Real-Time Dense Multi-Scale Workspace Modeling on a Humanoid Robot

René Wagner

Abstract— Without a precise and up-to-date model of its en-
vironment a humanoid robot cannot move safely or act usefully.
Ideally, the robot should create a dense 3D environment model
in real-time, all the time, and respect obstacle information from
it in every move it makes as well as obtain the information it
needs for fine manipulation with its fingers from the same map.

We propose to use a multi-scale truncated signed distance
function (TSDF) map consisting of concentric, nested cubes with
exponentially decreasing resolution for this purpose. We show
how to extend the KinectFusion real-time SLAM algorithm to
the multi-scale case as well as how to compute a multi-scale
Euclidean distance transform (EDT) thereby establishing the
link to optimization-based planning.

We overcome the inability of KinectFusion’s localization to
handle scenes without enough constraining geometry by switch-
ing to mapping-with-known-poses based on forward kinematics.
The latter is always available and we know when it is precise.
The resulting map has the desired properties: It is computed
in real-time (7.5 ms per depth frame for a (8 m)® multi-scale
TSDF volume), covers the entire laboratory, does not depend on
scene properties (geometry, texture, etc.) and is precise enough
to facilitate grasp planning for fine manipulation tasks — all in
a single map.

I. INTRODUCTION

The motivation for this work is grounded in the day-to-
day operation of DLR’s humanoid robot Agile Justin [2] in
a research laboratory setting: Without a precise and up-to-
date model of its environment the robot cannot move safely
unless extra measures are taken, e.g., by coding environment
information into experiment-specific code.

What we want is a way for the robot to create a dense
3D environment model in real-time, all the time, and without
human interaction and respect obstacle information from it in
every move it makes. Ideally, we want a single world model
that is 1) generated at high frame rates in real-time 2) safe
in the sense of accumulating only raw, dense depth/range
sensor data without any post-processing steps (for hole-
filling, etc.) and 3) detailed and precise enough to facilitate
fine manipulation with the robot’s fingers, i.e., to enable
appropriate object detection and grasp planning. In previous
work [11], we have demonstrated a prototype system that
uses a custom KinectFusion [8] re-implementation to build a
high-resolution surface model of the environment, computes
the Euclidean distance transform (EDT) from this and uses
the EDT as a structure function in an optimization-based
motion planner (OMP). All processing steps in this work are

R. Wagner and B. Bduml are with DLR Institute of Robotics and
Mechatronics, 82234 Wessling, Germany. U. Frese is with Faculty 3 —
Mathematics and Computer Science, University of Bremen, 28359 Bre-
men, Germany. R. Wagner is also with University of Bremen. Contact
{rene.wagner,berthold.bacuml } @dlr.de, ufrese @informatik.uni-bremen.de.

Udo Frese

Berthold Bauml

Fig. 1. DLR’s humanoid Agile Justin [2] in our mobile manipulation
scenario (top) and the multi-scale environment model (bottom) generated
from Kinect depth measurements in real-time using a mapping-with-known-
poses approach based on the forward-kinematics model.The environment
model consists of four layers of concentric, nested voxel grid cubes. Each
cube contains 2563 voxels. The voxel size doubles with each layer. The
innermost, highest-resolution (2 mm) cube is positioned on the tabletop and
encloses several objects to be manipulated (Fig. 8 depicts this volume in
detail). The companion video shows the map building process in progress
and how the KinectFusion SLAM algorithm fails in this scenario due to
lack of constraining environment geometry.

real-time capable except for the algorithm [6] used for the
EDT computation which could be replaced by the real-time
alternative [5].

One might think that this would already satisfy the re-
quirements above. Unfortunately, there were two significant
drawbacks:

1) As GPU memory is presently still rather limited so
is the map volume that can be covered. E.g., at a
grid voxel size of 2mm (which is necessary for fine

Fig. 2. Multi-scale grid consisting of three concentric, nested cube layers.
Each layer has the same number of voxels (23 in this example). The voxel
size, however, increases and thus the resolution decreases in the outer layers.

manipulation tasks) we can cover at most (1.024m)3
with our current consumer-grade GPU.!

