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Abstract— We present a provably-good distributed algorithm
for generalized task assignment problem in the context of miti-
robot systems, where robots cooperate to complete a set of/gn
tasks. In multi-robot generalized assignment problem (MR-
GAP), each robot has its own resource constraint (e.g., engy
constraint), and needs to consume a certain amount of resoce
to obtain a payoff for each task. The objective is to find a maxi
mum payoff assignment of tasks to robots such that each task i
assigned to at most one robot while respecting robots’ resoce
constraints. MR-GAP is a NP-hard problem. It is an extension
of multi-robot linear assignment problem since different robots
can use different amount of resource for doing a task (due totte
heterogeneity of robots and tasks). We first present an auain-
based iterative algorithm for MR-GAP assuming the presence
of a shared memory (or centralized auctioneer), where each
robot uses a knapsack algorithm as a subroutine to iterativigy
maximize its own objective (using a modified payoff function
based on an auxiliary variable, called price of a task). Our
iterative algorithm can be viewed as (an approximation of) lest
response assignment update rule of each robot to the assigemt
of other robots at that iteration. We prove that our algorithm
converges to an assignment (approximately) at equilibrium
under the assignment update rule, with an approximation
ratio of 1+ a (where a is the approximation ratio for the
Knapsack problem). We also combine our algorithm with a

areas as well as its computational NP-hardness, general-
ized assignment problem (GAP) has been well studied in
operations research, theoretical computer science arat oth
related research communities. However, most algorithms ar
centralized in nature. In multi-robot application sceasri
where robots need to autonomously operate in the field,
it is desirable to have distributed algorithms on individua
robots so that the system is resilient to single-point failu
and adaptive to environmental change. Thus, in this paper,
our goal is to design distributed algorithms for MR-GAP
with provable performance guarantee.

Multi-robot generalized task assignment arises in many
multi-robot application scenarios. Especially when teashd
robots are heterogeneous, the amount of resource each task
consume from each robot, as well as the payoff each robot
could obtain from each task, might be different. Depending
on the specific application, the resource could be energy,
processing time or any other consumable resource. Consider
the situation in automated warehouse management system
where packages have to be picked up from certain clustered
storage locations, and placed in other delivery locations.

message passing mechanism to remove the requirement of a|n this situation, different robots and objects might be- dis

shared memory and make our algorithm totally distributed
assuming the robots’ communication network is connected.
Finally, we present simulation results to depict our algorthm’s
performance.

. INTRODUCTION

tributed across different spatially clustered locationug, the
energy each robot consume to travel from its original positi

to the targeted object location could be different. Another
application area is in disaster recovery scenario where the
robots need to remove debris and clear the paths. In such

Task assignment is a fundamental problem in multicases different robots with heterogeneous design might nee
robot system with various applications such as intelligerdifferent processing time to remove different kinds of debr
manufacturing, automated transport of goods, search andin this paper, we present a distributed auction-based al-
rescue assistance in disaster relief, as well as envirotaiergorithm for MR-GAP, where each robot can bid for its
monitoring. In the basic formulation of multi-robot linear own tasks by solving a knapsack sub-problem as subroutine.
assignment problem, it is assumed that each task wowtle show that our algorithm provides an-lr approximate
consume the same unit amount of resource from eaclution assuming that the knapsack problem is solved by
robot's resource budget. However, in practice, each tagih algorithm with approximation ratior € [1,+). Thus,
might consume different amount of resource from differour distributed algorithm has an approximation ratio of 2
ent robots due to the heterogeneity of robots and task@&r 3), when the algorithm used for knapsack is optimal (or
which can be modeled as multi-robot generalized assignme2dapproximate). Unlike other approximation algorithms of

problem (MR-GAP). In MR-GAP, each robot has its ownGAP, our auction-based new algorithm is designed specifi-
resource constraint, and needs to consume a certain amooally for distributed multi-robot systems with limited 1ge

of resource to obtain a payoff for each task. The overalommunication. Furthermore, our algorithm can achieve a
objective is to find a maximum payoff assignment of tasksimilar approximation ratio with a competitive running &m

