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Abstract— We present a provably-good distributed algorithm
for generalized task assignment problem in the context of multi-
robot systems, where robots cooperate to complete a set of given
tasks. In multi-robot generalized assignment problem (MR-
GAP), each robot has its own resource constraint (e.g., energy
constraint), and needs to consume a certain amount of resource
to obtain a payoff for each task. The objective is to find a maxi-
mum payoff assignment of tasks to robots such that each task is
assigned to at most one robot while respecting robots’ resource
constraints. MR-GAP is a NP-hard problem. It is an extension
of multi-robot linear assignment problem since different robots
can use different amount of resource for doing a task (due to the
heterogeneity of robots and tasks). We first present an auction-
based iterative algorithm for MR-GAP assuming the presence
of a shared memory (or centralized auctioneer), where each
robot uses a knapsack algorithm as a subroutine to iteratively
maximize its own objective (using a modified payoff function
based on an auxiliary variable, called price of a task). Our
iterative algorithm can be viewed as (an approximation of) best
response assignment update rule of each robot to the assignment
of other robots at that iteration. We prove that our algorith m
converges to an assignment (approximately) at equilibrium
under the assignment update rule, with an approximation
ratio of 1+ α (where α is the approximation ratio for the
Knapsack problem). We also combine our algorithm with a
message passing mechanism to remove the requirement of a
shared memory and make our algorithm totally distributed
assuming the robots’ communication network is connected.
Finally, we present simulation results to depict our algorithm’s
performance.

I. INTRODUCTION

Task assignment is a fundamental problem in multi-
robot system with various applications such as intelligent
manufacturing, automated transport of goods, search and
rescue assistance in disaster relief, as well as environmental
monitoring. In the basic formulation of multi-robot linear
assignment problem, it is assumed that each task would
consume the same unit amount of resource from each
robot’s resource budget. However, in practice, each task
might consume different amount of resource from differ-
ent robots due to the heterogeneity of robots and tasks,
which can be modeled as multi-robot generalized assignment
problem (MR-GAP). In MR-GAP, each robot has its own
resource constraint, and needs to consume a certain amount
of resource to obtain a payoff for each task. The overall
objective is to find a maximum payoff assignment of tasks
to robots such that each task is assigned to at most one robot
while respecting robots’ resource budget constraints. Given
its wide applicability for real-world problems in various
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areas as well as its computational NP-hardness, general-
ized assignment problem (GAP) has been well studied in
operations research, theoretical computer science and other
related research communities. However, most algorithms are
centralized in nature. In multi-robot application scenarios
where robots need to autonomously operate in the field,
it is desirable to have distributed algorithms on individual
robots so that the system is resilient to single-point failure
and adaptive to environmental change. Thus, in this paper,
our goal is to design distributed algorithms for MR-GAP
with provable performance guarantee.

Multi-robot generalized task assignment arises in many
multi-robot application scenarios. Especially when tasksand
robots are heterogeneous, the amount of resource each task
consume from each robot, as well as the payoff each robot
could obtain from each task, might be different. Depending
on the specific application, the resource could be energy,
processing time or any other consumable resource. Consider
the situation in automated warehouse management system
where packages have to be picked up from certain clustered
storage locations, and placed in other delivery locations.
In this situation, different robots and objects might be dis-
tributed across different spatially clustered location. Thus, the
energy each robot consume to travel from its original position
to the targeted object location could be different. Another
application area is in disaster recovery scenario where the
robots need to remove debris and clear the paths. In such
cases different robots with heterogeneous design might need
different processing time to remove different kinds of debris.

In this paper, we present a distributed auction-based al-
gorithm for MR-GAP, where each robot can bid for its
own tasks by solving a knapsack sub-problem as subroutine.
We show that our algorithm provides an 1+ α approximate
solution assuming that the knapsack problem is solved by
an algorithm with approximation ratioα ∈ [1,+∞). Thus,
our distributed algorithm has an approximation ratio of 2
(or 3), when the algorithm used for knapsack is optimal (or
2-approximate). Unlike other approximation algorithms of
GAP, our auction-based new algorithm is designed specifi-
cally for distributed multi-robot systems with limited range
communication. Furthermore, our algorithm can achieve a
similar approximation ratio with a competitive running time.
Our proof also presents a new perspective showing that best-
response assignment update rule of individual robots would
lead to an assignment at equilibrium with guaranteed ap-
proximation ratio. We first present our auction-based iterative
algorithm for MR-GAP assuming that the robots have access
to a shared memory (or there is a centralized auctioneer).



