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Applying Rule-Based Context Knowledge to Build Abstract Semantic
Maps of Indoor Environments

Ziyuan Liu

Abstract—In this paper, we propose a generalizable method
that systematically combines data driven MCMC sampling
and inference using rule-based context knowledge for data
abstraction. In particular, we demonstrate the usefulness of our
method in the scenario of building abstract semantic maps for
indoor environments. The product of our system is a parametric
abstract model of the perceived environment that not only
accurately represents the geometry of the environment but also
provides valuable abstract information which benefits high-
level robotic applications. Based on predefined abstract terms,
such as “type” and “relation””, we define task-specific context
knowledge as descriptive rules in Markov Logic Networks. The
corresponding inference results are used to construct a prior
distribution that aims to add reasonable constraints to the
solution space of semantic maps. In addition, by applying a
semantically annotated sensor model, we explicitly use context
information to interpret the sensor data. Experiments on real
world data show promising results and thus confirm the
usefulness of our system.

I. INTRODUCTION

In recent years, the performance of autonomous systems
has been greatly improved. Multicore CPUs, bigger RAMs,
new sensors and faster data flow have made many applica-
tions possible which seemed to be unrealistic in the past.
However, the performance of such systems tends to become
quite limited, as soon as they leave their carefully engineered
operating environments. On the other hand, people may
ask, why we humans can handle highly complex problems.
Maybe the exact answer to this question still remains un-
clear, however, it is obvious that abstraction and knowledge
together play an important role. We humans understand the
world in abstract terms and have the necessary knowledge,
based on which we can make inference given only partial
information. As a human, if we see a desk in an office
room, instead of memorizing the world coordinates of all
the surface points of the desk, we will only notice that
there is an object “desk” at a certain position, and even this
position is probably described in abstract terms like “beside
the window” or “near the door”. Based on prior knowledge,
we can make some reasonable assumptions, such as there
could be some “books” in the “drawer” of the desk, instead
of some “shoes” being inside, without opening the drawer.
In our work, we aim to deploy such abilities (abstraction and
inference) in the area of semantic robot mapping.
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II. RELATED WORK

In general, related work on semantic robot mapping can
be classified into several groups. A big body of literature
focuses on semantic place labelling which divides the en-
vironment into several regions and assigns each region a
semantic label, such as “office room” or “corridor”. Park
and Song [14] proposed a hybrid semantic mapping system
for home environments, explicitly using information about
doors as a key feature. Combining image segmentation and
object recognition, Jebari et. al. [7] extended semantic place
labelling with object detection. Based on human augmented
mapping, rooms and hallways are represented as Gaussian
distributions to help robot navigate in [11]. Pronobis and
Jensfelt [16] integrated multi-modal sensory information and
human intervention to classify places with semantic types.
Other examples on semantic place labelling can be found in
[3], [8] and [21].

Different from place labelling, another group of work
concentrates on labelling different parts of the perceived
environments with semantic tags, such as walls, floors, ceil-
ings of indoor environments, or buildings, roads, vegetations
of outdoor environments. In [12], a logic-based constraint
network describing the relations between different parts is
used for labelling indoor environments. Persson and Duckett
[15] combined range data and omni-directional images to
detect outlines of buildings and natural objects in an outdoor
setting. Other examples in this category can be found in [20],
[1] and [23].

Another category consists of object-based semantic map-
ping systems which use object as basic representation unit of
the perceived environment. Such systems usually adopt point
cloud processing and image processing techniques to model
or detect objects. Object features like appearance, shape and
3D locations are used to represent the objects. Examples of
object-based semantic mapping can be found in [19], [17],
[13] and [10].

