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Abstract— Robotic vehicles have become a critical tool
for studying the under-sampled coastal ocean. This has
led to new paradigms in scientific discovery. The combi-
nation of agility, reactivity, and persistent presence makes
autonomous robots ideal for targeted sampling of elusive,
episodic events such as algal blooms. In order to achieve
this goal, they need to be deployed at the right place and
time. To that end, we have designed and will soon deploy
a shore-based event recognition technology to continuously
monitor remote sensing imagery for algal blooms as targets
for robotic field experiments. A Support Vector Machine
underlies a field-tested decision support system which
scientists will consult prior to deploying robots in the
coastal ocean. Our aim is to target oceanographic field
experiments for evaluation and verification.

I. INTRODUCTION

The coastal ocean plays an important social and
economic role and is critical to understanding the impact
of a changing climate. Anthropogenic input over years
has created substantial perturbation, leading to dramatic
swings in organism abundance and community struc-
ture. Algae blooms are frequent visible signs of these
changes. Some generate toxins which have a substantial
impact on the human food-chain. [1], e.g., estimate sig-
nificant economic impact resulting from such Harmful
Algal Blooms (HABs). Despite years of study, bloom
initiation and life-cycle are still subjects of considerable
debate within the ocean science community.

Our effort applies Machine Learning (ML) techniques
pioneered by the computational and robotic sciences
to detecting and predicting phenomena in the coastal
ocean from heterogenous data sources including expert
knowledge. This will allow us to rapidly reposition our
autonomous underwater vehicles (AUVs). These vehi-
cles come with a rich suite of advanced sensors required
to resolve interacting physical, chemical, biological, and
geological phenomena. With mission durations of up to
22 hours, they measure physical properties continuously
and can acquire water samples for laboratory analy-
sis within dynamic features such as blooms. However,
apriori surveys require robotic assets to cover meso-
scale (> 50km2) regions repeatedly for weeks. Targeted
sampling augmented by prior models yields significant
cost savings. Typical oceanographic model performance
is particularly poor at small scales and in the biogeo-
chemically diverse coastal environments, making the
questions of where and when to sample critical.
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Fig. 1: Illustrative use of multiple robots and vessels sampling blooms
in Monterey Bay as part of CANON. Remote sensing data, ocean
models, and prior knowledge inform the activity of a heterogeneous
network of mobile assets in the water.

Our work centers around field experiments with mul-
tiple AUVs in the water aided by the Oceanographic
Decision Support System (ODSS) on shore or ship
[2]. The ODSS is a software tool1 designed to enable
situational awareness, data visualization, collaborative
information sharing and planning for the Controlled Ag-
ile and Novel Observation Network (CANON) program2

[3], [4]. Our Dorado-class AUV in particular has two
important features which make it suitable for targeted
HAB sampling. First is the Gulper water-sampler [5],
consisting of ten 2-liter syringes in the midsection of
the vehicle. Second, it has an advanced control system
which synthesizes abstract plans from shore-based com-
mands, is responsive to failure using in situ plan repair
and recovery, and can use a diverse set of sampling
techniques which can be dynamically modified from
shore [6], [7]. Cued by data-driven models in the ODSS,
scientists can alter where, when and how the AUV will
take samples.

In this paper we show how such an informative model
can be obtained for detecting and predicting coastal
ocean phenomena using various data sources and expert
knowledge. We focus on algal blooms, and automatic
detection from visible coloration in remote sensing data.
Such blooms may or may not be harmful, but scientists

1http://odss.mbari.org
2http://www.mbari.org/canon/



can respond to the event trigger in the ODSS with
robotic surveys designed to return water samples for
further analysis. Using statistical techniques from ML,
we show how such models can be built.

The novelty of this work is two-fold. First, we bring
together ML methods rarely used in oceanography or
in collaborative field experiments driven by system-
atic computational methods such as those behind the
ODSS. Second, we do so in the context of actual field
experiments in an inter-disciplinary environment with
scientists, engineers and operations personnel out at sea.
Fig. 1, illustrates such experimentation with bloom for-
mation in the northern Monterey Bay incubator area; an
upcoming March 2013 field experiment in the Southern
California Bight is expected to validate this approach.