Each robot obtains the information of highest bid for each
task among all robots from the shared memory, and then uses
a knapsack algorithm as a subroutine to iteratively maximize
its own objective (using a modified payoff function based on
an auxiliary variable called price of a task). The assignment
update rule of our iterative algorithm can be viewed as
(approximate)1 best response of each robot to the temporary
assignment of other robots at that iteration. We prove that
our algorithm would eventually converge to an assignment
at (approximate) equilibrium with an approximation ratio of
1+ α. We also make our algorithm totally distributed by
combining it with a message passing mechanism to remove
the requirement of a shared memory (at the cost of slower
convergence and more local communication), assuming the
robots’ communication network is connected. Finally, we
present simulation results to depict the performance of our
algorithm.

II. RELATED WORK

Task allocation is important in many applications of multi-
robot systems, e.g., multi-robot routing [1], multi-robotdeci-
sion making [2], and other multi-robot coordination problems
(see [3], [4]). There are different variations of the multi-robot
assignment problem that have been studied in the literature
depending on the assumptions about the tasks and the robots
(see [5], [3], [6] for surveys), and there also exists multi-robot
task allocation systems (e.g., Traderbot [7], [8], Hoplites [9],
MURDOCH [10], ALLIANCE [11]) that build on different
algorithms. Here we consider a deterministic offline multi-
robot generalized assignment problem, and our objective is
to design distributed algorithms with provable performance
guarantee. Therefore, we will restrict our discussion to most
relevant literature with performance guarantee.

In the simplest version of the task allocation problem (also
known as the linear assignment problem), each robot can
perform at most one task and the robots are to be assigned
to tasks such that the overall payoff is maximized. The linear
assignment problem is essentially a maximum weighted
matching problem for bipartite graphs, which can be solved
in a centralized manner using the Hungarian algorithm [12],
[13], or a decentralized manner with shared memory using
auction algorithm [14], or a totally distributed way using
consensus-based auction algorithm [15], [4]. However all
of this work assume that the tasks are independent. Some
work has been done to address the constraints among tasks
in multi-robot task assignment. In [16], set precedence
constraints are introduced among tasks, where the tasks are
organized into disjoint groups such that each robot can be
assigned to at most one task from each group and there
is a bound on the number of tasks that a robot can do. A
generalization of the auction algorithm of [14] is presented in
[16] to achieve an almost optimal solution. [17] studied the
multi-robot task assignment with task deadline constraints,
which extends the problem in [16] in the sense that the

1Approximate best response and at approximate equilibrium will be
strictly defined in Definition 3 and 4.

task group can overlap, and each robot can be assigned
to multiple tasks in each group. The constrained linear
assignment problems in [16], [17] are solvable in polynomial
time whereas MR-GAP is NP-hard.

Generalized assignment problem (GAP) is an extension to
the linear assignment problem, which has been extensively
studied in both operation research [18], [19] and theoretical
computer science [20], [21], [22], [23]. However, most algo-
rithms are centralized in nature, i.e., a centralized controller
collects all parameter information and then computes the
whole assignment. This may not be suitable for situations
where distributed algorithm is required for multi-robot in-
field operation. A branch and bound algorithm was presented
in [18] to determine the bounds of optimal solution. A series
of 0/1 knapsack problem are solved so that the bound gets re-
fined iteratively. A branch-and-price algorithm was designed
in [19] that employs both column generation and branch-and-
bound to obtain optimal integer solutions. However, these
algorithms do not provide any approximation guarantee.
Some approximation algorithms exist for GAP, e.g., LP-
based 2-approximation algorithm in [20], [21]. A combinato-
rial local search with (2+ε)-approximation guarantee, and an
LP-based algorithm with( e

e+1 +ε)-approximation guarantee
with polynomial running time are presented in [23]. A
(2+ε)-approximation algorithm with the same guarantee as
the combinatorial local search but a better running time is
given in [22]. The algorithm presented in [22] can be viewed
as the first round of our iterative algorithm where each robot
sequentially runs the algorithm for one iteration.