In this paper, we extend our previous work [9] using rule-
based context knowledge. The work as a whole demonstrates
a probabilistic method for building abstract semantic maps
for indoor environments, which systematically combines data
driven MCMC [22] and inference using rule-based con-
text knowledge. Unlike semantic labelling processes, whose
typical output is a map data set with semantic tags, our
mapping system outputs a parametric abstract model of the
perceived environment, which not only accurately represents
the geometry of the environment but also provides valuable
abstract information.
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Fig. 1. Overview of our abstract semantic map model. a) Input occupancy
grid map (gray=unknown, white=free, black=occupied). b) The abstract
model (circle nodes=space units, blue rectangle nodes=objects, black solid
edges=connected by a door, black dashed edges=adjacent without door). ¢)
An instance of the abstract model (gray=unknown, white=free, black=wall,
cyan=door, green=object, r=room, c=corridor, h=hall) under the assumption
that each space unit has a rectangular shape. d) Each unit in the abstract
model contains abstract variables and parameters describing its geometry
(size, position and orientation).

III. AN ABSTRACT MODEL FOR SEMANTIC INDOOR
MAPS

Our semantic mapping system takes a grid map (a typical
result of 2D SLAM processes, e.g. [4]) of the perceived envi-
ronment as input and returns a parametric abstract model of
this environment which provides semantic level explanation
(such as “type” and “relation”) and geometrical estimation
of the environment. Explanation of our model is given in
Fig. 1}

Our abstract model explains indoor environments in terms
of basic indoor space types, such as “room”, “corridor”,
“hall” and so on, and we denote it as W:

W :={U,T, R}, ()

where U = {w;|li = 1,...,n} represents the set of all n
units. Each unit w; has a rectangle shape, and its geometry
(size, position and orientation) is represented by its four
vertices. The four edges of a unit are its walls. Doors
are small line segments of free cells that are located in
walls and connect to another unit. Unknown cells of the
input map that are located within a unit are considered
as object cells. All cells within a unit that do not belong
to object cells are considered as free space of the unit.
T = {t;]i = 1,...,n} is the set of type of each individual
unit, with ¢; € {room,corridor,hall,other}. Here “other”
indicates unit types that are not “room”, “corridor” or “hall”.
R ={rpqlp=1,...,n;¢ = 1,...,n} is a n X n matrix,
whose element r, , describes the relation between the unit u,,
and the unit ug, with r, , = r, , € {—-adjacent,adjacent}. If
two units share a wall, we define their relation as “adjacent”,
otherwise “—adjacent”. By default, we define a unit u,, is not
adjacent to itself, i.e. r, , = —adjacent. In the following, we
call each instance of the abstract model a “semantic world”
or “world”.

A main criterion for evaluating how well a semantic world
W matches with the input grid map M is the posterior
probability p(W|M), and it is computed as:

p(W|M) o< p(M|W) - p(W). 2

Here, the term p(M|W) is usually called likelihood and
indicates how probable the input is for different worlds.
The term p(W) is called prior and describes the belief on
which worlds are possible at all. In the following, we for-
mulate task-specific context knowledge as descriptive rules
in Markov Logic Networks (MLNs) [18] and show how to
define the likelihood and the prior using the inference results
of MLNSs in a systematic way. For details on MLNs, we refer
to [18].

A. Inference using rule-based context knowledge

In general, context knowledge describes our prior belief
for a certain domain, such as that the ground becomes wet
after it has rained. Rather than exact quantitative information,
context knowledge provides advisory qualitative information
for our judgements. Such information is very valuable in han-
dling problems of high dimensionality where computation
suffers due to the huge state space. In the domain of robot
indoor mapping, we formulate following context knowledge:

o There are four types of space units: room, corridor, hall
and other.

o Two units are either adjacent (neighbours) or not adja-
cent.

o The type of a unit is dependent on its geometry and
size.

« In contrast to rooms, corridors have multiple doors.

o Connecting walls of two adjacent rooms have the same
length.

With the help of MLNs, we formulate our context knowledge
as descriptive rules in Table Based on these rules, query
defined in Table [lI| can be made given evidence shown in
Table [l Using these rules, we try to formulate the features
of certain indoor environments with rectangular space units.
The choice of the rules is a problem-oriented engineering
step, and the rules given in this paper serve as a good
example.

predicate explanation

RoLi(up) Unit up has a room-like geometry.
CoLi(up) Unit uy, has a corridor-like geometry.
HaLi(up) Unit up has a hall-like geometry.
MulDoor(up)  Unit up has multiple doors.
Adj(up,uq) Unit up and ug are adjacent.