2) For the ICP-based [3] sensor tracking in KinectFu-
sion to work the environment geometry must always
constrain all six degrees of freedom (DoF) of the
sensor pose. Whenever a DoF is unconstrained ICP
will fail. KinectFusion usually detects this, but cannot
recover from this situation. In some cases unconstrain-
ing geometry will go unnoticed leading to a gradual
destruction of the map.

In this paper, we propose to solve the first issue by using
a multi-scale model approach. Essentially, we employ a
hierarchy of multiple grid layers with decreasing resolution
(Fig. 2). By reducing the size of each grid to, e.g., 256° we
can store multiple grids in the same amount of memory that
was previously occupied by a single, e.g., 5123 grid. The
inner-most layer is then centered around the area we care
the most about, e.g., an object the robot needs to grasp, and
has a voxel side length of 2mm, the next layer is twice as
large and thus encloses the previous but at a resolution of
only 4mm, the third at a resolution of 8mm and so forth.
This allows us to easily model the entire laboratory on a
single, consumer-grade GPU with a modified KinectFusion
implementation in real-time as detailed below.

The second issue is a more fundamental one. We choose
a very pragmatic approach to tackle it: The simple insight
is that, on a (humanoid) robot, the Kinect sensor is not a
freely moving camera. It is in fact firmly attached to the
head of the robot. We know the robot’s kinematics model and
can use this in a mapping-with-known-poses approach. The
tremendous advantage is that the forward kinematics model
is always available, does not depend on any environment
properties such as scene geometry (or texture), and we
know exactly when the forward kinematics model is precise.
In some situations it is very precise, most notably when

'We currently use a 2GB NVIDIA GTX 680. A 4GB model we have
evaluated showed stability issues.

only the head joints (pan/tilt) move. It turns out that very
accurate models can be generated when this knowledge is
taken into account. Note that this is not limited to just
Agile Justin — it is very common for (humanoid) robots to
have a very precise pan-tilt unit with high-resolution rotary
encoders. A prerequisite to this sensor fusion is of course a
precise calibration of the Kinect’s external parameters (via
an extension of our auto-calibration procedure [4]) as well
as detailed knowledge of the timing of the sensors provided
by our real-time-capable software middleware aRD [1].

The remainder of the paper is structured as follows. After
a discussion of related work (II), we introduce our proposed
multi-scale map data structure (III), show how KinectFusion
needs to be modified to operate on it (IV), how to establish
the link to optimization-based motion planning [9] by com-
puting a multi-scale EDT and its gradient (V), discuss our
experimental results (VI), and close with conclusions and
future work (VII).

II. RELATED WORK

When it comes to dense, real-time mapping in indoor
settings, the KinectFusion 3D SLAM system [8] is currently
the state of the art. It tracks the sensor pose using a projective
variant of the iterative closest point (ICP) algorithm [3]
and represents the map as an implicit surface model in the
form of a truncated signed distance function (TSDF) in a
regular voxel grid. By performing virtually all computations
on the GPU it manages to process the 30Hz dense depth
data stream from the Microsoft Kinect depth camera in real
time. Unlike other SLAM approaches, KinectFusion does not
have any dedicated loop closure mechanism. However, this is
often not needed when modeling a tabletop or other confined
indoor scene with reasonably rich geometry. In the original
algorithm, KinectFusion maps must fit into GPU memory.

Variants exist that store parts of the map in host (CPU)
memory either in the same voxel format [10] or as a mesh
representing the surface only [12]. The earlier approach
is reported to have performance issues when map content
is transfered (GPU-to-CPU memory bandwidth) and the
volume stored on the GPU (where we also compute our
obstacle avoidance path planning objectives) remains the
same. The mesh representation of the latter approach loses
free vs. unseen space information. In terms of applications,
apart from our own previous work [11], KinectFusion has
received surprisingly little attention as an environment mod-
eling approach in the (humanoid) robotics community.