III. PROBLEM FORMULATION

Suppose that there arenr robots,R= {r1, . . . , rnr}, andnt

tasks,T = {t1, . . . ,tnt}. Each robot,r i , has resource budget
Ni , and consumes resourcewi j to complete taskt j while
getting payoffai j . Any robot can be assigned to any task,
and performing each task needs a single robot. The objective
is to assign tasks to robots so that the sum of the payoffs of
the robots is maximized subject to the resource constraints.
Let fi j take a value 1 if taskt j is assigned to robotr i and 0
otherwise, wherei ∈ {1, . . . ,nr}, j ∈ {1, . . . ,nt}. We study the
maximization version of MR-GAP, which can be formulated
as an integer linear program (ILP):

max
{ fi j }

nr

∑
i=1

nt

∑
j=1

ai j fi j

s.t.
nr

∑
i=1

fi j ≤ 1, ∀ j = 1, . . . ,nt (1)

nt

∑
j=1

wi j fi j ≤ Ni , ∀i = 1, . . . ,nr (2)

fi j ∈ {0,1}, ∀i, j (3)

where (1) guarantees that each task is exclusively assignedto
at most one robot; (2) guarantees that the sum of consumed
resources for tasks assigned to each robotr i does not exceed
its budgetNi . When wi j = 1 and Ni = 1, the generalized
assignment problem becomes the linear assignment prob-
lem [13]. Whenwi j = wj andai j = a j , i.e.,wi j andai j do not



vary for different robots, the generalized assignment problem
becomes a multiple knapsack problem [24].

IV. A LGORITHM DESIGN AND PERFORMANCEANALYSIS

In this section, we introduce an iterative auction-based
algorithm for multi-robot generalized assignment problem.
We will first introduce a few key concepts such as robot’s
(approximate) best response and the assignment at (approxi-
mate) equilibrium. We also recall the definition of knapsack
problem. We will then present an iterative auction-based
algorithm with shared memory, where given current tem-
porary assignment of other robots, each robot bids for tasks
using the knapsack algorithm as a subroutine. We show the
connection of our algorithm to (approximate) best response
update rule, and prove that the algorithm would converge to
an assignment at (approximate) equilibrium with guaranteed
approximation ratio. Finally, we discuss the use of a message
passing mechanism to make our algorithm totally distributed.

A. Preliminary Concepts

Let Ji = { j| fi j = 1} denote the task set assigned to robot
r i andJ = ∪i{Ji} be a task assignment solution for GAP.

Definition 1: Define anassignment transform function Gi

as a transformation from a given old assignmentJ′ to a new
assignmentJ, due to a new assignment componentJi for
robot r i : J = Gi(J′,Ji) = (∪k6=i{J′k\ Ji})∪{Ji}, i.e.,

Jk =

{

Ji if k = i
J′k \ Ji if k 6= i

We sayJi is a feasible assignment for robotr i if and only
if Ji satisfiesr i ’s budget constraint in (2), denoted asJi ∼ (2);
and J is a feasible assignment, if and only ifJ satisfies all
constraints in(1) - (2), denoted asJ ∼ (1)− (2).

Lemma 1:The assignment transform functionGi is a
valid transform, i.e., if bothJ′ and Ji are feasible assign-
ments, thenJ = Gi(J′,Ji) is also feasible.
Proof: For any robotrk 6= r i , its newly assigned task setJk =
J′k\Ji ⊂ J′k. SinceJ′k is feasible forrk, Jk must also be feasible,
i.e., the subset of previously assigned tasks must consume
less resource than the budget ofrk. Besides,Jk∩Ji = /0, soJ
must exclusively assign tasks to at most one robot. Together
with the feasibility ofJi , we know that the new assignment
J ∼ (1)− (2), i.e., the transform function is valid.�

Denote F(J) = ∑i:Ji∈J ∑ j∈Ji
ai j as the total payoff of a

feasible assignmentJ; H(J′,Ji) = F(Gi(J′,Ji))−F(Gi(J′, /0))
as the total payoff increment due to a new assignment
component of robotr i from /0 to Ji , imposed onJ′.

Definition 2: A new assignment componentJ∗i is robot
r i ’s best response2 to an old assignmentJ′ if and only if

J∗i = argmax
Ji

H(J′,Ji)

which is the best unilateral assignment change of robotr i to
increase the total payoff from assigning nothing tor i .

2Note thatr i ’s best response might not always be unique for some given
old assignmentJ′. In such cases, we could use any one as the best response.