TABLE I
DEFINITION OF EVIDENCE PREDICATES

Before we can make inference in MLNs, the evidence
defined in Table[| need be provided as input for MLNs, which
includes geometry evidence, relation evidence and evidence
on doors. To provide the first, we use a classifier that catego-

rizes the geometry of a unit into “room-like”, “corridor-like”



predicate explanation

Room(uyp) Unit uy has the type of room.
Corr(up) Unit uyp, has the type of corridor.
Hall(up) Unit up has the type of hall.
Other(up) Unit uy has the type of other.

SaLe(up,uq)  Unit up and ug have each a

wall with the same length.

TABLE II
DEFINITION OF QUERY PREDICATES

basic features:

Adj(up, uq) — Adj(ug, up)

SaLe(up,uq) — SaLe(ugq, up)

reasoning on type:

HaLi(up) = Hall(up)

HaLi(up) — " Room(up)

HaLi(up) — —~Corr(up)

HaLi(up) — —Other(up)

RoLi(up) — —Hall(up)

CoLi(up) = —~Hall(up)

RoLi(up) A ~“MulDoor(up) — Room(up)

RoLi(up) A ~“MulDoor(up) — ~Corr(up)

RoLi(up) A MulDoor(up) — Other(up)

CoLi(up) N "MulDoor(up) — Other(up)

CoLi(up) A MulDoor(up) — Corr(up)

CoLi(up) N MulDoor(up) — 7 Room(up)

reasoning on SalLe:

—Adj(ug, up) — —SaLe(up, ugq)

Room(up) A Room(ug) N Adj(up,uq) — SaLe(up, uq)
Room(up) A Hall(ug) N Adj(up, uq) — —SaLe(up, uq)
Room(up) A Corr(ug) N Adj(up,uq) — —SaLe(up, uq)
Hall(up) A Corr(ug) A Adj(up,uq) — —SaLe(up, uq)
Other(up) A Hall(uq) N Adj(up,uq) — ~SaLe(up, uq)
Other(up) A Corr(ug) AN Adj(up,uq) — —SaLe(up, uq)
Other(up) A Room(ug) N Adj(up,uq) = —SaLe(up, uq)

TABLE III
CONTEXT KNOWLEDGE DEFINED AS DESCRIPTIVE RULES

or “hall-like” according to its size and length/width ratio. The
general idea of this classifier is shown in Table [[V]

Relation evidence is detected based on image processing
techniques: we first dilate all four walls of each unit, and
then relation 7, , between the unit u, and u, is decided
according to connected-components analysis [2]. An example
of relation detection is depicted in Fig. 2] where R is given
by

—adj adj —adj
R= adj —adj adj |. 3)
—adj adj —adj

Similar to relation detection, doors are detected as small
open line segments which are located on the connecting walls
of two neighbour space units. Details on door detection can
be found in [9].

. ratio small big
size
small room-like corridor-like
big hall-like hall-like
TABLE IV

THE CLASSIFIER PROVIDING GEOMETRY EVIDENCE.

detect R by wall dilation

a) b)

Fig. 2. An example of relation detection. a) A semantic world W
containing three units (black=wall, white=free, gray=unknown). b) All
four walls of each unit are dilated, with dashed rectangles in light-gray
representing the dilated walls. The overlap of the dilated walls is shown in
dark-gray which indicates the relation of “adjacent”. The overlap is detected
using connected-components analysis [2]. In this example, unit 1 and unit
3 are not adjacent; unit 2 and unit 3 are adjacent; unit 1 and unit 2 are
adjacent.

Given necessary evidence, we can make inference in
MLNs and use the inference results to calculate the prior and
likelihood. In this work, we have used the ProbCog Toolbox
[6] to perform MLN inference. Currently, we use hard
evidences for knowledge processing, however, our system is
also able to process soft evidences, as long as the evidences
are provided in the soft form.

