A Model-based Approach to Software Deployment in Robotics

Nico Hochgeschwender, Luca Gherardi, Azamat Shakhirmardanov,
Gerhard K. Kraetzschmar, Davide Brugali and Herman Bruyninckx

Abstract— Deploying a complex robot software architecture
on real robot systems and getting it to run reliably is a challeng-
ing task. We argue that software deployment decisions should
be separated as much as possible from the core development of
software functionalities. This will make the developed software
more independent of a particular hardware architecture (and
thus more reusable) and allow it to be deployed more flexibly
on a wider variety of robot platforms. This paper presents
a domain-specific language (DSL) which supports this idea
and demonstrates how the DSL is used in a model-driven
engineering-based development process. A practical example
of applying the DSL to the development of an application for
the KUKA youBot platform is given.

I. INTRODUCTION

Software development and integration in robotics is chal-
lenging. The complexity of the task increases significantly
when having to cope with heterogeneous, networked hard-
ware on integrated robots (e.g. Care-O-bot 3 [1] and PR2 [2])
and when having to integrate diverse computational ap-
proaches for solving functional problems (e.g. planning,
perception and control). Although the community has devel-
oped several robot software frameworks (RSFs) that are rich
of functionality (e.g. ROS [3], Orocos [4], OpenRTM [5],
and SmartSoft [6]), some development activities are still
cumbersome and prone to errors. One such activity is the
deployment of a complete, integrated robot application.

Deployment is a crucial phase in the robot application
development process and is mainly concerned with the aim
of making the application ready to use. In doing so, during
design time, system integrators have to cope with several
issues, such as which components are realizing a certain
functionality and which shall be deployed as processes or
threads, and on which host? Generally speaking, deployment
is an activity for which knowledge about different architec-
tural aspects is fundamental. Often this knowledge needs
to be adapted, sometimes repeatedly during the develop-
ment process. For instance development platforms and their
computational resources, such as the number of computers
and the available amount of memory, very often differ
significantly based on the robot systems on which they are
finally deployed to run an application in real-world settings.

Nico Hochgeschwender and Gerhard K. Kraetzschmar are with the
Department of Computer Science, Bonn-Rhine-Sieg University of Ap-
plied Sciences, Sankt Augustin, Germany firstname.lastname
at h-brs.de

Azamat Shakhirmardanov and Herman Bruyninckx are with the Depart-
ment of Mechanical Engineering, Katholieke Universiteit Leuven, Belgium
firstname.lastname at mech.kuleuven.be

Luca Gherardi and Davide Brugali are with the Department of Engi-
neering, University of Bergamo, Italy firstname.lastname at
unibg.it

Keeping track of such changes, in presence of developers and
engineers with different areas of expertise, is challenging and
can lead to erroneous and dysfunctional deployments.

To improve this situation, related and somewhat more
mature domains, such as avionics and automotive domains,
adopted the Model-Driven Engineering (MDE) approach [7].
In MDE the concept of meta-models and domain-specific
languages are used to support code generation (or other
artifacts) from abstract models that describe a domain.
Thereby and through systematic separation of concerns
software quality is enhanced. In the work presented here,
MDE is adopted for the task of software deployment in
robotics. More precisely, we provide a hierarchy of archi-
tectural concepts and means to model deployment aspects in
an explicit and framework-independent manner. To support
this, we introduced a Domain-specific Language (DSL) for
the declarative description of architectures and deployment
activities, which facilitates the deployment task at design
time and enables modeling for and by reuse.

II. MOTIVATION: SOFTWARE DEPLOYMENT IN ROBOTICS

Deploying a complete, integrated robot application on
service robots is a cumbersome exercise which is prone
to errors. The following anecdote exemplifies this: during
RoboCup@Home! competition 2010 the first author de-
ployed accidentally the speech recognition component of a
service robot to another host while forgetting to maintain
the software connection to the microphone. Hence, during
the competition the robot was not able to understand speech
commands anymore. After a troublesome assessment we
identified the error in the deployment description where no
software connection checking was performed.

In robotics, software deployment is usually achieved
through some kind of deployment infrastructure provided by
the underlying robot software frameworks. For instance, the
tool roslaunch? of the popular ROS framework takes a
description of the architecture as an input and initiates the
deployment according to it, i.e., nodes are started, parameters
are set and so on. The framework-specific deployment de-
scription is created by the system integrator and contains two
main parts: a component description and a system descrip-
tion. Depending on the underlying component model of the
framework the component description contains information
about the provided and required input and output in terms of
services, topics or data ports whereas the system description
encodes which components interact with each other.