In contrast to this, the OctoMap library [7] has proven very
popular. It does not provide any sensor tracking capabilities
itself — given range scans or depth images and corresponding
sensor poses it simply stores these measurements in a map
data structure that is essentially a probabilistic 3D occupancy
grid except that it uses an octree instead of a regular grid
to store voxels (in leaf nodes). Each voxel holds the log-
likelihood of it being occupied to accumulate occupancy
and free space information and, optionally, extra data such
as RGB values. The model granularity ends at leaf node

voxels, i.e. there is no sub-voxel modeling involved as in
KinectFusion.

As a particular advantage of their approach over Kinect-
Fusion style maps, the OctoMap authors claim [7] that
their map data structure can distinguish free from unseen
space while KinectFusion’s implicit surface data structure
cannot. As we have previously shown [11, §V], this is in
fact very well possible with KinectFusion as TSDF voxels
representing unseen space have zero weights while free space
voxels have non-zero weights and a TSDF value greater than
0 and can thus be easily distinguished.

A key difference between OctoMap and KinectFusion
style maps is that OctoMap explicitely mantains occupancy
likelihood values for each voxel (leaf-node). In practice,
this means that noisy binary information (occupied vs. free
space) in a certain fixed voxel location is averaged over
time. KinectFusion’s TSDF, on the other hand, models
the exact same quantity that depth sensors measure — the
distance to surfaces. On each update it performs weighted
averaging of distance values to the implicit surface. Each
new measurement refines the location of the implicit surface
perpendicularly to it rather than just accumulating evidence
in the vicinity of the surface as OctoMap does. Since noise
in depth/range sensors primarily affects the depth/range this
leads to a very quick smoothing effect in KinectFusion
(that actually achieves sub-voxel resolution perpendicularly
to surfaces).

This smoothing effect is the reason why the TSDF map
yields significantly better models when used with the Kinect
sensor than OctoMap. To understand this it is important to
note that the Kinect sensor is essentially a stereo camera —
it measures pixel disparities not distance. Thus, while the
image resolution is very high, the disparity discretization is
1/g pixel and leads to significant discretization errors that
increase quadratically with distance. In an OctoMap model
this will typically lead to thick borders around objects while
in KinectFusion’s TSDF map the discretization errors will
be “averaged away” leaving just the surface itself (as soon
as the sensor is moved). As for lateral measurement errors,
in the particular case of the Kinect sensor, measurement
errors parallel to surfaces are predominantly “holes” in the
depth image which are rare and typically only happen when
viewed from very specific angles. Thus, holes in the model
are typically filled very quickly as the sensor is moved.

In terms of computing time, OctoMap is reported [7] to
take S1ms to traverse 4 million leaf nodes. Updates are even
slower. In our KinectFusion implementation it takes about
1.5ms to traverse and update 16 million (256%) voxels.

The two approaches are, however, not mutually exclusive.
In fact, there is a KinectFusion variant that uses an octree
data structure to represent its map [14]. In the usual case it
manages to compensate for the octree data structure overhead
by skipping empty space more efficiently. We decided against
this approach as it adds another step that is not guaranteed
to be constant time on top of the already non-constant time
(scene dependent) ray-casting step in KinectFusion which
can cause the time budget to be exceeded in scenes involving

a lot of clutter, i.e. a lot of space near surfaces which requires
a small ray traversal step size.

Concerning robustness, it was very recently [13] proposed
to fuse the geometry-based ICP result by KinectFusion with
visual odometry. While this approach alleviates problems
caused by KinectFusion’s reliance on environment geometry
constraining the sensor pose it does not fully solve the
problem in environments where there is both little clutter
and little texture on surfaces. In our laboratory setting this is
a fairly frequently occuring issue: Large areas are dedicated
to people walking or robots driving around so that a down-
facing Kinect sees nothing but a (nearly) perfectly flat
homogeneously colored floor.