B. Inference-based prior and likelihood design
1) Prior: According to the model definition in equation
(1), the prior p(W) is given by
pW) = p(UT,R)
= p(U|IT,R)-p(T, R). @)
Here, p(U|T, R) can be seen as a factor expressing the
dependency of the geometry parameters of the underlying
units (see Fig. |I|-d) on the abstract terms in the MLNs. In

our case, the geometry (size, position and orientation) of a
unit is described by its four vertices. Furthermore, we define

pUIT,R) :=n ]  blup,ug), 5)
p,g€[1,2,...,n]
with
2
e 307, p(SaLe(up, uq)|evidence) > threshold
b(up, uq) = and p # q,

1, otherwise,

(6)
where n is the total number of units, and d represents the
length difference of the connecting walls of two adjacent

2

units. e~ 37 indicates a Gaussian function with mean at zero.
p(SaLe(u,, uq)|evidence) is one of the inferences that we can
make in MLNSs. 7 is the normalization factor which ensures
that p(U|T, R) integrates to one. At the current stage, we
assume that p(T, R) follows a uniform distribution. However,
it is possible to learn this distribution given proper training
data.

So far, the prior p(WW) is defined based on the inference
results of MLNs, which enforces that the semantic worlds
that comply with the context knowledge have high prior
probability. Note that the worlds that contradict the context



knowledge are not given a zero prior probability, instead,
they become less probable. The general idea of inference-
based prior design is explained in Fig. [3] using a one-
dimensional example.

likelihood
a) solution space
prior )
== Context knowledge 2
b) solution space
posterior Conte owledge
== Context knowledge 2
) solution space

Fig. 3. The general concept of inference-based prior design illustrated
using a one-dimensional example. a) The likelihood for different settings of
models, which contains three optima. b) The prior distribution represented
by context knowledge defined in MLNs. Different context knowledge (set
of rules) represents different prior distribution (green and red). If no context
knowledge is used, it is the same as implementing the context knowledge
that represents a uniform distribution which does not influence the posterior,
i.e. posterior is only proportional to likelihood. ¢) Corresponding posterior
distributions obtained using the two prior distributions shown in figure b.
By setting prior distribution by inference, we shape the posterior so that the
number of optima decreases, which means, the models complying with our
context knowledge tend to have high posterior probability.

2) Likelihood: Let c(x,y) be the grid cell with the coordi-
nate (z,y) in the input map M, then we define the likelihood
p(M|W) as follows:

pMW) = T alele,y) ple(z,y)W). @)

c(z,y)eM

Here a(c(z,y)) penalizes overlap between units and is given
by
ofc(x,y)) = 7@, @®)

with
ve(z,y) = {a@uwDLa@@ﬂ»>1 o

0, otherwise,
where v is a penalization factor with ¢ € (0,1). o(c(z,y))
indicates the number of units, to which ¢(z,y) belongs.

In equation (7), the term p(c(z,y)|W) is a semantic
sensor model and evaluates the match between the world
W and input map M. Essentially, p(c(z,y)|W) captures the
quality of the original mapping algorithm producing the grid
map which is used as input in our system. For calculating
p(c(z,y)|W), we discretize the cell state M (z,y) of the
input map into three classes “occupied”, “unknown” and
“free”, by thresholding its occupancy values. Our semantic
world W contains four types of cell states, which are

o “wall”: cells on the four edges of each unit.

o “object”: cells that are located within a unit and are

considered as non-free. These cells are detected using
connected-components analysis [2].

o “free”: cells that are located within a unit and do not
belong to the class “object”.
o “unknown”: cells that are located outside all units.

In this way, our semantic sensor model p(c(x,y)|W) is
realized as a “3x4” look-up table.