"Mttp://www.robocupathome.org/
2http://www.ros.org/wiki/roslaunch

Platform Functional
Building Design

Capability

Building

Mechanical Template
Feature
Architecture Model System
Model Model
_/—
Resolution
Electrical Model T
Architecture
Model Feature Selector
_/—
I—> Resolution
Computational Engine
Architecture (- -,
Model '
! Configured
' System
. Model)
Deployment |«
LEGEND Configuration
Engine <

——— Input/Output

Fig. 1.

The model-based software deployment approach, which includes the four phases of the development process shown on top. In each phase models

are created. A color coding is used to show which models are created in which phase. The models are either used (referenced) by other models or serve
as input/output for a tool. To support the editing of the models we provide several graphical and textual editors which are not shown in the Figure.

As the software infrastructure for real-world applications
is easily composed of 20 to 300 components, this low-
level and framework-specific deployment description be-
comes hard to maintain. It is current practice in robotics
to implicitly encode knowledge about other architectural
aspects (e.g., computational resources) and design decisions
in framework and platform-specific tools. Very often hetero-
geneous representations are used during design and devel-
opment and means for documentation are missing. Thus, the
identification and dissemination of design principles and best
practices is limited. As service robots are built by several
engineers and developers working on different architectural
aspects such information is crucial and should be captured
as a part of a deployment description.

In summary, software deployment is cumbersome and it
remains challenging

« to model different architectural aspects in a framework-
independent and explicit manner,

e to reuse and deploy a configured component-
architecture on another platform, and

o to ensure properties and check constraints prior to the
actual deployment on the robot.

III. MODEL-BASED SOFTWARE DEPLOYMENT

To improve software deployment in robotics we introduce
a model-based software deployment approach (see Figure 1),
which is described in the following. The main objective of
the approach is to allow systematic deployment taking into

account both architectural aspects and constraints introduced
by different phases of the development process.

We decompose a robot application into software and hard-
ware aspects which are further decomposed in sub-aspects
(see Figure 2). To encode information about these aspects we
propagate model-based techniques [7], because the concrete
models of the aspects are changing rapidly whereas their
representation (meta-models) remains rather static. We argue
that different architectural aspects are modeled by developers
and engineers within different phases of a development
process who are not necessarily performing the deployment
themselves. Figure 1 depicts the four phases of the BRICS
robot application development process (RAP) [8] that are
relevant for the deployment task. RAP is a holistic process
model for developing robotics applications in both academic
and industrial settings, which has been defined in the EU-
funded project BRICS (Best Practices in Robotics)’. RAP
foresees eight different phases, each of which requires several
steps to complete the task. The four phase relevant for this
paper, together with the models that they use as input and
produce as output, are described in the following sections.

A. The BRICS Research Camp Use Case

To exemplify our approach we make use of a real-world
application developed within the scope of the 4th BRICS
Research Camp on Robot Software Architectures*. The use
case consists of a robot moving through an artificial arena

3www.best-of-robotics. org
4www.best-of-robotics. org/4th_researchcamp

System
Architecture

Hardware
Architecture

Software
Architecture

Functional Component Runtime Computational Electrical Mechanical
Architecture Architecture i i i

implemented by mapped to ‘executed by Controls. actuates

Fig. 2. A decomposition of architectural aspects relevant for deployment.
The software architecture is decomposed into the functional architecture
(FA), component architecture (CA), and runtime architecture (RA). The
FA aspect focuses on functionality rather than software issues. The CA
aspect concerns all aspects of the actual software implementation of the
FA, especially software modules and their interaction, the interfaces of the
software modules and the relevant data structures. The RA aspect maps the
software architecture onto a particular computational architecture, mainly by
mapping software components onto processes and threads, and by mapping
processes and threads onto the computational devices available.

avoiding obstacles. Optionally the robot is instructed to
pick-up an object at one location (inside the arena) and
delivers this object to another location (see also Figure 3).
The robot navigation can be performed according to two
navigation strategies: map-based (a geometrical map of the
environment is provided) or marker-based (the robot simply
follows visual markers placed on the floor). This scenario
allows the development of different applications that are
presented in subsection III-C. These applications require
several functionalities, such as inverse kinematics, bounding
box estimation, navigation, localization and mapping. Even
though, the application is simple from a functional point of
view, the deployment structure is rather complex as several
variation points have to be resolved.