Definition 3: A new assignment componentJ∗i is robot
r i ’s α-approximate best responseto an old assignmentJ′

(α ∈ [1,+∞)), if and only if

αH(J′,J∗i ) ≥ max
Ji

H(J′,Ji)

Definition 4: An assignmentJ∗ is at equilibrium (or at
α-approximate equilibrium) if and only if any assignment
componentJ∗i ∈ J∗ is already robotr i ’s best response (or
α-approximate best response) toJ∗ itself, i.e.,

∀J∗i ∈ J∗ : J∗i = argmaxJi H(J∗,Ji)
(or αH(J∗,J∗i ) ≥ maxJi H(J∗,Ji))

Note that if we use (α-approximate) best response as the iter-
ative assignment update rule for each robot, any assignment
at (α-approximate) equilibrium would be a fixed point for
such update rule. There might be many different assignments
at (α-approximate) equilibrium depending on the parameters
of problem instances.

Since we use algorithms for 0/1 knapsack problem as
a subroutine in our iterative algorithm later, we recall the
definition of 0/1 knapsack problem below.

Definition 5: [0/1 Knapsack Problem]: Considern items,
{x1, . . . ,xn}, and a bag to contain these items. Eachxi has a
value vi and weightwi . The maximum weight that we can
carry in the bag isW. Assume that all values and weights
are nonnegative. The objective is to determine the items of
maximum value such that the total weight is less than or
equal toW.

max
{yi∈{0,1}}

n

∑
i=1

viyi s.t.
n

∑
i=1

wiyi ≤W.

whereyi = 1 if item xi is in the bag, otherwiseyi = 0.
The knapsack optimization problem is NP-hard. There ex-
ist a pseudo-polynomial time algorithm using dynamical
programming and a fully polynomial time approximation
scheme (FPTAS). The FPTAS uses the pseudo-polynomial
algorithm as a subroutine, and can approximate the optimal
solution to any specified degree in polynomial time [24].

B. Auction-based Decentralized Algorithm Design

We want to matchnr robots andnt tasks with constraints
(1)-(3) through a market auction mechanism, where each
robot is an economic agent acting in its own best interest
to bid for tasks. Each robotr i wants to be assigned to
its favorite tasks (with highest payoffs) while satisfyingits
budget constraints in (2). The different interest of robotswill
probably cause conflicts in assignment that violate the con-
straints in (1). This can be resolved by introducing auxiliary
variables called task price, and making robots bid for tasks
with highest values (defined as payoffs minus price) instead
of highest payoffs, through an iterative auction mechanism.

At iterationτ, let the price for taskt j be p j(τ). The value
of taskt j to robotr i is vi j (τ) = ai j − p j(τ) instead of justai j .
Robot r i bids for tasks which satisfy its budget constraints
and have highest values to itself. Formally, in iterationτ,
robot r i computes its new bids by solving the following 0/1



knapsack problem:

max
{ fi j ∈{0,1}}

nt

∑
j=1

vi j (τ) fi j s.t.
nt

∑
j=1

wi j fi j ≤ Ni . (4)

Let Ji be the task set obtained by robotr i by solving
the problem (4) using anα-approximation algorithm for the
knapsack problem. Robotr i would then bid for each task
t j , j ∈ Ji , with new priceai j , which would guaranteer i to
win the bids sincevi j (τ) = ai j − p j(τ) > 0. We assume that
there exists a shared memory (or auctioneer) for all robots to
access the current task price, which is the current highest bid
from all robots. The shared memory is also used to guarantee
that at any time, at most one robot can access the task price
and provide new bids for tasks. After winning the bids and
assigned to tasks in the iteration, the robot would then set the
new task price as the winning bid, which is the highest bid for
the task among all robots till then. Thus the iterative bidding
from robots leads to the evolution of robot-task assignment
as well as task pricep j(τ), which can gradually resolve the
interest conflicts among robots.3

Based on the idea described above, we design a new
auction-based decentralized algorithm for the generalized
assignment problem. In the decentralized algorithm, thereis
no centralized controller to make assignment decisions for
robots. Instead each robot are making assignment decision
by itself. For each robotr i , a single bidding iterationτ of
our auction-based algorithm is described in Algorithm 1.
Each robot could implement the iterative bidding procedure
either synchronously or asynchronously. However, the shared
memory must guarantee that at any time, at most one robot
can access the task price and provide new bids for tasks. For
the sake of ease of discussion, below we assume that in our
auction-based algorithm, all robots run copies of Algorithm 1
sequentially. The algorithm terminates after the task price
information does not change after all robots bid for one
iteration.