In the real world, it is more likely that rooms and halls
contain objects than corridors do, because the functionality
of corridors is connecting other units, rather than placing
objects. Thus, we propose to make the values of our semantic
sensor model dependent on the type (decided based on
the inference results in MLNs) of the underlying unit. The
fundamental idea is to set the values of the semantic sensor
model for the units of non-corridor types in such a way that
it does not strongly penalize the mismatch between the input
and the semantic world, and thus allows the existence of false
positives (potential object cells). The effect of our semantic
sensor model is depicted in Fig. [}

Fig. 4. Effect of our semantic sensor model. a) The input map. b) The
highest likelihood solution for unit 1 and unit 2 if they are of the type
“corridor”. ¢) The highest likelihood solution for unit 1 and unit 2 if they
are of the type “room”. Note that the type of a unit is decided based on the
inference results in MLNs (Table [II).

IV. STOCHASTIC GENERATION OF SEMANTIC WORLDS

Given the posterior probability p(WW|M) defined in equa-
tion @), we aim to obtain the maximum a posteriori solution
W

W* = argmax p(W|M),

weQ

(10)

where () indicates the solution space of semantic worlds.
In order to find W*, we use a data driven MCMC sam-
pling technique [22]. This technique constructs a Markov
chain, and each state of this Markov chain represents a
semantic world. By sequentially applying transition kernels
to the current world (Fig. [5) and accepting this transition
by certain probability, this technique is able to efficiently
draw samples from the corresponding posterior distribution.
In addition to the four reversible kernel pairs that are defined
in our previous work [9], we propose here a new reversible
kernel “INTERCHANGE” that changes the structure of two
adjacent units at the same time, without changing the total
size. These structural changes are proposals that allow our
system to escape local optima. Fig. [5] shows an example of
the reversible MCMC kernels. More details on the realization
of the used data driven MCMC process can be found in [9].

V. EXPERIMENTS AND DISCUSSION

In this paper, we extend our previous work [9] with
inference using rule-based context knowledge, and the per-
formance of our current system is shown in Fig.[6] As input,
a big occupancy grid map M (“ubremen-cartesium” dataset
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[S]) of an entire floor of a building is used. This map is a
big matrix (“1237x672”) containing occupancy values. We
classify these values as {occupied, unknown, free} so as
to generate the classified input map Cj; (Fig. [6}a). Starting
from a random initial guess, the semantic world W is adapted
to better match the input map M by stochastically applying
the kernels shown in Fig. EL After certain burn-in time, we
get the most likely semantic world W* comprised of 17 units
(each of which is represented by a rectangle) as shown in Fig.
[Blc. Not only does W* accurately represent the geometry
of the input map, but also W* is a parametric abstract
model (Fig. [6}b) of the input map that provides valuable
abstract information, such as adjacency, existence of objects
and connectivity by doors. In addition, unexplored areas are
also captured by our abstract model (marked by magenta
“N”). These areas are too small to be recognized as space
units but are evidence for physically existing space.
Compared with our previous work [9], our current system
employs context knowledge in a systematic way, so that the
input map is explained according to the underlying model
structure. A performance comparison between our previous
work and our current system is depicted in Fig. [} Three
high likelihood samples obtained from our previous work
are shown in Fig.[7}a,b,c. They essentially represent the local
maxima of the likelihood shown in Fig. 3] Although all these
three results provide good match to the input map (in terms of
high likelihood), they have topological defects (highlighted
by magenta circles), which contradict our knowledge (low
prior). In this case, all pairs of connecting walls of adja-
cent rooms that should have the same length are drawn in
orange in Fig. a,b,c. The length difference of each pair
of these connecting walls results in a penalization in prior
probability (equation (6))). By applying our rule based context
knowledge, local maxima of the likelihood with topological
defects are suppressed so that they have a low posterior
probability. In this way a semantic world that has high

likelihood and high prior, i.e. high posterior (Fig. [7}d), is
easily obtained by stochastic sampling. In addition, various
poor local matches (highlighted by magenta rectangles in
Fig. a,b,c) are corrected by the semantic sensor model used
in our current system.