1

The fetch and carry application used for evaluation.

Fig. 3.

B. Platform Building Phase

According to the RAP process, the platform building phase
is performed once a good understanding exists of which
tasks the target robot application needs to solve and how
the environment and task execution context looks. Therefore,
in the platform building phase the robot will be configured
in terms of required sensors and actuators as well as their
mounting and placement on the robot (see Mechanical and
Electrical Architecture Model in Figure 1). Other configura-
tion choices may pertain to the computational hardware to be
integrated (see the Computational Architecture Model (CAM)

C - TArohi

[ireModel
name : EString

1.7

1. *
Platform 0

name : EString

description : EString 0..*
ﬂ hostname : EString >—
1" " IP: EString
1.7
Memory Device

name : EString name : EString name : EString

Property
name : EString

A

Bus
L name : EString

Fig. 4. The computational architecture meta-model.

in Figure 1, whose meta-model is depicted in Figure 4). In
robotics, however, modeling the CAM is either neglected or
performed in an ad-hoc manner. We propose to adapt existing
and industrial-proven CAM modeling approaches such as
AADL [9]. In the pick and place use case a KUKA youBot
is used. The robot is equipped with two computational hosts:
an internal computer and an external computer. The internal
host is connected to the EtherCat bus which provides access
to the joint controllers and the external computer, which is
more powerful and is mounted on the sensor tower of the
youBot. To model the CAM we provide a set of primitives
shown in Figure 4. The CAM meta-model is inspired by the
AADL platform meta-model and allows us to model the basic
structure of computational hosts (e.g., CPU, memory, and bus
connections) and their properties relevant for deployment,
such as hostname, IP address, and amount of memory.

C. Functional Design and Capability Building Phases

This subsection describes the Functional Design and the
Capability Building phases, which are contained in the grey
box depicted in Figure 1. These phases and the associated
models and tools are the result of previous works which are
presented in ([10], [11], [12]) and are available on GitHub.?
This paper provides a brief summary of the overall approach.

During these phases the engineers design a set of models
that describe the architectural and the functional variability
of a software product line, which is a family of similar
applications that share the same architecture and are built
reusing a set of software components [13]. The ultimate
goal of these phases is to automatically generate a model
that describes the architecture of a specific application of the
product line (the Configured System Model (CSM)) starting
from a selection of functionalities. This CSM will be then
later deployed on the robot.

The architecture of the software product line is represented
in a Template System Model (TSM), which specifies: (a) the
set of components that can be used for building all the
possible applications of the family (some are mandatory,
some others optional) and (b) a set of connections among

Shttp://robotics-unibg.github.com/VARP

Pick and Place

L?ca! ‘ Navigation Strategy ‘ Obstacle Avoidance Environment ’ Object Manipulation ’ Object Perception
Navigation
Inverse Planned
’ Map H Marker ’ DWA H VFH Map 1 H Map 2 Kinematics Grasping

Fig. 5. The feature model that describes the functional variability of the case study. Features with the black circle on the top are mandatory and represent
functionalities that have to be present in every application. Features with the white circle represent instead optional functionalities. White arcs represent
alternative containments (only one sub-feature can be selected) while black arcs depicts or containments (at least one sub-feature has to be selected).

components (some are stable, some others variable). The
architectural variability of the product line can be resolved by
selecting optional components, their specific implementation,
the values of their configuration properties, and the variable
connections. In this way starting from the 7SM it is possible
to generate the CSM. In other words the TSM is a skeleton
that can be customized for defining the architecture of a spe-
cific application. The CSM can be designed manually or can
be generated by means of a set of automatic transformations
as described below.

The TSM of the Research Camp use case contains around
25 components that provides several functionalities for mov-
ing the base and avoiding obstacles, for implementing the
different navigation strategies and for manipulating and
perceiving objects. According to the desired application
different set of functionalities should be used.