This paper is organized as follows. Section II sum-
marizes related work in the fields of ocean science and
robotic exploration, while Section III places this effort
within the context of the ODSS. Section IV gives brief
descriptions of some of the ML tools used in this paper.
Section V discusses the remotely sensed data products
used in our approach, and some of the preprocessing
steps. Section VI presents results and analysis, with
conclusions and future directions in Section VII.

II. RELATED WORK

Significant prior work, some of it in our coastal do-
main of Monterey Bay, has used remote sensing images
to manually identify blooms. [8] found insight into the
expansion, retention, and dispersion of blooms in Sea-
viewing Wide Field-of-view Sensor (SeaWiFS) imagery.
[9] followed a persistent bloom through changing winds,
providing an interesting test case to motivate using
automation and ML for future similar studies. In these
works, preliminary event detection from remote sensing
sources was followed up by targeted water sampling by
an AUV.

More recently, [10] documented the detection and
advection of blooms using satellite imagery and surface
radar data and marked the initial use of the ODSS
with elements of machine learning. [11] used a binary
classification of chlorophyll data to validate a dynamic
model of algal bloom evolution in the North Sea.

Correspondingly there have been studies using ML
to enhance oceanographic experiments. [12] presents
a Support Vector Machine (SVM) based method of
classifying images by their color histograms. While
they focus on large sets of images and indexed storage
and retrieval, we concentrate on multivariate pixel-wise
classification. In [13] a method is developed for using
multiple remote sensing variables to detect HABs based
on linear discriminant analysis, while [14] uses ocean
color from SeaWiFS to detect chlorophyll anomalies,
providing an early warning system for blooms of a
particular toxic algae in the eastern Gulf of Mexico.
The focus in these efforts is on direct detection of
specific species manually, with ground truth coming

from a small set of labels generated from in situ data.
Our goal, instead, is to predict one feature from remote
sensing data automatically. [15] uses SVM regression
for predicting chlorophyll from reflectance data. We,
however, focus on classification rather than regression,
incorporating multiple features and spatial filters.

Robotic response to environmentally triggered events
has long been a focus of the robotics community. [16]
describes how forest fires, initially detected from remote
sensing data or other means, may be closely monitored
by Unmanned Air Vehicles. [17] describes a global sen-
sor network comprised of low-resolution event detection
followed up by targeted high-resolution imaging. [18]
presents a pollution cleanup example, and [19] provides
a comprehensive overview of robotic environmental
monitoring. In this paper, we focus on refinement of the
environmental event detection mechanism for triggering
robotic response.

III. AN ARCHITECTURE FOR EVENT RESPONSE

The ODSS provides a portal with which oceanog-
raphers can design, test and evaluate hypotheses with
at-sea experimentation using mobile robots [3], [2].
Another goal is to couple human decision-making with
probabilistic modeling and learning to enable environ-
mental field model discovery and refinement. Machine
learning algorithms will run automatically and alert the
user of an event of interest. Our objective is to focus on
bloom discovery to inform scientists of any significant
event of potential scientific interest for further study,
elucidation, and response.

We envision the use of an event detection toolbox
for CANON during an initiated field experiment based
on a model of blooms statistically learned from remote
sensing images. The model is part of an ODSS backend
with a situational awareness tool the scientist can consult
at the front-end. In a typical scenario, in situ data
arriving from multiple mobile or stationary assets at
sea are stored in a geospatial database and branch off
into statistical models. The user sets a ’bloom indicator
threshold’ and is notified when it is exceeded. Vehicles
passing through a bloom patch send real-time data to the
ODSS verifying the location of the bloom patch based
on indicators such as chlorophyll concentration. If the
bloom is valid, its region of interest can be annotated and
correlated with satellite data and in situ measurements
like water samples within the same region. Using these
sparse vehicle data, and remote sensing images from a
prior day indicating a bloom could be advecting into the
bay, the user can narrow down the sampling targets and
locations to position robotic assets in the next 24-hour
experiment cycle. Fig. 2 shows a conceptual view of
how the ML capability fits into the ODSS.