As shown in Algorithm 1 (Line 1), the knowledge / infor-
mation available to each robotr i during its bidding iteration
τ includes two parts: (a) locally maintained information:
{ai j |∀ j} and {wi j |∀ j}, the payoffs of tasks tor i itself and
their consumed resource forr i , J′i and {b′j | j ∈ J′i }, indices
of tasks assigned tor i during its previous bidding iteration
and r i ’s bidding price for those tasks at that iteration; (b)
information accessed from the shared memory:{p j(τ)|∀ j},
the task price maintained and updated in the shared memory
during its bidding iterationτ.

First, robotr i goes through tasks inJ′i , which is the task set
assigned tor i during its previous bidding iteration.r i com-
pares the current price of those tasks with the corresponding
previous bidsb′j from r i : if b′j < p j(τ), it means that another
robot must have bid higher price fort j , and thust j has been

3Note that pj (τ) is an auxiliary variable, which is used to resolve the
conflict that multiple robots share the same interest of being assigned to
the same tasks. When the algorithm terminates, the quality of assignment
solution does not depend onpj (τ), i.e., the output assignment solution is
evaluated in terms of original payoffsai j instead of the net valuevi j (τ) =
ai j − pj (τ).

reassigned to the robot with that bid; otherwise,b′j = p j(τ),
taskt j is still assigned to robotr i sinceb′j is still the highest
bid. In the latter case,r i resets the task price to be zero so
that the new value of the task tor i is still ai j . (Line 2 to 8)

Second, given the current task price{p j(τ)|∀ j}, robot r i

selects a task set with task indicesJ∗i using any knapsack
algorithm with performance guarantee to maximize the total
assignment values∑ j∈J∗i

vi j (τ) (Line 9 to 11).
Third, robotr i is assigned to task setJ∗i , and updates the

task price (from Line 12 to 15) so that∀ j ∈ J∗i , p j(τ +1) =
ai j . The bidding price for each task isai j bigger than its
previous pricep j(τ) (otherwisevi j (τ) = ai j − p j(τ) ≤ 0, t j

would not be selected), so the tasks receivingr i ’s bids must
be assigned tor i at the end of the iteration.

Algorithm 1 Auction Iterationτ For Robotr i

1: Input: ai j , pj(τ), ∀ j, J′i , {b′j | j ∈ J′i }// J′i : indices of ri ’s
previously assigned tasks
Output: pj(τ +1), J∗i // J∗i : r i ’s newly assigned tasks

2: // Reset the price of still assigned tasks from previous
iteration to zero

3: for each taskt j : j ∈ J′i do
4: if p j(τ) == b′j then
5: p j(τ) = 0;
6: p j(τ +1) = 0;
7: end if
8: end for
9: // Collect information for new bids

10: Denotevi j (τ) = ai j − p j(τ) // value of tj to ri

11: J∗i = knapsack(vi j (τ),wi j ,Ni);
12: // Start new bids and update price information
13: Bid with price b j for task t j : j ∈ J∗i :
14: b j = ai j , p j(τ +1) = b j ;
15: for task t j : j 6∈ J∗i , p j(τ +1) = p j(τ)

C. Performance Analysis

In this section, first, we show the connection of Algo-
rithm 1 to robot’s (approximate) best response update rule;
second, we prove that the algorithm would converge to an
assignment at (approximate) equilibrium; third, we prove that
the assignment at (α-approximate) equilibrium is guaranteed
to be a solution for GAP with approximation ratio 1+ α.
Below we assume that the subroutine knapsack algorithm in
Algorithm 1 hasα ∈ [1,+∞) approximation ratio4.

Lemma 2:When robotr i runs Algorithm 1 at iteration
τ, its newly assigned task setJ∗i is α − approximate best
responseto the assignment at the beginning of iterationτ.
Proof: Suppose the assignment at the beginning of iteration
τ is J′. ∀ a new feasible assignmentJi for robot r i , the total
value increment due toJi would be

H(J′,Ji) = F(Gi(J
′,Ji))−F(Gi(J

′, /0))

= ∑
k6=i

( ∑
j∈J′k

ak j − ∑
j∈Ji∩J′k

ak j)+ ∑
j∈Ji

ai j −F(Gi(J
′, /0))