While the TSM describes the architectural variability of
the product line, a second model is required for orthogonally
representing the variability in terms of functionalities. This
model is the result of a domain analysis that investigates
the stable and variable concepts of the functional domain.
In our previous works we proposed to model the functional
variability by means of the Feature Models formalism [14],
A feature model is a hierarchical composition of features.
A feature defines a software property and represents an
increment in program functionality. It is good practice to
organize the features according to the application require-
ments and assign them names that are standard de facto in
the specific domain. The action of composing features, or
in other words selecting a subset of functionalities from all
the features contained in a feature model, corresponds to
defining the configuration of a software that belongs to the
product line and provides the required functionalities. The
orthogonality between the TSM and the Feature Model is
important because they are typically defined by engineers
with different competencies. Indeed the design of a good
architecture (7SM) requires advanced software engineering
techniques, while the functional variability modeling requires
a deep understanding of the application domain, which is part
of the robotic experts’ knowledge.

The functional variability of the Research Camp use case
is described in the feature model depicted in Figure 5. They
are described in the following list which also highlights how

the selection of a functionality influences the definition of
the application architecture.

o Local Navigation: this mandatory feature means that

every possible application has to provide basic naviga-

tion functionalities such as trajectory generation, obsta-
cle avoidance, mobile base control and localization.

Navigation Strategy: the alternative containment of this

feature represents the possibility of choosing between

the map-based and the marker-based navigation. Se-
lecting one of the two strategies implies using different
components that provide different functionalities (these
components are selected from the set of components
defined in the 7SM). As a consequence of this choice
the connections between the components change. The
functionalities required for the navigation have been

described in [11] and [12].

o Obstacle Avoidance: the alternative containment of
this feature represents a variation point regarding the
algorithm used for avoiding obstacles. According to the
selected feature we have to use different implementa-
tions for the component that provides this functionality.

« Environment: when the robot performs map-based nav-
igation, it can operate in different environments that
are represented by different maps. The alternative con-
tainment of this feature allows the specification of the
map, which will be used by the components that provide
the path planner and the localizer functionalities. These
components have a property that allows us to define the
path of the map description file.

¢ Object Manipulation: this optional feature represents
the capability of manipulating objects. When the engi-
neer want to deploy this functionality the component
that provides the inverse kinematics is mandatory while
the component for the Planned Grasped is optional.

¢ Object Perception: this optional feature represents the
last variation point of the product line. This functional-
ity can be used for detecting objects that have to be
grasped but also for detecting objects that represent
visual markers that the robot has to follow.

The feature models also allow the expression of constraints
among the selection of features. In our use case there is a
single constraint: when the feature Object Manipulation is
selected to be part of the application, the Object Perception

Deploy q
name : EString

source 1
AbstractSeq < Edge

name : EString

1
description : EString - target
RTTS ROSSequenceNod

]]

TaskContext 4 Node 4

(from Configured (from Configured

System Model) System Model)
Fig. 6. The deployment sequence meta-model.

feature has to be present.

Once the architecture of the product line has been defined
and its functional variability modeled, the engineer has to
define how the CSM can be automatically generated starting
from the TSM and a selection of functionalities (i.e. features).
This information is encoded in the Resolution Model, which
specifies how the architectural variability of the TSM has to
be resolved according to the feature selected in the Feature
Model. The resolution model associates each feature with
a set of transformations, which have to be executed on
the TSM when the corresponding feature is selected. These
transformations allow us to automatically (a) select which
components have to be used and set their implementation, (b)
configure the values of their properties, and (c) create and re-
move connections between them. For example the Resolution
Model of our use case specifies that when the feature Marker
Based Navigation is selected the components that provide
the marker-based functionalities (marker detection, marker
path planning, ...) have to be used and connected to the
components that provide the local navigation functionalities.

The last step concerns the automatic generation of the
CSM that describes the architecture of a specific application.
The engineer uses the Feature Selector to select the set of
features that reflect the functional requirements of the desired
application. The Resolution Engine receives as input the
feature selection and by using the three models described
above automatically generates the CSM. Basically the Reso-
lution Engine (a) checks that all the constraints imposed on
the Feature Model are satisfied by the feature selection; (b)
creates a copy of the TSM; (c) modifies this copy by applying
only the transformations (described in the Resolution Model)
that are associated with the selected features.

In our use case the engineer can deploy several appli-
cations that go from a simple map-based navigation (the
selected features are Local Navigation, Marker and one of
the Obstacle Avoidance sub-features) to the pick and place
of objects with marker-based navigation.