IV. MACHINE LEARNING FOR CLASSIFICATION

A. Classifiers
The classifiers examined in our problem were the

Gaussian Naive Bayes (GNB) [20], and the Support



Fig. 2: A conceptual overview of how machine learning and event detection and response would work for a bloom event. AUVs could be
retargeted based on expert assessment after being alerted about high chlorophyll levels based on ML models.

Vector Machine (SVM) [21]. A pair of classifiers
were tested, with the goal to build a modular system
applicable to different classification problems. Because
of its sophisticated boundary definition, the SVM clas-
sifier provides significantly better results than the GNB,
particularly in cases of unbalanced classes (such as
this case). However, since GNB requires very little
computation, it provides an effective means for quickly
comparing the separability of the different classes using
different feature sets, as well as a lower-bound estimate
of the classification quality for different models. Since
one crucial part of many classification tasks is deter-
mining the best set of feature vectors, this multistage
approach using GNB first can be a useful time-saver. We
use the Matlab package for libsvm [22], which provides
efficient methods for training and testing SVMs. Also,
5-fold cross validation [21] was used to avoid overfitting.

B. Classifier Quality
There are various ways to judge the quality of a

classifier when applied to a set of M new observations.
Most are based on the elements of the confusion matrix,
being the numbers of True Positives (TP), True Negatives
(TN), False Positives (FP), and False Negatives (FN). The
accuracy is defined as (TP+ TN)/M , while the precision
is TP/(TP+FP). In some cases, these metrics are relatively
ineffective. For example, if there are fewer positive
results than negative, then the accuracy is dominated
by the true negatives and precision by false positives.
Such a test case might look just as good under these
metrics if the classifier were to identically map all new
entries to the negative class. One measure which evenly
balances performance between classes of different sizes
is the Matthews Correlation Coefficient [23], given by:

MCC =
TP × TN − FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
. (1)

An MCC of +1 represents perfectly correct predic-
tion, −1 represents perfectly wrong prediction and 0

represents no better than random guessing. Examples
of studies using MCC to assess the quality of binary
classifiers can be found in the bioinformatics literature
(e.g., [24], where MCC values range from 0.1 to 0.6).

V. DATA ANALYSIS

A. On Ocean Satellite Data and Sources

Satellite ocean color observation has seen a number
of recent advances in atmospheric correction and the
extraction of pigment concentrations [25], [26]. Both
the Medium Resolution Imaging Spectrometer (MERIS)
and Moderate Resolution Imaging Spectro-radiometer
(MODIS) were instrumented with phytoplankton fluo-
rescence ocean color bands, but only MERIS included
a sensing band at 709 nm, where red tide blooms
cause a peak in the ocean surface reflectance. The
Maximum Chlorophyll Index (MCI) derived from the
MERIS instrument thus makes an excellent indicator for
the extreme blooms common in the Monterey Bay [8].
However, contact was lost with Envisat, the satellite
which carried the MERIS instrument, on April 8th, 2012,
presenting an interesting opportunity to train on recent
historical data to predict the now-unavailable MCI, and
thus act as an extreme bloom detector.

B. Analysis of Satellite Data

We collected approximately 223 days of imagery
where data existed from both MERIS and MODIS
satellites between October 2010 and April 2012. Fig. 3
shows an example MCI reading, with bloom-like events
occurring in Monterey Bay. Since MODIS and MERIS
imagers have different sets of band frequencies, no
direct method to correlate data between the two exists,
leading to the question of whether an estimation can be
made. The first step in this process was to spatially and
temporally align the data, which also involved down-
sampling the 0.0754 km2-per-pixel MERIS data to the
1 km2-per-pixel resolution of the MODIS data.



Fig. 3: Bloom-like events occurring in the northern portion of Mon-
terey Bay and in San Francisco Bay on October 7th, 2010. White
patches indicate areas of unknown data.

In order to incorporate spatial information into the
classification model, we also considered various spatial
filters. This has the effect of quickly increasing the
length of the input feature vector, and thus the com-
plexity of the model building process. To counteract
this effect we use a fast, low-accuracy GNB classifier to
quickly narrow the field of useful inputs and a slower,
more accurate SVM to generate the final model.