It should be noted that both OctoMap and KinectFusion’s
TSDF map as such assume an inherently static world —
changes will only gradually propagate through the evidence
accumulation of OctoMap and the weighted averaging of
KinectFusion’s TSDF. Dynamic environments thus require
extra measures to be taken. The most common source of
changes in the field of view of the robot is the robot itself.
Given a volumetric robot model we simply mask out the
robot in the input depth image. If the robot moves an
object this is also fairly easy to handle: The location of
the object needs to be known for grasping anyway so that
one could simply segment it in the depth image and in
the map. Any changes that are not under the control of
the robot are more difficult to handle but not impossible,
e.g., the original KinectFusion authors report [8] that an
extension of KinectFusion segments moving objects from a
static background and tracks their motion over time.

III. MULTI-SCALE TSDF

KinectFusion uses a truncated signed distance function
(TSDF) to represent the 3D geometry of the environment as
an implicit surface. The TSDF is stored in a regular, dense 3D
voxel grid where each voxel holds the signed distance to the
nearest surface truncated to [—p, u] and further normalized to
[—1,1]. The surface lies at the zero-crossing of the distance
values.

Storing this dense voxel grid requires a lot of memory.
At four bytes per voxel, a single 5123 voxel grid consumes
512MB. Since we also store EDT grids of similar sizes on the
GPU this constitutes the limit of what the current consumer-
grade GPU generation can hold in GPU memory. Thus, the
tradeoff is to decide for either high resolution or a large
volume.

Ideally, however, we would like to have both and the idea
behind the multi-scale TSDF grid data structure is just that:
We move to 256> voxels per grid so that the same memory
can hold 8 of these smaller grids. We then use different voxel
sizes in each grid to form different layers essentially viewing
the world at different resolutions.

We have chosen to arrange these layers as concentric,
nested cubes. All cubes have the same number of voxels in
all dimensions but the side length of the voxels is doubled
with each additional grid layer as illustrated in Fig. 2. The
regular placement and cubic shape is not strictly required but

greatly simplifies the implementation. It is, however, required
that in all but the inner-most layer voxels enclose an integral
number of voxels of the next-finer grid layer.

Such a multi-scale approach is also very appropriate in
a mobile manipulation scenario as it leads to the following
hierarchy of layers 0 to 3:

o Layer 0 (2mm resolution, (0.512m)* volume) models
the immediate surroundings of the object to be manip-
ulated/grasped.

« Layer 1 (4 mm resolution, (1.024m)3 volume) models
the immediate workspace center, e.g. the tabletop.

o Layer 2 (8 mm resolution, (2.048m)* volume) models
the immediate surroundings of the workspace center
should motion of the robot base be necessary.

o Layer 3 (16 mm resolution, (4.096m)? volume) models
the “room”.

Thus, we can provide a useful whole-room model in just 4
layers (maybe 5 for very large rooms/laboratories).

Note that one could alternatively center grids around
the sensor as the precision of the Kinect decreases with
distance and possibly combine this with a 3D ring buffer
data structure like in [12]. However, this is beyond the scope
of our application.

As for the actual in-memory data structure of this multi-
scale grid, it essentially needs to support two basic opera-
tions: Given a world point find the voxel that represents it.
And, conversely, iterate over all voxels and determine their
world location. We can enable both by simply storing some
extra metadata for each grid layer: the metric voxel size [y,
the integral grid dimensions L in voxels and the Cartesian
coordinates of its origin o, such that

I, =28 1o, €]
sk =L -, (2)
O = 1/2 : (Skmaz - Sk), (3)

where [y is the voxel size of the highest resolution layer
and kmax the index of the lowest-resolution layer. This is
sufficient to determine which grid layer is “responsible” for a
given world point by simply iterating over each grid layer &k
starting at the outer-most one and checking whether the point
(x,7,2)T is outside the next finer layer k — 1, i.e. whether
with a margin m := [,