Despite the product lines support the separation of stable
and variable concepts, new requirements can appear over the
time, which imply the evolution of the product line and the
definition of new functionalities and new components. The
SPL literature documents several approaches for the evolu-

Archi dol
ct

name : EString

1..*

Jnit

name : EString
description : EString

Thread

OH name : EString

0.7 Property 0.7
name : EString

Fig. 7. The runtime architecture meta-model.

Process
name : EString

tion of the architectures [15] and the feature models [16].

D. System Deployment Phase

During the System Deployment phase the previous sepa-
rated architectural aspects and models are composed into a
coherent Deployment Model (DM) (meta-model in Figure 6).
This is done by mapping the component architecture defined
in the CSM to executable units such as processes and threads
modeled in the Runtime Architecture Model (RAM) (see
meta-model in Figure 7) and by mapping the executable units
on hosts defined in the CAM. In addition, the Deployment
Sequence Model (DSM) (meta-model in Figure 8) defines the
order in which the components are deployed. The optional,
sequential deployment of components might be required for
testing purposes or to cope with the complexity imposed by
large-scale component networks (e.g., step-wise and layered
deployment). We model the sequence as a directed acyclic
graph (DAG).

In the Research Camp use case this enables us to encode
that the arm components must be deployed before any other
components since it performs a homing procedure. Similarly
to the CAM, the RAM is inspired by the AADL meta-
model on execution units. For the pick and place use case,
depending on the selected functionalities, the components are
deployed as processes or threads.

1 S,

DeploymentModel 0..
name: EString

q Model ¢
(from Deployment
Sequence Model)

Y

0...
1 1
Deploy tElement
name : EString
description : EString

A 4

Platform 4
(from Computational
Architecture Model)

1 1

AbstractComponentSet ExecutionUnit 4
name : EString (from Runtime
Architecture Model)
RTTComp ROSC:

1.7 1.7
TaskContext 4 Node 4

(from Configured (from Configured

System Model) System Model)

Fig. 8. The deployment meta-model.

IV. A DOMAIN-SPECIFIC LANGUAGE FOR DEPLOYMENT

To support the model-based deployment approach intro-
duced in Section III we developed a Domain-specific Lan-
guage (DSL), which enables system integrators to create con-
crete domain models and to generate (enriched) framework-
specific deployment descriptions. We defined the following
language requirements (see also Kolovos et al. [17]).

e Orthogonality. The DSL primitives and abstractions
shall correspond to the domain concepts introduced in
Section IIl. More precisely, each language construct
should represent one distinct concept in the domain
in order to keep them orthogonal and to ease the
development of code generators.

o Supportability. To increase acceptance, a DSL user
demands an infrastructure which supports typical ac-
tivities such as model creation, editing, deleting, and
transforming.

¢ Quality. The DSL should support the development of
faultless deployment descriptions via the language itself
or through tooling.

A. Implementation

We developed a language infrastructure which allows
model editing, validation and generation (see Resolution
and Deployment Configuration Engines in Figure 1). The
tools related to feature models and software architecture are
graphical and based on the Eclipse Modeling Framework
(EMF)°, while the rest of the infrastructure is based on the
Eclipse framework Xtext’. For the deployment DSL itself
the straightforward integration of Xtext in Eclipse helped
us to develop the language in a rapid manner. For instance,
a DSL language editor with syntax highlighting and code
completion can be automatically generated from the meta-
models. This built-in support helped us to focus on the devel-
opment of the language itself. Even though, for some targeted
DSL user the use of Eclipse as a language framework
might be arguable, the syntax specification is independent
of Eclipse and hence, could be used for other frameworks
as well. In addition, the deployment description generation
facilities have been realized with Xtend,® a special-purpose
programming language which eases the writing of code
generators through powerful template expressions.

B. Syntax and Example

In Figure 9 an excerpt of the deployment DSL is shown.
Here a component set is defined, which imports a set of
components from the Configured System Model that models
the architecture of the perception components and com-
ponents related to arm control. Additionally, two different
computational hosts are imported which are modeled in
two different Computational Architecture Models. In the
example, a deployment sequence is defined (the arm control
should be deployed before the perception) and later used in

Shttp://www.eclipse.org/modeling/
Thttp://www.eclipse.org/Xtext/
8http://www.eclipse.org/xtend/

Deployment DSL \

ComponentSet perception {
import bounding_box from CSM.perception
/]

}

ComponentSet arm {

import armctrl from CSM.manipulation
VA

}

import Platform internal_pc from CAM.embeddedPC
import Platform external_pc from CAM.laptop

DeploymentSequence {

deployment_sequence s {
arm.armctrl before perception.bounding_box
}

}

DeploymentModel dm {

deploy arm on internal_pc
deploy perception on external_pc
apply_sequence s

}

Fig. 9. An excerpt of the deployment DSL.

the deployment model. To ease modeling we equipped the
DSL with some syntactic sugar in the form of high-level
keywords such as deploy and on.