C. Spatial Information

A simple ML approach treats each pixel indepen-
dently in space and time, which can be computationally
expensive. Neighboring pixels could be considered as
features; however, this increases the dimensionality of
the model exponentially. Using filters, spatial informa-
tion can be encoded without significantly increasing the
dimensionality of the data. These filters can also be
chosen to respond to specific features, such as gradient,
mean, edges, corners, frequencies, etc. [27] In this paper,
we hypothesize that a high gradient across pixels of a
given feature would potentially be more indicative of a
bloom than the actual values of the same feature. Since
remote sensing data can be patchy due to atmospheric
effects, attempting to calculate relatively large features
such as a gradient across a large number of pixels
becomes increasingly difficult. Consequently, the data
were interpolated up to the filter size using nearest-
neighbor interpolation [28], such that any calculated
feature contains at least one known and non-interpolated
value. This patchiness also led to some mismatch in the
support set across data sources. Once we had chosen
the set of all features to consider, we restricted the
training to the intersection of those support sets so that
each feature was represented in each pixel. This yielded
896, 413 observed pixels over the 19-month period.
Of these, 2, 868 (approximately 0.3%) corresponded to
extreme blooms based on the MCI threshold of 10−2.5.
This extreme imbalance in classes prompted use of the

MCC as an indication of effectiveness, rather than other
metrics like precision or accuracy.

D. Data Sampling
The statistical rarity of the minority class (i.e., bloom

pixels) leads to poor results when training and test-
ing sets are randomly assigned. For example, random
sampling for cross-validation may yield subsets (called
folds) containing too few samples of the minority class
to build an effective predictive model. Instead, the data
were stratifically randomly split, each fold containing
the same ratio of classes as the whole data set.

Next, different data sampling methods were tested for
further model refinements. First, undersampling of the
majority class was examined, in which only a randomly
selected portion of the samples in the majority class
was used for training. However, the very high imbalance
of classes meant that purely random undersampling
provided little improvement.

The final sampling method tested was a selective un-
dersampling, whereby the majority samples were sorted
according to ’distance’ from the closest members of the
minority class. The distance metric used in this case was
difference as measured in the feature space, based upon
the idea that the majority samples most important for
a decision boundary were those ’close’ to the minority
class. However, if one only used those samples closest to
the minority class, overfitting was a significant problem.
Hence, a random sample of majority class members
below a certain distance percentile was chosen. Different
sample sizes and percentiles were examined, and this
method gave the best overall results.

VI. EXPERIMENTAL RESULTS

MODIS data contain multiple features as potential
inputs, but chlorophyll-A (chlA) and fluorescence line
height (flh) were chosen owing to their prior usage in
bloom detection ([9], [11]). First tests involved using
chlA and flh individually. Adding new features quickly
resulted in a sparsity problem, however, as each new
feature introduced new undefined pixels and thus re-
duced the size of the working data set. One solution
to this problem was to test individual features on the
most restrictive subset, e.g., test with chlA as the input
feature but only testing on pixels where chlA and flh are
both known. Adding in filtered versions of both these
features did not change the data set, due to the filtering
implementation described above. The GNB classifier
was used primarily for speed.

Preliminary results are summarized in Table I. First,
among this data subset, chlA did better than flh. This is
curious, since prior work suggests flh is a better predictor
than chlA[9]. However, these results vary depending
upon different processes used to create the model, such
as the sampling parameters used above.

After examining a number of spatial filters, the filter
with the best performance was a blur filter, the result of
averaging over a 5× 5 spatial grid. We use chlA and



Fig. 4: Test results for Oct 7, 2010. The top row shows MODIS-
measured chlA and flh. The bottom row shows labels as calculated
from MERIS MCI (left) and predicted by the GNB model (right).
Bloom pixels are shown in red, and non-bloom pixels in blue. White
areas represent unknown pixels either due to atmospheric interference
or land. Since the labels are generated only for the subset of known
MERIS and MODIS imagery, the labels are a smaller set of pixels
than the MODIS images alone.

flh to denote the averaged versions of chlA and flh, re-
spectively. Using the individual filtered features resulted
in an improvement of the MCC, likely because of the
encoding of spatial information. It is interesting to note
that in terms of MCC very little information seems to
be lost by the spatial blurring. That is, e.g., using both
flh and flh is not significantly better than flh alone.
This is in agreement with the idea that blooms are a
spatial phenomenon, and that the relative information
between pixels is significant.