to robots such that each task is assigned to at most one rol@nir proof also presents a new perspective showing that best-
while respecting robots’ resource budget constraintsei®iv response assignment update rule of individual robots would
its wide applicability for real-world problems in variouslead to an assignment at equilibrium with guaranteed ap-
proximation ratio. We first present our auction-based iieza

algorithm for MR-GAP assuming that the robots have access
to a shared memory (or there is a centralized auctioneer).
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Each robot obtains the information of highest bid for eackask group can overlap, and each robot can be assigned
task among all robots from the shared memory, and then uses multiple tasks in each group. The constrained linear
a knapsack algorithm as a subroutine to iteratively maxémizassignment problems in [16], [17] are solvable in polyndmia
its own objective (using a modified payoff function based otime whereas MR-GAP is NP-hard.
an auxiliary variable called price of a task). The assignmen Generalized assignment problem (GAP) is an extension to
update rule of our iterative algorithm can be viewed athe linear assignment problem, which has been extensively
(approximate)) best response of each robot to the temporarstudied in both operation research [18], [19] and theaaétic
assignment of other robots at that iteration. We prove thabmputer science [20], [21], [22], [23]. However, most algo
our algorithm would eventually converge to an assignmemithms are centralized in nature, i.e., a centralized ailetr
at (approximate) equilibrium with an approximation ratio o collects all parameter information and then computes the
1+ a. We also make our algorithm totally distributed bywhole assignment. This may not be suitable for situations
combining it with a message passing mechanism to remowhere distributed algorithm is required for multi-robot in
the requirement of a shared memory (at the cost of slowéield operation. A branch and bound algorithm was presented
convergence and more local communication), assuming the[18] to determine the bounds of optimal solution. A series
robots’ communication network is connected. Finally, wef 0/1 knapsack problem are solved so that the bound gets re-
present simulation results to depict the performance of ofined iteratively. A branch-and-price algorithm was design
algorithm. in [19] that employs both column generation and branch-and-
bound to obtain optimal integer solutions. However, these
Il. RELATED WORK algorithms do not provide any approximation guarantee.
Some approximation algorithms exist for GAP, e.g., LP-
based 2-approximation algorithm in [20], [21]. A combinato
rial local search with (2 €)-approximation guarantee, and an
LP-based algorithm witliz2; + €)-approximation guarantee

assignment problem that have been studied in the literatufdth Polynomial running time are presented in [23]. A

depending on the assumptions about the tasks and the robgid €)-aPproximation algorithm with the same guarantee as
(see [5], [3], [6] for surveys), and there also exists mrdthot the combinatorial local search but a better running time is
task allocation systems (e.g., Traderbot [7], [8], Hoglif], given in [22]. The algorithm presented in [22] can be viewed

MURDOCH [10], ALLIANCE [11]) that build on different as the first round of our iterative algorithm where each robot
algorithms. Here we consider a deterministic offline muliSeduentially runs the algorithm for one iteration.

robot generalized assignment problem, and our objective is I1l. PROBLEM FORMULATION

to design distributed algorithms with provable performanc Suppose that there arg robots,R= {r4,...,rn }, andn
guarantee. Therefore, we will restrict our discussion t&Mo4gs T — {t1,...,to,}. Each roboty;, has resource budget

relevant literature with performance guarantee. N;, and consumes resoure; to complete task; while

In the simplest version of the task allocation problem (alsﬁetting payoffa;;. Any robot can be assigned to any task,
known as the linear assignment problem), each robot cafq performing each task needs a single robot. The objective
perform at most one task and the robots are to be assigngdg assign tasks to robots so that the sum of the payoffs of
to tasks such that the overall payoff is maximized. The in€ane ropots is maximized subject to the resource constraints
assignment problem is essentially a maximum weightetat f;j take a value 1 if task; is assigned to robat and 0
matching problem for bipartite graphs, which can be 30|Vegtherwise, wheree {1,...,n;},j € {1,...,n;}. We study the

in a centralized manner using the Hungarian algorithm [12lyaximization version of MR-GAP, which can be formulated
[13], or a decentralized manner with shared memory usings an integer linear program (ILP):