C. Constraint Checking

Once domain concepts are represented as meta-models
we can also define constraints on concrete domain models
which conform to these meta-models. In the work presented
here, we applied the OCL (Object Constraint Language)’
formalism to model constraints. We distinguish between two
types of constraints:

o Atomic constraints which are valid for domain models
conforming to one single meta-model (e.g., constraints
for the CSM).

o Composition constraints which appear when we com-
pose the models in the deployment model.

For instance, every CSM is either a ROS-based or Orocos-
based component network. Therefore, we modeled several
framework-specific constraints such as those shown in Fig-
ure 10. Here, we ensure that the types of an input and

context ConnectionPolicy
inv: self.inputPort.type = self.outputPort.type

context ConnectionPolicy
inv: self.name.size() <> 0 and self.bufferSize <> 0

Fig. 10. An excerpt of the Orocos RTT-specifc OCL constraints.

output port match and that a connection between them is
well-configured according to the underlying Orocos RTT
component model. Another example of atomic constraints is

http://www.omg.org/spec/0CL/2.0/

shown in Figure 11 where we ensure that every platform has
a non-empty hostname. In addition, composition constraints
are defined which are more complex. Due to space limitation
we present only some of them in natural language:

« Each component of a CSM needs to be deployed on one
host defined in the CAM.

o Each component of a CSM may not be deployed several
times on a host defined in the CAM.

o Each connection between components in the CSM im-
plies that the components are deployed on the same
host defined in the CAM, or that the different hosts are
connected with each other.

o Each component of a CSM which are deployed as thread
and belongs to one process defined in the RAM must
run on the same host defined in the CAM.

context Platform inv: self.hostname.size() <> 0

Fig. 11. An excerpt of the platform OCL constraints.

D. Model Generation for Robot Software Frameworks

To make the DSLs usable in a working environment and to
show the feasibility of the overall approach we developed a
proof of concept model generator for ROS. As the presented
DSL is framework-independent, the DSL concepts and ab-
stractions have to be transformed to framework-specific
concepts. In this work we generate roslaunch configuration
files. The roslaunch tool is the major deployment mechanism
in ROS, which reads configuration files (specified in a XML
format) and launches nodes on specified hosts. We used the
top-level elements of the XML specification to transform the
corresponding DSL concepts. For each component set speci-
fied in the DSL a dedicated ROS launch file is generated. In
addition, each component specified in the CSM and included
in the DM is transformed to a ROS node (<node> tag) in
the launch file. The host information for each component is
used for the <machine> tag in the XML specification.

Even though we are able to generate valid roslaunch files,
it is not possible to transform concepts such as the deploy-
ment sequence, which is not considered in the roslaunch
tool. When the user initiates the generation of a roslaunch
file, based on a deployment model where a deployment
sequence is specified, a warning will appear. Generation
for other frameworks such as Orocos RTT will follow the
same approach, namely language elements will be trans-
formed to the primitives available in the framework-specific
deployment infrastructure. For example, in Orocos RTT we
would generate Lua deployment scripts. Here, the application
of a deployment sequence is possible as the Orocos RTT
component model foresees a component lifecycle which can
be used to start and deploy components in a specific order.

V. DISCUSSION AND RELATED WORK

The BRICS Research Camp use case exemplifies the huge
variability which characterizes modern robot applications. To

cope with this variability and the effects on deployment we
keep the architectural aspects separated and compose them
as late as possible. The DSL snippet shown in Figure 9
exemplifies this. To modify the deployment setting (e.g.,
to deploy components on another host) simply involves the
change of a couple of lines. In addition, the feature-oriented
approach allows a quick generation of the architecture of
a specific application by simply selecting its functionalities
and reusing existing solutions.