Starting the Markov chain from the world state W*
as shown in Fig. |§|-c, we show the posterior distribution
obtained from our previous work (Fig. [8}a) and that obtained
from our current system (Fig. [8}b) by plotting 1000 accepted
samples together. Here we purposefully plot each sample
(world) using very thin line. It is obvious that the underlying
Markov chain obtained from our current system is more
stable and converges better (smaller variance).

Fig. 0] shows the performance of our current system on
another data set. As can be seen, our system accurately
represents the geometry of the environments captured in
the input maps and provides a semantic world that explains
the perceived environments with the correct topology. We
evaluate our system quantitatively using the measure ‘“cell
prediction rate” (CPR), which denotes the percentage of the
correctly explained cells in the manually defined region of
interest (see Fig. [fa and O}-a). The CPR of Fig. [6}c is 86.8%,
and that of Fig. [O}d is 91.4%.

By modelling context knowledge in MLNs, we can assign
semantic information, e.g. the type, to the data. This allows
us to use a semantically informed sensor model to better
explain the observations. Moreover, the used context knowl-
edge, given by the rules, shape our prior so that unlikely
configurations can be ruled out, as shown in Fig. [J]

The computational cost is strongly dependent on the size
of the input map and consists of two parts, which are MCMC
operations and knowledge processing in MLNs. With a
single-threaded implementation on an Intel i7 CPU, the speed
of MCMC operations is around 30 iterations per second for
the map shown in Fig.[6] The speed of knowledge processing
in MLNs depends on one hand on the tool (the software
implementation of MLNs) that one uses. On the other hand,
it depends on the number of optimization iterations set in
the tool. In our case, we could get a satisfactory result in
5-8 seconds using the tool in [6] per processing. To analyze
a grid map, we first start our system without activating
knowledge processing, only after enough context is available
(e.g. coverage of the input map greater than 80%), knowledge
processing is enabled to help better explain the input map. In
this way, we could obtain a good result within a reasonable
processing time, which is, 20 minutes for the map shown in

Fig. [6]
VI. CONCLUSION

In this paper, we extended our previous work [9] with
inference using rule-based context knowledge. Our current
system demonstrates an advanced stochastic sampling pro-
cess supervised by the context knowledge which is defined
as descriptive rules in Markov Logic Networks. As output,
our system returns a parametric abstract model of the per-
ceived environment that not only accurately represents the
environment geometry, but also provides valuable abstract



Fig. 6. The performance of our semantic mapping system. a) The classified input map C'ys (black=occupied, gray=unknown, white=free). The manually
defined region of interest (marked by magenta dashed lines) is used only for quantitative evaluation. b) The corresponding abstract model of W* (ellipse
node=space unit with ID, blue rectangle node=detected objects with ID, magenta rectangle node=unexplored area with ID, black solid edge=connected by
door, black dashed edge=adjacent without door). ¢) The most likely semantic world W* plotted onto the classified map Cp; (black=occupied, blue=wall,
gray=unknown, white=free, cyan=door, green=object). The type and ID of each unit is shown at its center (R=room, H=hall, C=corridor, E=other).
Unexplored area is detected using connected-components analysis [2] and is marked by magenta “N”. These areas are too small to be recognized as space

unit but are evidence for physically existing space.

Fig. 7. Comparison of performance between our previous work [9] (figure a, b and c) and current system (figure d). Topological defects of the previous
results are highlighted by magenta dashed circles, and poor local matches that are improved by semantic sensor model are highlighted by magenta dashed
rectangles. Each pair of connecting walls that should have the same length are drawn in orange (figure a, b and c). Type of each unit is shown at its center.

information, which serves as a basis for higher level rea-
soning processes. By constructing the prior distribution of
the semantic maps using inference results, high likelihood
results with topological defects (contradiction with context
knowledge) are suppressed. Furthermore, by applying a se-
mantically annotated sensor model for likelihood calculation,

we explicitly use the extracted semantic information to
improve the performance of our system.
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Fig. 8. Posterior distribution built by 1000 samples. Starting from the world
state shown in figure |§|-c, we plot 1000 accepted samples obtained from our
previous work (figure a) and those obtained from the current system (figure
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