auction algorithm [14], or a totally distributed way using

Task allocation is important in many applications of multi-
robot systems, e.g., multi-robot routing [1], multi-rolutetci-
sion making [2], and other multi-robot coordination prahke
(see [3], [4]). There are different variations of the mutibot

consensus-based auction algorithm [15], [4]. However all max i%a” fij

of this work assume that the tasks are independent. Some {fij} i=1j=1

work has been done to address the constraints among tasks nr _

in multi-robot task assignment. In [16], set precedence St _Zlfij < LVj=1...n (1)
constraints are introduced among tasks, where the tasks are o =

organized into disjoint groups such that each robot can be z wifij < N, Vi=1,...,n @)
assigned to at most one task from each group and there =1

is a bound on the number of tasks that a robot can do. A fi € {01}, Vi,j (3)

generalization of the auction algorithm of [14] is preselite , i
[16] to achieve an almost optimal solution. [17] studied thgvhere (1) guarantees that each task is exclusively assigned

multi-robot task assignment with task deadline const'c.“z;\int‘rjlt most one robot; (2) guarantees that the sum of consumed

which extends the problem in [16] in the sense that thEesources for tasks assigned to each repdbes not exceed
its budgetNi. Whenwj =1 andN; = 1, the generalized

1Approximate best response and at approximate equilibriuith e assignment prObIem becomes the_ linear assignment prob-
strictly defined in Definition 3 and 4. lem [13]. Wherw;j = wj andaj; = aj, i.e.,w;j anda;; do not



vary for different robots, the generalized assignment lemb Definition 3: A new assignment componedt is robot

becomes a multiple knapsack problem [24]. ri's a-approximate best responge an old assignmen?’
(a € [1,+)), if and only if

IV. ALGORITHM DESIGN AND PERFORMANCEANALYSIS

A 13 /
In this section, we introduce an iterative auction-based aH(J, ) rnf\xH (5 3)

algorithm for multi-robot generalized assignment problem Definition 4: An assignment” is at equilibrium (or at
We will first introduce a few key concepts such as robot'&-approximate equilibriumif and only if any assignment
(approximate) best response and the assignment at (appréd@mponent)” € J* is already robotri’s best response (or
mate) equilibrium. We also recall the definition of knapsackr-approximate best response)oitself, i.e.,
problem. We will then present an iterative auction-based VIt e J*: J =argmax H(J",J)
algorithm with shared memory, where given current tem- (or aH(J*,J") > max; H(J*,J))
porary assignment of other robots, each robot bids for taskéote that if we usedq-approximate) best response as the iter-
using the knapsack algorithm as a subroutine. We show tladive assignment update rule for each robot, any assignment
connection of our algorithm to (approximate) best respons# (a-approximate) equilibrium would be a fixed point for
update rule, and prove that the algorithm would converge t&uch update rule. There might be many different assignments
an assignment at (approximate) equilibrium with guarathteeat (a-approximate) equilibrium depending on the parameters
approximation ratio. Finally, we discuss the use of a messagf problem instances.
passing mechanism to make our algorithm totally distribute  Since we use algorithms for 0/1 knapsack problem as

a subroutine in our iterative algorithm later, we recall the
A. Preliminary Concepts definition of 0/1 knapsack problem below.

Let J = {j|fij = 1} denote the task set assigned to robot Definition 5: [0/1 Knapsack Problenj: Considem items,
ri andJ = Ui{J} be a task assignment solution for GAP. {X1,...,%}, and a bag to contain these items. Eachas a
Definition 1: Define anassignment transform function; G valuevi and weightw;. The maximum weight that we can
as a transformation from a given old assignmérnb a new Carry in the bag isV. Assume that all values and weights
assignment], due to a new assignment componénfor ~ are nonnegative. The objective is to determine the items of

robotri: J=Gi(J.,J) = (U {J\ IH U {3}, e, maximum value such that the total weight is less than or
equal tow.
3 J if k=i . .
k = / ; ;
J A\ if K#I v v <
We sayJ; is a feasible assignment for robetif and only {yire‘}g,)l(}}i: vivi st i;w.y. =W