A. Requirements Revisited

o Orthogonality. In general, it is possible to transfer the
architectural aspects to concrete language abstractions.
Surprisingly a handful high-level keywords such as the
before statement are sufficient to encode rather com-
plex situations. In addition, the models are orthogonal
as possible. In fact the sequence and the deployment
model are the only models that are affected by changes
in other models.

o Supportability. The language infrastructure is Eclipse-
based and therefore graphical. However, we observed
that developers hesitate to use this environment because
they are used to work with command-line tools. Never-
theless we argue that the faster development time that
comes with using the tools, they will consider adopting
the graphical approach.

e Quality. Thanks to the constraint checking we can
identify incomplete and erroneous information already
during modeling. Furthermore, the powerful composi-
tion constraints are aimed for the situations described in
Section II, where a change in one model affects another
model. This automatic checking is very advantageous
when compared to the manual inspection of framework-
specific configuration and deployment scripts.

B. Lessons Learned

We can report the following lessons with respect to the
overhead introduced by the DSL.

o From DSL users perspective an external DSL needs to
be well integrated in the overall development workflow.
Otherwise it is unlikely that the DSL will be used in a
daily working environment. In our future work we will
therefore integrate the deployment DSL with BRIDE'?
which is a model-driven engineering IDE for robotics
based on Eclipse. The TSM can be already designed
with BRIDE and the feature and resolution models
are already integrated within BRIDE. Furthermore, the
resulting CSM can be visualized with BRIDE.

o From DSL developers perspective there is clearly the
overhead to develop the language itself, corresponding
code generation facilities and tooling. For those activ-
ities good domain knowledge is demanded. However,
modern DSL frameworks such as those applied in this
work help to master those activities and to focus on the
language design itself.

Ohttp://www.best-of-robotics.org/bride/

C. Related Work

Quite recently, model-based software development ap-
proaches have become popular in robotics. In [18] the
RobotML DSL is presented. The DSL includes a domain
model which contains four packages, namely, architecture,
behavior, communication and deployment. The deployment
package specifies a set of constructs that can be used to
define the assignment of a robotic system to a target platform
(middleware or simulator). Hence, deployment in RobotML
refers to platform-specific code generation. In contrast to
our approach the link to the development process is missing
and constraints are not checked that elaborately. In [5] the
deployment infrastructure for OpenRTM is presented. Here,
deployment is considered as a part of component and sys-
tem lifecycle management. The authors present a pragmatic
approach to deployment, focusing on the implementation
level details (e.g., how manager services interact and how
components are instantiated). To realize the deployment
process so-called profile descriptions (component and system
profiles) are required. One can view component and system
profile descriptions as DSLs. However, in contrast to our
approach the focus is on elaborated tooling and not on the
composition of different architectural aspects. Similarly, in
Schlegel et al. [6] a platform description model is defined
which serves as a deployment target. However, the explicit
separation of architectural aspects has not been adressed.

VI. CONCLUSION AND FUTURE WORK

In this paper we introduced a model-based approach to
software deployment in robotics. We separated different
architectural aspects, which are linked to a software develop-
ment process in robotics, and introduced a domain-specific
language. The DSL and the feature-oriented approach allows
us to model these aspects in a declarative and framework-
independent manner. Therefore, we can reuse models and can
easily make changes in the deployment setting. To ensure
certain properties already at design time we make use of
constraints which are checked before the actual deployment
on the robot. To avoid ambiguities in a model-based approach
one has to agree on the available concepts, their terminology
and their meaning. In particular in the presence of engineers
and developers with different areas of expertise. However, so
far we have not experienced any ambiguities in the applica-
tions of our model-based approach as the concepts are widely
accepted. In the future we want to make the models also
available at runtime in order to support deployment changes,
e.g., in the presence of hardware failures. Furthermore, we
aim to support several robotic software frameworks with our
model generation such as Orocos.

ACKNOWLEDGEMENT

The research leading to these results has received fund-
ing from the European Community’s Seventh Framework Pro-
gramme (FP7/2007-2013) under grant agreement no. FP7-ICT-
231940-BRICS (Best Practice in Robotics). In addition, Nico
Hochgeschwender received a PhD scholarship from the Graduate
Institute of the Bonn-Rhein-Sieg University of Applied Sciences

which is gratefully acknowledged. Furthermore, the ongoing sup-
port of the Bonn-Aachen Institute of Technology is gratefully
acknowledged.

REFERENCES

[1] B. Graf, U. Reiser, M. Hagele, K. Mauz, and P. Klein, “Robotic home
assistant care-o-bot 3 - product vision and innovation platform,” in
Proceedings of the IEEE Workshop on Advanced Robotics and its
Social Impacts (ARSO), 2009.