T<L 01 +mMVET>0_1+8Sk_1—Mm
Vy<og—1+mVy>ok_1+Sg—1—m
Vz<og_1+mVz>0p_1+4+8_1—m 4)

and then performing the actual lookup within the layer as
usual, e.g., for the x-ordinate this yields the index

xide = |(x — o) 1k . (5)

Iteration over all voxels can trivially happen by iterating
over all layers in an outer loop and then over all voxels
within each layer as usual. The world-location of a voxel is
simply, e.g., for the x-ordinate:

T = o} + xidx - . (6)

As we will show below, this modified data structure is
applicable to KinectFusion and mapping with known poses.

IV. MULTI-SCALE KINECTFUSION

Apart from minor pre- and post-processing steps, Kinect-
Fusion [8] consists of three main components which are
called in an infinite loop:

1) The ray-casting step computes a synthetic point cloud
(with corresponding surfaces models) that would have
been measured by a depth sensor given the current
TSDF model and estimated sensor pose.

2) The iterative closest points (ICP) step then takes a
new depth measurement from the Kinect sensor and
adjusts the sensor pose to minimize the squared point-
to-surface errors between the actual and the expected
(ray-cast) depth measurements.

3) The map update step then takes this estimated sensor
pose and updates the TSDF according to the Kinect
depth measurements.

Obviously, only the first and the last step operate on the
map data structure and thus only these need to be modified
to make KinectFusion operate on multi-scale TSDF grids as
detailed below.

A. Ray-Casting

The general idea behind the ray-casting in KinectFusion
is the following: Starting at the optical center step through
the map along a line until an intersection with a surface is
found. The distance to this intersection point is the expected
depth measurement. The surface normal is computed from
the TSDF gradient. In priciple, this is easy to implement
for the multi-scale TSDF: At every point considered along
the ray take its world location and perform a multi-scale
grid lookup to find the “responsible” voxel with the highest
resolution (smallest voxel size).

However, two modifications are needed. The ray-traversal
step size in the original algorithm is slightly less than u
(much larger than the voxel size) while traversing free space
and less than the voxel size near surfaces (voxels with weight
> 0 and TSDF < 1). p is chosen to reflect the depth sensing
precision of the sensor (with a Kinect and indoor scenes a
good choice is p = 3cm). Surfaces must be at least 2u
apart to be considered separate. Now, the problem is that as
grid layers become coarser their size increases and so does
the length of the longest ray through them (i.e. the diagonal
V3 - s for an s® cube). With a (4m)3 or (8m)? cube this
would take prohibitively long.

Instead, we use a different p for each grid layer and
compute it from its voxel size. We use

e = 15 - Iy (7)

which was tuned to yield a sensible p at the highest grid
resolution 2 mm. This also means that, in coarser grid layers,
surfaces need to be farther away from each other (measured
along a ray from the sensor to the surface) to be treated
as separate. However, this simply reflects the fact that the

discretization is also more coarse and thus leads to overall
consistent results.

The second modification is a consequence of the first.
Once a zero crossing has been located by overstepping it, its
exact location is refined by trilinearly interpolating the TSDF
values at the previous and the current point on the ray and
determining the zero crossing by solving for zero the 2D line
equation through these two values. Unfortunately, the TSDF
representation stores the normalized truncated distance, i.e.,
instead of the range [—p,u] it stores values in the range
[-1,1]. Thus, as per modification to compute ; from the
voxel size in (7), the same value has different meanings
at different grid resolutions and, hence, zero crossings near
resolution boundaries would not be computed correctly. This
is easy to fix, though: We simply multiply the TSDF value
with py, before trilinear interpolation.