if J; satisfiesi’s budget constraint in (2), denoted &s- (2);
andJ is a feasible assignment, if and onlyJfsatisfies all Wwherey; =1 if item X is in the bag, otherwisg = 0.
constraints in(1) - (2), denoted as ~ (1) — (2). The knapsack optimization problem is NP-hard. There ex-
Lemma 1:The assignment transform functio®; is a ist a pseudo-polynomial time algorithm using dynamical
valid transform, i.e., if both) and J are feasible assign- programming and a fully polynomial time approximation
ments, then) = G;(J',J) is also feasible. scheme (FPTAS). The FPTAS uses the pseudo-polynomial
Proof: For any roboty # i, its newly assigned task sg¢=  algorithm as a subroutine, and can approximate the optimal
J\J C 3. SinceJ, is feasible fory, J must also be feasible, Solution to any specified degree in polynomial time [24].
i.e., the subset of previously assigned tasks must consume
less resource than the budgetrpf BesidesJyNJ, =0, soJ B. Auction-based Decentralized Algorithm Design
must exclusively assign tasks to at most one robot. Together,
with the feasibility ofJ;, we know that the new assignment
J~ (1) —(2), i.e., the transform function is validl
Denote F(J) = Yi.3c1¥jes &j as the total payoff of a
feasible assignmerdt H(J,J) =F(Gi(J,%)) —F(Gi(J,0))
as the total payoff increment due to a new assignm
component of robot; from 0 to J;, imposed onJ'.
Definition 2: A new assignment componedt is robot
ri's best respongeto an old assignment if and only if

We want to matchn, robots andn tasks with constraints
(2)-(3) through a market auction mechanism, where each
robot is an economic agent acting in its own best interest
to bid for tasks. Each robot; wants to be assigned to
its favorite tasks (with highest payoffs) while satisfyiitg
e%hdget constraints in (2). The different interest of rolwils
probably cause conflicts in assignment that violate the con-
straints in (1). This can be resolved by introducing aurylia
variables called task price, and making robots bid for tasks
¥ = argmaH (3, %) With_ highest values (defined as pay(_)ffs minl_Js price) ins_tead
3 of highest payoffs, through an iterative auction mechanism
At iteration 1, let the price for task; be p;(1). The value
of taskt; to robotr; is vij (1) = & — p;j(T) instead of justy;.
Robotr; bids for tasks which satisfy its budget constraints

’Note thatr;’s best response might not always be unique for some givef"'nlnd have h'gheSt_Values t(_) itself. Fo.rmally, n 'ter_atmn
old assignmend’. In such cases, we could use any one as the best respongebotr; computes its new bids by solving the following10

which is the best unilateral assignment change of roptut
increase the total payoff from assigning nothingito



knapsack problem: reassigned to the robot with that bid; otherwib/fe,: p; (1),
N n taskt; is still assigned to robat sincebj is still the highest
max ZVij (D)fij st ZW” fij <N (4) bid. In the latter caser; resets the task price to be zero so
{fj€{01}} = = that the new value of the task tpis still aj. (Line 2 to 8)
Second, given the current task pri¢p;(7)|Vj}, robotr;
selects a task set with task indic&s using any knapsack
algorithm with performance guarantee to maximize the total
assignment valuey jc ;- vij (1) (Line 9 to 11).
Third, robotr; is assigned to task sét, and updates the