[2] W. Meeussen, M. Wise, S. Glaser, S. Chitta, C. McGann, P. Mihelich,
E. Marder-Eppstein, M. Muja, V. Eruhimov, T. Foote, J. Hsu, R. B.
Rusu, B. Marthi, G. Bradski, K. Konolige, B. P. Gerkey, and E. Berger,
“Autonomous door opening and plugging in with a personal robot,”
in Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), 2010.

[3] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “Ros: an open-source robot operating
system,” in Proceedings of the Workshop on Open Source Software
held at the International Conference on Robotics and Automation
(ICRA)., 2009.

[4] H. Bruyninckx, P. Soetens, and B. Koninckx, “The real-time motion
control core of the Orocos project,” in Proceedings of the International
Conference on Robotics and Automation (ICRA), 2003.

[5] N. Ando, S. Kurihara, G. Biggs, T. Sakamoto, H. Nakamoto, and
T. Kotoku, “Software deployment infrastructure for component based
rt-systems,” Journal of Robotics and Mechatronics, vol. 23, no. 3, pp.
350-359, 2011.

[6] C. Schlegel, A. Steck, D. Brugali, and A. Knoll, “Design abstraction
and processes in robotics: From code-driven to model-driven engineer-
ing,” in Proceedings of the International Conference on Simulation,
Modeling, and Programming for Autonomous Robots (SIMPAR), 2010.

[7] D. C. Schmidt, “Guest editor’s introduction: Model-driven engineer-
ing,” Computer, vol. 39, no. 2, pp. 25-31, 2006.

[8] G. K. Kraetzschmar, A. Shakhimardanov, J. Paulus, N. Hochgeschwen-
der, and M. Reckhaus, “Best practice in robotics (brics) deliverable
d-2.2: Specifications of architectures, modules, modularity, and inter-
faces for the brocre software platform and robot control architecture
workbench,” 2010.

[9]1 P. H. Feiler, D. P. Gluch, and J. J. Hudak, “The architecture analysis
& design language (AADL): An introduction,” Software Engineering
Institute, Carnegie Mellon University, Tech. Rep. CMU/SEI-2006-TN-
011, 2006.

[10] L. Gherardi and D. Brugali, “An eclipse-based feature models
toolchain,” in 6th Italian Workshop on Eclipse Technologies (EclipselT
2011), Milano, Italy, September 22-23 2011.

[11] D. Brugali, L. Gherardi, A. Luzzana, and A. Zakharov, “A reuse-
oriented development process for component-based robotic systems,”
in 3rd International Conference on Simulation, Modeling and Pro-
gramming for Autonomous Robots (SIMPAR 2012), Tsukuba, Japan,
November 5-8 2012.

[12] L. Gherardi, “Variability modeling and resolution in component-
based robotics systems,” Ph.D. dissertation, Universita degli Studi di
Bergamo, 2013.

[13] P. Clements and L. Northrop, Software Product Lines: Practices and
Patterns. Addison-Wesley, 2002.

[14] K. Kang, “Feature-oriented domain analysis (FODA) feasibility study,”
DTIC Document, Tech. Rep., 1990.

[15] M. Svahnberg and J. Bosch, “Evolution in software product lines:
Two cases,” Journal of Software Maintenance: Research and Practice,
vol. 11, no. 6, pp. 391-422, 1999.

[16] A. Pleuss, G. Botterweck, D. Dhungana, A. Polzer, and S. Kowalewski,
“Model-driven support for product line evolution on feature level,”
Journal of Systems and Software, vol. 85, no. 10, pp. 2261-2274,
2012.

[17] D. S. Kolovos, R. F. Paige, T. Kelly, and F. A. C. Polack, “Re-
quirements for Domain-Specific languages,” in Proceedings of the st
ECOOP Workshop on Domain-Specific Program Development (DSPD
2006), 2006.

[18] S. Dhouib, S. Kchir, S. Stinckwich, T. Ziadi, and M. Ziane, “Robotml,
a domain-specific language to design, simulate and deploy robotic
applications.” in SIMPAR, ser. Lecture Notes in Computer Science,
I. Noda, N. Ando, D. Brugali, and J. J. Kuffner, Eds., vol. 7628.
Springer, 2012, pp. 149-160.

