in red).
A qualitative assessment reveals that the fiducial tracking
method is susceptible to errors when fiducials are occluded
(e.g., from t=33 to t=37), while the proposed method tracks
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to account for the external perturbation

Fig. 9. Scenario (c): 6-DoF trajectories of the object being manipulated
by the robot, while being disturbed by a human. Changes in the pose of
the object in the hand cannot be tracked by the forward kinematics method
(blue). Our marker-less approach (red) successfully tracked the object and
followed the baseline fiducial-based approach (green) closely.

the object pose more robustly in spite of occlusions.

Results from scenario (b) where the object is manipulated
by the robot with a secure grasp are shown in Figure 8. In
addition to the baseline method and the proposed method, we
also show pose estimates of the object based on the robot
kinematic model (in blue). This estimate significantly devi-
ates from the two visual tracking methods due to undetected
stretching of the Barrett WAM cables, which is exacerbated
by the weight of the object in the hand. Additionally, we
introduced external disturbances that did not affect the pose
of the object with respect to the hand. Such errors in the

http://youtu.be/MBgggaJq1sY


forward kinematics model render precise manipulation and
tool use impossible without visual tracking and control.

Figure 9 shows results from the final scenario, in which
the object is manipulated by the robot, while the pose of
the object in the hand is being disturbed by a human. By
definition, manipulation tasks involve contact of the object
in the hand with the external world. These contacts often
result in slippage of the object in the hand, and in such cases
visual tracking can be tremendously beneficial for successful
completion of the task. Similar to the previous scenario, we
notice that the two visual tracking methods perform equally
well. In contrast, the forward kinematics method shows large
errors as it cannot account for movement of the object in the
hand (see Fig. 6 right).

VIII. CONCLUSION AND FUTURE WORK

We have presented a probabilistic approach to object track-
ing using a range camera. Occlusions are explicitly modeled
in our approach, which adds robustness and removes the need
to filter out points belonging to the robot. Our method is fast
enough for real-time tracking performance on a single core
of a modern computer, and the sampling process trivially
lends itself to parallelization.

In future work, we plan to apply this method to tracking
the posture of articulated objects such as the robot arm itself
to accurately estimate the arm kinematic configuration. We
also plan to apply the probabilistic models developed in this
work to alternate sensor modalities such as tactile sensors.
Finally, we will use the presented object tracking approach
to further close perception-action loops as in [14].
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