4Note that there exists pseudo-polynomial time algorithm toachieve
optimal solution for knapsack problem. In that case,α = 1



= ∑
k6=i

∑
j∈J′k

ak j + ∑
j∈Ji

(ai j − p j(τ))−F(Gi(J
′, /0))

= ∑
j∈Ji

(ai j − p j(τ))

which is the objective of knapsack problem, solved byr i

as a subroutine in Algorithm 1. Since we assume that the
knapsack algorithm leads toα−approximate solution,

α ∑
j∈J∗i

(ai j − p j(τ)) ≥ max
Ji∼(2)

∑
j∈Ji

(ai j − p j(τ)) ⇒

αH(J′,J∗i ) ≥ max
Ji∼(2)

H(J′,Ji)

According to Definition 3, we get thatJ∗i is α−approximate
best responseto J′ at the beginning of iterationτ. �

Theorem 1:Algorithm 1 for all robots will terminate in a
finite number of iterations, and converges to an assignment
at α −approximate equilibrium.
Proof: When α = 1, according to Lemma 2, it is easy to
see that the new assignmentJ∗i for robot r i would make
the total assignment payoff non-decreasing. In the case that
α > 1, we could easily incorporate a simple comparison in
the knapsack routine so that the output would be the better
of J′i andJ∗i , and thus the new total assignment payoff is still
non-decreasing with each iteration of new bids. Besides, the
total payoff is bounded. So Algorithm 1 for all robots will
terminate in a finite number of iterations.

When Algorithm 1 for all robots terminates, according to
Lemma 2 and Definition 4, it must converge to an assignment
at α −approximate equilibrium. �

When α = 1, Algorithm 1 is actuallyr i ’s best response,
and it would converge to an assignmentat equilibrium.
According to the proof above, the convergence time of
Algorithm 1 would beO(nr · f (nt) ·C) where f (nt) is the
running time for knapsack algorithm andC is a constant
due to the number of iterations, depending on the payoff
parameters(i.e., the maximum total payoff divided by the
minimum payoff increment).

Theorem 2:An assignment atα − approximate equilib-
rium is a solution for GAP with approximation ratio 1+ α.
Proof: Suppose the assignment atα − approximate equi-
librium is J∗ = ∪i{J∗i }, while the optimal assignment is
Jopt = ∪i{Jopt

i }. Below we want to compare the total payoff
of each robotr i in two different assignmentJ∗i and Jopt

i .
SinceJ∗i must beα-approximate best response toJ∗,

α ∑
j∈J∗i

(ai j − p j) ≥ ∑
j∈Jopt

i

(ai j − p j) (5)

There are two cases depending on whetherJ̄i = Jopt
i ∩

(∪k6=iJ∗k) = /0 or not:
(a) If J̄i = /0: According to Algorithm 1,∀ j 6∈ ∪iJ∗i , p j = 0,

∑
j∈J∗i

p j ≥ ∑
j∈Jopt

i

p j (6)

Combining Equation (5) and (6) above, we have that

α ∑
j∈J∗i

ai j ≥ ∑
j∈Jopt

i

ai j (7)

TABLE I

PAYOFF PARAMETERSai j AND CONSUMED RESOURCE PARAMETERSwi j

IN EXAMPLE 1

ai j t1 t2
r1 1 α + ε
r2 1+αε ε

wi j t1 t2
r1 1 1
r2 1 1

If ∀i ∈ {1, . . . ,nr}, J̄i = /0, we have

α ∑
i

∑
j∈J∗i

ai j ≥ ∑
i

∑
j∈Jopt

i

ai j (8)

So J∗ is a solution with approximation ratioα.
(b) If J̄i 6= /0: again since∀ j 6∈ ∪iJ∗i , p j = 0,

∑
j∈J∗i

p j ≥ ∑
j∈Jopt

i \J̄i

p j = ∑
j∈Jopt

i

p j − ∑
j∈J̄i

p j (9)

Combining Equation (9) and (5), we have that

α ∑
j∈J∗i

ai j + ∑
j∈J̄i

p j ≥ ∑
j∈Jopt

i

ai j (10)

If ∀i ∈ {1, . . . ,nr}, J̄i 6= /0, we have

α ∑
i

∑
j∈J∗i

ai j +∑
i

∑
j∈J̄i

p j ≥ ∑
i

∑
j∈Jopt

i

ai j (11)

Since∀i1, i2, Jopt
i1

∩Jopt
i2

= /0⇒ J̄i1 ∩ J̄i2 = /0. So

∑i ∑ j∈J̄i
p j ≤ ∑i ∑ j∈J∗i

p j = ∑i ∑ j∈J∗i
ai j

Together with Equation (11),

(α +1)∑
i

∑
j∈J∗i

ai j ≥ ∑
i

∑
j∈Jopt

i

ai j (12)

So J∗ is a solution with approximation ratio 1+ α.