Let J; be the task set obtained by robrt by solving
the problem (4) using ao-approximation algorithm for the
knapsack problem. Robat would then bid for each task
tj, j € J, with new priceajj, which would guaranteg to
win the bids sincevi; (1) = & — p; (1) > 0. We assume that . ) ! b
there exists a share]c(i memc;ry (ojr(a)uctioneer) for all rolmots {ask price _(frc_)m L'n.e 12 t0 15) so tha(g < ‘]i. Pi(T+1) -
access the current task price, which is the current highdst i - The b|dd|ng price for gach task ; bigger than its
from all robots. The shared memory is also used to guarantBEEVIOUS pricep; (1) (otherwisevj (1) = aj — p;(T) <0, 1
that at any time, at most one robot can access the task pr\gguld r_10t be selected), so the tas_ks re_cel\nir‘tgb|ds must
and provide new bids for tasks. After winning the bids an&k’e assigned to; at the end of the iteration.
assigned to_tasks In the_ |te_rat|o_n, the_rob_ot woul_d themiﬁattAIgorithm 1 Auction Iterationt For Robotr;
new task price as the winning bid, which is the highest bid for . — — -
the task among all robots till then. Thus the iterative bigdi ¥ Input: &, PJ(T_)- Vi, . {bjlj € I}/ Iz indices of r's
from robots leads to the evolution of robot-task assignment preV|ou'st a55|gne(3 tasl:s , ,
as well as task pric@; (1), which can gradually resolve the Output: p(7+ 1.)' J ‘]i. i s_newly assigned tasks_
interest conflicts among robot3. 2: _// Re_set the price of still assigned tasks from previous

Based on the idea described above, we design a new lteration to zero /
auction-based decentralized algorithm for the genermdlize 3 for_ each taSI{J,: J €4 do
assignment problem. In the decentralized algorithm, tiere 4 if pj(1) == b} then
no centralized controller to make assignment decisions for” pi(T) =0

robots. Instead each robot are making assignment decisiof\f gi (fT+1) =0
by itself. For each robot;, a single bidding iteratiorr of 7: an :
our auction-based algorithm is described in Algorithm 1. 8: end for

Each robot could implement the iterative bidding proceduregi gCoIIecf[_infoimz.a_tion for n/e/zw ?ids ¢ _
either synchronously or asynchronously. However, theeshar 10: J*eioktev.,(r) = _6_‘” - pJ--(TI)\l- .va ue of § torj
memory must guarantee that at any time, at most one robdt ¥ = napsackv (T),wij,Ni);

can access the task price and provide new bids for tasks. For /I Start new bids and update price information

the sake of ease of discussion, below we assume that in otit Bid with price b for taskt; : j € J* :
auction-based algorithm, all robots run copies of Algarith -4 Pi = &ij, Pi(T+ P =bj;
sequentially. The algorithm terminates after the taskeprict® o tasktj 1 j & J7, pj(T+1) = pj(1)
information does not change after all robots bid for one
iteration.

As shown in Algorithm 1 (Line 1), the knowledge / infor-

mation available to each robgtduring its bidding iteration . In this SeCt'Of" first, we show the connection of Algo- )
T includes two parts: (a) locally maintained information:rlthm 1 o robot's (approximate) _best response update rule;
{&j|Vj} and {w;j|Vj}, the payoffs of tasks te; itself and sec_ond, we prove thaf( the algor_lt_hm W(_)Uk.j converge to an
their consumed resource for, J' and {bj|j € J}, indices assignment at (apprommat_e) eqU|I|br|L_J_m,_th|rq, we prawatt

of tasks assigned tg during its previous bidding iteration the assignment aticapproximate) equilibrium is guaranteed

and ri’s bidding price for those tasks at that iteration; (b)tO be a solution for GAP with approximation ratio+1a.

information accessed from the shared memdiy(1)|Vj}, Below we assume that the subroutine knapsack algorithm in

the task price maintained and updated in the shared mem orithm 1.hasa € [1,+) approximation ratit, . .
during its bidding iteratiorr. Lemma 2:When robotr; runs Algorithm 1 at iteration

First, robotr; goes through tasks i#f, which is the task set rTéSItSO:Se;/volythaéSZIgsniegnt]aesnl: :té fhs bz_i:nri)r?rog;lﬁirl:?eeltg?t
assigned ta; during its previous bidding iteratiom; com- P 9 9 9

pares the current price of those tasks with the correspgndir'?r.OOf: Suppose the assignment at the beginning of iteration

previous bid, from ri: if b < p;(1), it means that another T is J'. V a new feasible assignmedtfor robotr;, the total
. J 1 .
robot must have bid higher price foy, and thusj has been value increment due tg would be