With these changes applied, our KinectFusion implemen-
tation can build multi-scale models with 4 layers ((4m)3
overall volume) at frame rate in typical scenes and slightly
below frame rate (= 40ms per frame) in cluttered scenes
due to the scene-dependent computing time of the ray-casting
step.

B. Map Update

The map update step iterates over all voxels and projects
each voxel into the image based on the sensor pose and a
pinhole camera model. It then updates the TSDF distance
value by comparing the distance from the optical center to
the voxel to the value at the same pixel coordinate in the
current Kinect depth image.

The multi-scale map update is trivial to implement: We
can treat each multi-scale grid layer as a separate single-scale
map and apply the original update procedure. This means that
some of the physical volume is represented multiple times
but simplifies the code and allows us to perform per-layer
operations independently when computing the EDT (V).

Note that the map update step is independent from the
sensor tracking (ICP) parts of KinectFusion and can be
used as a standalone module by passing in the sensor
pose obtained by other means (mapping with known poses).
We will show results using rotary encoders and a forward
kinematics model for this purpose in VI.

V. MULTI-SCALE EDT AND EDT-GRADIENT
COMPUTATION

The Euclidean distance transform (EDT) determines for
each voxel the signed distance to the closest free vs. oc-
cupied/unknown space boundary. It can thus be used as
a structure function to encode obstacle information and
thereby establishes the link from environment modeling
to optimization-based planning [9]. We have previously
shown [11] that the TSDF already models free vs. occu-
pied/unknown space so that the EDT can also be directly
computed on the GPU. Thus, we just need to lift the EDT,
EDT gradient and objective computation to the multi-scale
case so the planner can work with multi-scale models, too.

original EDT: 2
conservative EDT Dy: 1 0 -1

—_
[e=]

dp =1

Fig. 3. The occupancy of a voxel is discretized based on its center
potentially making obstacles (shown in gray) seem farther away than they
are. We can fix this, i.e., make the original EDT conservative by subtracting
the diagonal dj,. For simplicity, a 1D EDT is shown. In 3D, dy, = v/3 - I,.

A. Euclidean Distance Transform (EDT)

Essentially, we follow the same approach as with the
multi-scale TSDF except that the grid now stores floating
point numbers instead of TSDF voxels. The EDT is first
computed for each layer independently based on the dis-
cretized occupancy of the corresponding TSDF layer. Since
a TSDF voxel stores the (truncated) distance of its center to
the nearest surface we get the EDT with respect to the center
of each voxel if we apply our modified version [11] of the
EDT algorithm from [6]. From this, we subtract dj, = V31
to yield the conservative EDT Dy as illustrated in Fig. 3.
Also, at this stage, space outside each EDT layer is treated as
unknown space, i.e., like an obstacle. Thus, the inner layers
now represent a safe, but very limited view of the world and
we want to propagate the extra knowledge the outer layers
have about the world to the inner layers.

To achieve this, we successively merge two consecutive
layers k£ and k — 1 starting at the outer-most (lowest-
resolution) layer until we reach the inner-most layer at
k —1 = 0. The merge operation first needs to apply trilinear
interpolation to the coarse layer k. Otherwise, we would not
gain a smooth EDT gradient as is needed for optimization-
based planning. As for the interpolation error, consider the
worst case interpolation — at the center x of the [j-sized
cube spanned by the interpolation points p;. Here, with
d = /3 - 1;, being the diagonal of the interpolation cube
in the coarser layer and dist(x) denoting the signed distance
before interpolation the following holds:

dist(z) > dist(p;) — £. 8)
And thus with interpolation weights \; also:
dist(x) > Y Aidist(p;) — Y i

> Aidist(p;) — 4. ©9)

K3

Thus, we can compensate for the interpolation error by
subtracting g to get a lower bound on the distance value.
This lower bound can now be combined with the value from
the finer layer £ — 1 using the max operation as both are
valid lower bounds. Hence, with Dj_1(u) being the EDT
value at layer £ — 1 and voxel u, and Interpolate(Dy, u)
the trilinearly interpolated EDT from the next-coarser layer
k, the full iterative merge operation reads as

