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needs in this project is introduced here which enables us to 
process larger areas with higher accuracy than was 
previously possible. As a test case for all of these we use a 
simple design for a mobile robot that c

onsists of four-folds.  
In next two sections, the actuator and the sensor design 

and their characterizations are presented. In section IV, layer 
by layer fabrication process is introduced and the design for 
the four-fold robot is presented. Then the laser micro 
machining instrument used in patterning different layers is 
introduced. In section V result of experiment on the four-fold 
robot is presented and performance of its components is 
studied. Section VI presents a conclusion of the results of this 
work and future steps are presented. 

II. ACTUATORS 

Low profile bending actuators made of SMA sheets 
actuate the folds in Robogami structures we study here. 
These actuators have a high compatibility with paradigm of 
Robogami (low profile with high power and torque to mass 
ratio). For now we affix these actuators to the structure 
mechanically but they can be integrated with other layers in 
larger sheets with smaller tiles during the fabrication process. 

In what follows we present our design for bidirectional 
actuation using two antagonistic actuators on each fold and 
study the performance of this solution in theory and practice. 

A. Folding Actuator Design  

Here we study the maximum range of motion in a 
bidirectional fold with SMA actuators and design parameters 
affecting it. Also we present the results of thermal analysis 
which determine the respond speed of the actuators. 
Previously y and z type bending actuators were proposed for 
Robogami structures[7]. These designs had been used 
because they were relatively easy to form for annealing 
process (actuators shape should be close to a full circle 
during annealing to get the complete 180o bending when 
they are actuated afterwards). The drawback is that these 
designs (and specially z type actuators) tend to twist when 
they are twinned. This is a serious problem in bidirectional 
actuation and particularly in the design suggested here, 
where actuators are placed side by side. So we have decided 
to switch to the rectangular form. We expect that this form 
produces a more uniform deformation and a larger torque 
compared to the z or y type actuators (which have been 
studied before for this application [7]) of the same size. The 
only problem is the forming process before annealing. For 
that, we need to roll the actuators nearly twice which given 
the diameter and actuator thickness is a rather hard process.  

Here assuming simple bending model, a uniform radius 
of curvature along the actuators, and neglecting effects like 
twist in tiles we calculate the maximum available range of 
motion for a module with bidirectional actuation. 
Considering these assumptions, (1) yields the generated 
torque by the actuators. 
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In this equation t and w stand for thickness and width of 
the actuator. ߝ and ߪ are stain and stress, y is the distance 
from the neutral plane, R is the radius of curvature, ܮ௔ is the 
length of actuator and ߠ is the bending angle. To evaluate 
this equation we need stress-strain data (Fሺε, Tempሻ). Here 
we use data from [20] for this function.  

Equation (1) indicates that torque is a function of the 
bending angle divided by length of the active region in the 
actuator. To get a larger bending angle while keeping the 
strain and the torque small, we would need to increase the 
active length. We have tried different numbers for actuator’s 
length in the model and the minimum length for the active 
region in the actuator that produced enough deformation 
(more than 180o for complete folding motion) was 4.5mm. a 
shorter length causes a high restoring force in the passive 
actuator which in turn limits the deformation. Fig. 1 presents 
the torque generated by the activated SMA actuator and the 
torque that is needed to deform the passive actuator as 
functions of the bending angle. By choosing 4.5mm as the 
length of actuator, the range of motion will slightly be 
higher than 180o. Here we have chosen the annealed position 
of the actuators in a way to get one extreme as unfolded state 
(180o) and one extreme over the folded state (360o+).  

To get a larger range of motion two options can be 
considered. One is using a thinner SMA sheet (which 
decreases the maximum strain and stress level) and the other 
is to use longer actuators. The problem with thinner 
actuators is that it also decreases the output torque and 
actuator would no longer be able to activate the structure. A 
longer actuator means a larger gap area between the tiles 
which is not acceptable especially considering the final goal 
of making even smaller tiles. Therefore bidirectional 
actuation using SMA sheet actuators is limited in its range of 
motion. But predicted range of motion can still be more than 
enough for many applications. It is worth mentioning that 
according to the calculations resulting in Fig. 1, actuators 

 
Figure 2. Torque in active and passive actuators to determine accessible 

range of motion. 
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and design parameters, accessible range of motion and its 
respond time were studied in theory and also using 
experimental results. The new design for SMA bending 
actuators produced larger blocked force (12mNm) and more 
uniform deformation compared to preciously suggested 
design for actuators (z and y type[7]) and successful folding 
and unfolding ሺ0°~180°ሻ motion in a module was achieved 
using the proposed design for the actuators. The curvature 
sensors made of carbon impregnated silicone rubber were 
introduced and characterized. It was discussed that these 
sensors provide easy fabrication method and a higher 
accuracy (average standard deviation of less than 4o for 
angle measurement) comparing to previously proposed 
sensors for this application. Feedback control of bending 
angle in a fold with bidirectional actuation was studied and 
repeatable motion between three control angles with average 
error of 2.2o was achieved (in five consecutive cycles).  

As a case study, these technologies are applied to a simple 
mobile robot to study their performance. For each of the 
four-folds in the robot, range of motion is large enough for 
driving the robot but achieving feedback control requires 
more studies into robust fabrication methods for the sensors. 
In order to overcome the problem of fluctuation in sensor’s 
ground voltage and also to minimize number of attached 
wires we will augment control circuit in the Robogami 
structure in next version of the four-fold robot.  
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