Since∀i, eitherJ̄i = /0 or J̄i 6= /0, it must belong to one of the
two cases above. So it is guaranteed that the assignmentJ
at α −approximate equilibriumis a solution for GAP with
approximation ratio max(α,1+ α) = 1+ α.�
According to Theorem 1 and 2, we prove that Algorithm 1
would eventually converge to a solution for GAP with
approximation ratio 1+α. The following example shows that
the approximation ratio of assignments atα −approximate
equilibrium is actually tight.

Example 1:Consider two robots with budgetN1 = N2 = 1,
and two tasks, with parameters listed in Table I, whereε is
an arbitrarily small constant. The assignment{J1 = {t1},J2 =
{t2}} is an assignment atα −approximateequilibrium:

α(F(Gi1(J,J1))−F(Gi1(J, /0))) = α((1+ ε)− ε)

≥ (α + ε)− ε = F(Gi1(J,J
∗
1 = {t2}))−F(Gi1(J, /0));

α(F(Gi2(J,J2))−F(Gi2(J, /0))) = α((1+ ε)−1)

≥ (1+ αε)−1= F(Gi2(J,J
∗
2 = {t1}))−F(Gi2(J, /0))

However, it is an(1+α) approximate solution to the optimal
assignment{J∗1 = {t2},J∗2 = {t1}}:

(1+α)F(J)= (1+α)(1+ε)= ((α +ε)+(1+αε))= F(J∗)



D. Distributed Implementation

Algorithm 1 is decentralized in the sense that every
robot can make assignment decisions by itself, based on
an iteratively updated common information of task price
from the shared memory. In this section, we discuss how to
remove the requirement of the existence of shared memory to
make the algorithm totally distributed assuming the robots’
communication network is connected.

Suppose that there exists a robot communication network
G = (V,E), whereV = R consists of robot nodes, andE =
{(i1, i2)} consists of connection edges between robots, which
can directly communicate. We assume thatG is connected.

In a distributed implementation of Algorithm 1, no shared
memory exists to provide task pricep j(τ) during each itera-
tion τ. Each robotr i needs to locally maintain the task price
pi

j(τ), and update them based on the local communication
with its direct neighbor inNi = {i′|(i′, i) ∈ E}.

Below, we show that a distributed message passing mech-
anism could be used for robot to maintain and update the
task price information in a distributed way. During each
iteration τ, robot r i runs Algorithm 1, wherep j(τ) would
become the local maintained task pricepi

j(τ), to get the new
assignmentJi and new task pricepi

j(τ + 1). The message
passing mechanism is described as follows.

First, r i would send out the message in the follow-
ing format: Mτ+1

i = (P, r i ,V,τ + 1), where P = (pi
1(τ +

1), . . . , pi
nt
(τ + 1)) is the new price vector for all tasks

maintained inr i , r i is the identifier of the robot who sends
out the message,V = ∑ j∈Ji

vi j (τ) is the output total value of
the knapsack subroutine algorithm in Algorithm 1, andτ +1
is time stamp of the message, i.e., the number of iteration
when the message would be used to update the task price. If
Ji = J′i , i.e., the robots’ bidding tasks are the same as before,
V is set to be 0 inP.

Second, whenr i receives a messageMτ+1
i′ from one of

its neighbori0, it would first send out the message to its
neighbors excepti0. Then r i would compareMτ+1

i′ (V) with
its locally maintainedVmax(τ + 1), which is the maximum
value of all messages with time stampτ + 1 till then. If
Mτ+1

i′ (V) > Vmax(τ + 1), r i would store the message with
higher value and resetVmax(τ + 1) = Mτ+1

i′ (V), and get rid
of previous message; ifMτ+1

i′ (V) <Vmax(τ +1), r i would get
rid of the messageMτ+1

i′ . To break the tie whenMτ+1
i′ (V) =

Vmax(τ +1), robots could use a consistent rule, e.g., keep the
message with the smaller robot identifier.