C. Performance Analysis

H(J,3) = F(GF.3)-F(G(J.0)
SNote that pj(T) is an auxiliary variable, which is used to resolve the o ) ) . T
conflict that multiple robots share the same interest of deiasigned to - g_(z/ &;j — ) Z , akl) + ) &j — F(G' (J ’0))
the same tasks. When the algorithm terminates, the qudligssignment KA jed jednd €4

solution does not depend gn (1), i.e., the output assignment solution is
evaluated in terms of original payofts; instead of the net valug; (1) = “Note that there exists pseudo-polynomial time algorithmattieve
ajj — pj(1). optimal solution for knapsack problem. In that cage= 1



> 3 aqt 3 (@ - pin) -F(G(.0)
Hjed

Z(aij - pj(1))
JeJi

which is the objective of knapsack problem, solved rby
as a subroutine in Algorithm 1. Since we assume that the
knapsack algorithm leads m—approximate solution,

ay (aj—pj(1)) 2 (@i —pi(0) =

Je.]i* je

1€di

> max
Ji~(2

I3 > /1.
aH(J',J) _Jrirl%H(J )

According to Definition 3, we get thdf is a —approximate

best responsé J' at the beginning of iteratiom. B (b)

Theorem 1:Algorithm 1 for all robots will terminate in a
finite number of iterations, and converges to an assignment
at a — approximate equilibrium
Proof: When a = 1, according to Lemma 2, it is easy to
see that the new assignmedjt for robot r; would make
the total assignment payoff non-decreasing. In the cage tha
o > 1, we could easily incorporate a simple comparison in
the knapsack routine so that the output would be the better
of J andJ;, and thus the new total assignment payoff is still
non-decreasing with each iteration of new bids. Besides, th
total payoff is bounded. So Algorithm 1 for all robots will
terminate in a finite number of iterations.

When Algorithm 1 for all robots terminates, according to
Lemma 2 and Definition 4, it must converge to an assignment
at a — approximate equilibriumi
When a = 1, Algorithm 1 is actuallyr;’s best response
and it would converge to an assignmesait equilibrium
According to the proof above, the convergence time of
Algorithm 1 would beO(n; - f(n;) - C) where f(n;) is the

TABLE |

. PAYOFF PARAMETERSg;j AND CONSUMED RESOURCE PARAMETER®/;j

IN EXAMPLE 1

aj f1 t2 Wj |[t1 | b
ri 1 a+e r 1 1
ro 1+ae £ [ 1 1

If vie{l,...,n}, J =0, we have

ay da=p 3 a ®
1 jeJi* | J'EJiOm
SoJ* is a solution with approximation ratia.
If J # 0: again sincerj € UiJ", p; =0,
2Pz > pPi= ) Pi->p (9
jex jedl™y jer™ I
Combining Equation (9) and (5), we have that
ayajtyp= )y & (10)
ey jed jel™
If Vie{1,....,n/}, J #0, we have
a0y Ta+yypzy YA A
rjed b jed T jerm
Sinceviy, iz, J°7 NP =0=J, NJ, =0. So
2i2jei Pi=2iYjer Pi = XiXjey &
Together with Equation (11),
(@+Dy >aj=y 3 & (12)

Ijed I jeJiOPt

So J* is a solution with approximation ratiota.

running time for knapsack algorithm ar@ is a constant Sincevi, eitherJ; =0 or J; # 0, it must belong to one of the
due to the number of iterations, depending on the payoffvo cases above. So it is guaranteed that the assigninent
parameters(i.e., the maximum total payoff divided by thet a —approximate equilibriunis a solution for GAP with
minimum payoff increment). approximation ratio maya,1+a)=1+o.l

Theorem 2:An assignment atr —approximate equilib- According to Theorem 1 and 2, we prove that Algorithm 1
rium is a solution for GAP with approximation ratiof1a.  would eventually converge to a solution for GAP with
Proof: Suppose the assignment at— approximate equi- approximation ratio 4 a. The following example shows that
librium is J* = Ui{J}, while the optimal assignment is the approximation ratio of assignmentscat- approximate
JoPt— 4 {J°P}. Below we want to compare the total payoffequilibrium is actually tight.
of each robotr; in two different assignmend* and Jio”. Example 1:Consider two robots with budgs =N, =1,
SinceJ’ must bea-approximate best response g and two tasks, with parameters listed in Table I, wheiie

a z (aj — pj) > z (aj — pj) (5) an arbitrarily small constant. The assignmédit={t1 },J, =
i€ - jeoPt {t2}} is an assignment at — ap proximateequilibrium:
There are two cases depending on whetter Jiomﬂ a(F(Gi;(3,)) —F(Gi,(J,0)) =a((1+¢&)—¢)