The best MODIS features explored so far are
spatially-filtered versions of chlA and flh, giving a lower-
bound estimate of the MCC of 0.210 using the GNB
classifier. This MCC corresponds to 2622 true positives,
845354 true negatives, 246 false negatives and 2680
false positives. Fig. 4 shows a typical result from this
model. In this figure, one can see that there was a
moderate number of false positives, while the model still
detected the MCI-indicated bloom regions.

Due to the high imbalance of classes, since the MCC
balances the error across classes, it is not surprising
that there are much higher numbers of false positives
than false negatives. This model achieves relatively high
MCC performance by limiting false negatives, which is
equally important in our application due to the cost of
deploying field robots.

Next, a number of the false positives appear to
be indicative of non-extreme blooms. For example, in
Fig. 4, points along the coast show high fluorescence
and chlorophyll readings, while not necessarily having
high MCI. Since MCI works best on extreme blooms, it
is quite possible that it is missing less extreme blooms

Fig. 5: Results of one model with the ODSS, showing predicted
blooms as a checkerboard pattern superimposed upon a 3-day MODIS
chlA composite in the top-center of the map. The red line and white
cross represent ship and buoy assets, respectively.

that are shown in relatively high readings of chlA and
flh.

Using a cross-validated grid-search for parameter se-
lection, an SVM trained on chlA, chlA, flh, flh was
able to achieve an MCC of 0.428. This primarily cor-
responded to a significant decrease in false positives,
likely due to a more complex and better-fitting decision
boundary. The integration of one model into the ODSS
is shown in Fig. 5.

VII. CONCLUSIONS AND FUTURE WORK

Our Machine Learning capability for extreme bloom
detection is a step towards the more ambitious goal of
a general event detection toolbox for robotic sampling
in the coastal ocean. In the context of CANON field
experiments and associated infrastructure including the
ODSS, we aim to lay the groundwork for experiments
tightly coupling ML inference and robotic exploration
with AUVs.

We have gathered qualitative assessments from
oceanographers from a March 2013 field experiment in
the Southern California Bight area with the use of our
toolbox to predict the extent of spreading of a bloom
driven by a Deep Chlorophyl Maximum (DCM) when
it enters the (visible) surface. We are currently analyzing
the results for future work.

Our near-term future work is in three related direc-
tions: investigating methods of filling in sparse data such
as spatial or space-time estimation, design of tailor-made
classifiers that do not require all input features to be
known a priori, and the design and implementation of
cascades of simple classifiers. Doing so will build on
this work in the context of more complex CANON field
experiments. We also plan to expand the application
domain beyond bloom detection to other oceanographic
phenomena and features of interest in the Monterey Bay
and to incorporate expert labels in our ML efforts. Such
an investigation will necessarily include online as well
as unsupervised learning methods for in situ feature
detection on our AUV platforms.



TABLE I: MCC results based on classification algorithm and input feature set. Here chlA and flh denote the spatially averaged features.
Algorithm Feature Set MCC Accuracy True Pos. True Neg. False Pos. False Neg.

GNB flh 0.116 0.852 2557 762474 132401 351
GNB chlA 0.174 0.919 2754 863836 76719 115
GNB chlA, flh 0.210 0.946 2621 845414 48131 247
GNB flh 0.131 0.894 2401 799837 95038 507
GNB chlA 0.174 0.920 2735 864737 75817 134
GNB chlA, flh 0.210 0.946 2622 845354 48191 246
GNB chlA, chlA, flh, flh 0.212 0.946 2649 844986 48559 219
SVM chlA, chlA, flh, flh 0.428 0.997 1137 892237 1308 1731
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