Third, r i would keep track of the number of robot iden-
tifiers nID(τ +1) from all messages. WhennID(τ +1) = nr ,
i.e., r i has received all robots’ messages for iterationτ +1, r i

would start to update its locally maintained task price from
the only stored message (e.g.,Mτ+1

i′ ) with the highest value:
pi

j(τ + 1) = Mτ+1
i′ (P( j)),∀ j, and then start a new bidding

procedure for iterationτ +1.
From the above message passing mechanism, we know

that during each iterationτ, each robot would start a new bid
and send out a new message. Since the robot communication
networkG is connected, all messages would reach all robots.

However, only the message with highest value fromr∗(τ)
would be stored and used to update task price forτ +1, which
would be consistent among all robots. It is equivalent to say
that during each iterationτ, only one robotr∗(τ) starts a new
bid, and updates task price, which would be consistently and
locally stored by all robots. Thus we can see that although the
shared memory is removed, its two following functions are
still maintained in a distributed way: (a) during any iteration,
at most one robot can start a new bid and update task price;
(b) task price are consistently maintained among all robots.
So the conclusions in Section IV-C are valid in the distributed
implementation. However, since the bidding message needs
to be propagated in the networkG, during each iteration,
the distributed algorithm might be delayed by the product of
one-hop message passing time and∆ (∆ ≤ nr ), which is the
diameter ofG.

V. SIMULATION RESULTS

In this section, we present some preliminary simulation
results to check how our algorithm’s solution quality changes
with iterations till convergence. Considernr = 20 robots,
where each robotr i has budgetNi = 10, and nt = 40
tasks. In our simulations, we first assume each robot can
communicate with all other robots, i.e.,∆ = 1. The knapsack
algorithm used in the simulation is the optimal dynamic
programming algorithm, soα = 1 and the approximation
ratio of Algorithm 1 is 2.

Figure 1 and Figure 2 show that in two different simulation
samples how the solution performance changes with bidding
iterations of robots. In both figures, we randomly generate
100 samples with differentai j and wi j , and show the mean
and standard deviation of our solution performance. In all the
100 generated samples, our algorithm converges within 200
iterations. In Figure 1, for each robotr i and taskt j , payoffs
ai j are drawn from a uniform distribution in(0,9), and the
consumed resourcewi j from [1,6]. In Figure 2, for each robot
r i and taskt j , we set the consumed resourcewi j = 5,∀i, j,
andai j are randomly generated according to the distributions
in Table II, whereU(xmin,xmax) represents a uniform distri-
bution fromxmin to xmax. From Figure 2 and Figure 1, we can
see that although the total assignment payoffs get improved
until convergence in both cases, the improvement patterns
before convergence are very different in the two cases: in
Figure 1, the assignment performance after all robots run one
iteration is very close to the performance of assignment at
convergence, while Figure 2 shows that in some situations,
our algorithm could achieve much better solution than the
algorithm where all robots run one iteration. The reason is
that when all robots just run one iteration, robots bidding
first might lose their assigned tasks to robots bidding later,
and do not have chance to be assigned to other tasks, which
could be compensated in our iterative algorithm.

VI. SUMMARY

We studied the multi-robot generalized assignment prob-
lem, where the objective is to maximize the total assignment
payoffs while respecting robots’ budget constraints. We



TABLE II

PAYOFF PARAMETERSai j DISTRIBUTIONS IN FIGURE 2

ai j t1 - t20 t21 - t40
r1 - r10 U(8,9) U(6,7)
r11 - r20 U(10,11) U(0,1)
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Fig. 1. Statistics of total assignment payoffs by our algorithm as a function
of iterations, whereai j andwi j are randomly generated in 100 samples.

presented a distributed auction-based algorithm, where each
robot iteratively uses a knapsack algorithm as subroutine to
choose its assigned tasks and maximize the sum of each
assigned task value (defined as a task’s payoff minus its
price). Suppose the knapsack subroutine algorithm has an
approximation ratioα ∈ [1,+∞). We show that the iterative
bidding procedure of each robot is actually anα-approximate
best response assignment update rule to the current tempo-
rary assignment of other robots. We proved that such bidding
procedure would eventually converge to an assignment atα-
approximate equilibrium, which is guaranteed to be a solu-
tion to MR-GAP with an approximation ratio of 1+ α. We
also presented simulation results illustrating our algorithm.
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