(Uzid) = 0 or not: > (a+¢)-e=F(Gy(JI = {tz})) ~F(Gi,(3,0));
(a) If J =0: According to Algorithm 1Vj ¢ UiJ*, pj =0, a(F(Gi,(3,3)) — F(G,(3,0))) = a((1+¢€) — 1)
> Pi= > P (6) > (14+ag)—1=F(G,(J,3 = {t1})) — F(Gi,(J,0))

Opt

jedr :

jed
However, it is an1+ a) approximate solution to the optimal

assignmenf{J; = {tx},J5 = {t1}}:
A4+ a)FJ)=1+a)(1+e)=((a+€)+(1+ag))=F(I")

Combining Equation (5) and (6) above, we have that

adyaj= )y & 7)
jE.]i* jeJioPt



D. Distributed Implementation However, only the message with highest value frof(r)
would be stored and used to update task price fpfl, which

uld be consistent among all robots. It is equivalent to say
i;at during each iteration, only one robot*(7) starts a new

Algorithm 1 is decentralized in the sense that ever
robot can make assignment decisions by itself, based
an iteratively updated common information of task pric

from the shared memory. In this section, we discuss how d, and updates task price, which would be consistently and

remove the requirement of the existence of shared memory %cally stored by all robots. Thus we can see that although th

make the algorithm totally distributed assuming the robots’ .ared.me_mory. IS re.mo.ved, Its two foIIOW|_ng func.tlpns are
communication network is connected. still maintained in a distributed way: (a) during any itéoat

Suppose that there exists a robot communication netwo most one robot can start a new bid and update task price;

G— (V,E), whereV — R consists of robot nodes, arii— ) task price are consistently maintained among all robots

{(ix,i»)} consists of connection edges between robots, whic%o the conclusions in Section IV-C are valid in the distrdalit

can directly communicate. We assume tiais connected Implementation. However, since the bidding message needs
In a distributed implementation of Algorithm 1, no share 0 be. pr.opagated n the qetwo[&, during each iteration,
memory exists to provide task prigg(t) during each itera- he distributed algorithm might be delayed by the product of

tion 1. Each robot; needs to locally maintain the task prlceone hop message passing time @n(h < ny), which is the

pij(r), and update them based on the local communicatiodr{ameter ofG.

with its direct neighbor in4f = {i’|(i’,i) € E}. V. SIMULATION RESULTS
Below, we show that a distributed message passing mech-
anism could be used for robot to maintain and update tl}%
task price information in a distributed way. During eacl’w
iteration 7, robotr; runs Algorithm 1, wherep;(1) would
become the local maintained task pr'm!gr), to get the new

In this section, we present some preliminary simulation
sults to check how our algorithm’s solution quality chasig

th iterations till convergence. Considex = 20 robots,
where each robot; has budgetN; = 10, and n; = 40

: o tasks. In our simulations, we first assume each robot can
aSS|g_nment]i a”‘?' new task Pricey; (T +1). The message .qmmynicate with all other robots, i.& = 1. The knapsack
passing mechanism is described as fOHOWS'_ algorithm used in the simulation is the optimal dynamic
_ First, ri would send out the message in the fOIIOW'programming algorithm, s@ — 1 and the approximation
ing format: MT = (Pri,V,T + 1), where P = (p (T + ratio of Algorithm 1 is 2.

1),-..,P (T +1)) is the new price vector for all tasks figre 1 and Figure 2 show that in two different simulation
maintained inrj, r; is the |dent|f!er of the robot who sendssammes how the solution performance changes with bidding
out the messag®] = 3 jc; vij (T) is the output total value of o ations of robots. In both figures, we randomly generate
_the_knapsack subroutine algorlth_m in Algorithm 1, an_dl 100 samples with differers;; andwij, and show the mean

is time stamp of the message, i.e., the number of iteratial},j standard deviation of our solution performance. Inhal t
when the message Wou!d t!e used to update the task priceq generated samples, our algorithm converges within 200
Ji = J,i.e. the rc_)bots’ bidding tasks are the same as beforga, -tions. In Figure 1, for each robntand task;, payoffs
Vis set to be 0 irP. ) 1 ajj are drawn from a uniform distribution if0,9), and the

_ Second, wher; receives a messadd; ™" from one of ongumed resourag; from [1,6]. In Figure 2, for each robot
its_neighborio, it would first send out the message to its;, 4nq taskt;, we set the consumed resounsg = 5, Vi, j,
neighbors excepio. Thenr; would cornpalrd\/lin(V) With  anda; are randomly generated according to the distributions
its locally maintainedVmax(7 + 1), which is the maximum i, apje |1, whereu (Xmin, Xmax) represents a uniform distri-
Varlﬂ(f of all messages with time stampt-1 till then. If ) tion fromxmin to Xmax. From Figure 2 and Figure 1, we can
M;i™*(V) > Vmax(T +-1), 1i would store the message With see that although the total assignment payoffs get improved
higher value and res@ima(1+1) = M **(V), and get rid  ypgj convergence in both cases, the improvement patterns
of previous message; M} **(V) < Vimax(T+1), i would get  pefore convergence are very different in the two cases: in

rid of the messag®!; ™. To break the tie wheM[ " (V)= Figure 1, the assignment performance after all robots ren on
Vimax(T + 1), robots could use a consistent rule, e.g., keep thgeration is very close to the performance of assignment at
message with the smaller robot identifier. convergence, while Figure 2 shows that in some situations,

Third, r; would keep track of the number of robot iden-our algorithm could achieve much better solution than the
tifiers mp (7 4 1) from all messages. Whemp (7 +1) =nr,  algorithm where all robots run one iteration. The reason is
i.e.,ri has received all robots’ messages for iterationl, ri  that when all robots just run one iteration, robots bidding
would start to update its locally maintained task price fronfirst might lose their assigned tasks to robots bidding Jater
the only stored message (e.pt7 ™) with the highest value: and do not have chance to be assigned to other tasks, which
pj(T+1) = MJ”(P(j)),Vj, and then start a new bidding could be compensated in our iterative algorithm.
procedure for iteratiorr + 1.

From the above message passing mechanism, we know
that during each iteration, each robot would start a new bid We studied the multi-robot generalized assignment prob-
and send out a new message. Since the robot communicatlem, where the objective is to maximize the total assignment
networkG is connected, all messages would reach all robotpayoffs while respecting robots’ budget constraints. We

VI. SUMMARY



TABLE I
PAYOFF PARAMETERS®;j DISTRIBUTIONS IN FIGURE 2

(2]
(3]

E t1 - a0 t21 - 40
r1-rio U(8,9) U(6,7)
ri1-ro0 U (10,11) U(O,l) [4]

Assignment Performance Evolution during Iterative Algorithm
number of robots n = 20; number of tasks n, = 40

(5]

400 T T T T T T T T T J

(6]

(7]
(8]

Total Assignment Payoffs
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. . . . . .
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Fig. 1. Statistics of total assignment payoffs by our alfponi as a function

of iterations, whereg;; andw;; are randomly generated in 100 samples. [10]

presented a distributed auction-based algorithm, wherk eépl]
robot iteratively uses a knapsack algorithm as subroutine t
choose its assigned tasks and maximize the sum of ed@fl
assigned task value (defined as a task’'s payoff minus iffs]
price). Suppose the knapsack subroutine algorithm has an
approximation ratiax € [1,+). We show that the iterative [14]
bidding procedure of each robot is actually@approximate

best response assignment update rule to the current tempis}
rary assignment of other robots. We proved that such bidding
procedure would eventually converge to an assignmeat at [16]
approximate equilibrium, which is guaranteed to be a solu-
tion to MR-GAP with an approximation ratio of-ta. We
also presented simulation results illustrating our aktoni
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