Dj._1(u) < max(Interpolate(Dy, u)) —
Dk,1 (u))

d
29
(10)

4 3 2 1 0 -1 2 3 4 5

Fig. 4. Merging of the EDT layer k (lower-resolution values, top) into
layer k — 1 (higher-resolution, original values in the middle, result at the
bottom): In fully overlapping parts of the volume the max operation retains
the finer structure from layer k — 1. For simplicity a 1D EDT is shown.
Obstacle voxels are marked in gray.

1
55 45 35 25

Fig. 5. Merging of the EDT layer k (lower-resolution values, top) into
layer k — 1 (higher-resolution, original values in the middle, result at the
bottom): At the border of the inner layer k — 1 (marked by the ||) the max
operation propagates the extra context known by layer k into layer £ — 1.
Note how the inner layer originally assumes space outside its volume to be
an obstacle in order to achieve conservativeness and that the values of layer
k are conservatively interpolated according to (10).

The resulting EDT is not only conservative but represents
a bound that is tight in two important ways: Firstly, as
illustrated in Fig. 4 the max operation ensures that deep
within the inner layer its finer structure is retained. Secondly,
at the border of the inner layer k£ — 1, the EDT values assume
that anything outside the volume of the inner layer is an
obstacle so that the inner layer never overestimates the true
distance to an obstacle. But the outer layer k sees more
context and as illustrated in Fig. 5 this is propagated as
intended by the max operation.

Finally, it should be noted that in contrast to our previous
work [11] the EDT grids are not downsampled but use the
same grid size of 256% voxels per layer as the TSDF grid.

B. EDT Gradient

Once all EDT layers have been updated with the (in-
terpolated) maximum over all overlapping parts, the EDT
gradient computation is a pure per-layer operation and no
modification to our original 3D Sobel-filter-based implemen-
tation [11] is needed.

C. Use in Optimization-Based Planning

To use the multi-scale version of the EDT and its gradient
in optimization based planning, we have simply modified
the objective function and gradient computation from our
previous work [11] to always perform the lookup of the
EDT and EDT gradient value in the highest resolution grid
wherever there is overlap between grid layers as per (4)
and (5).

VI. EXPERIMENTS

We have integrated the multi-scale data structures and
algorithms discussed above into our software stack [11]. The
system runs online on the real robot.

For the experimental evaluation we have chosen a typical
laboratory setting. Agile Justin is positioned in front of a
tabletop workspace as illustrated in Fig. 1. The highest-
resolution grid layer is positioned as if it was resting on

the table aligned with the front-right corner of the table as
indicated by the inner-most wire-frame cube at the bottom
of Fig. 1. Several objects to be manipulated each of different
size are placed on the table.

For the map generation, Justin executes a sweep with
its head and torso pan joints. The sweep starts with the
right hand side of the table in view of the Kinect sensor.
Justin then sweeps to the left over the rest of the table
and beyond until a laboratory corner, wall and door come
into view. It then performs a full 360° sweep to the right
until the door is in view again. Out of a variety of data
sets we have deliberatively chosen this one as it is both
representative of the environment Justin operates in and
because different stages of the data set trigger very specific
behavior in KinectFusion (rich geometry fully constraining
the sensor pose, drift due to one unconstrained DoF, abort
due to too many unconstrained DoF; see below for details).

The resulting data set is processed once by the full
multi-scale KinectFusion algorithm and once by a mapping-
with-known-poses approach. The latter uses the multi-scale
mapping part but gets the sensor poses from the forward
kinematics model and precise rotary encoder readings.

To demonstrate the quality of the generated maps we use
ray-casts of the model from the same pose as the (estimated)
sensor pose employing the same camera parameters as the
Kinect except for a wider-angle focal length. This means
that the part of the scene that is visible to the Kinect can
be easily identified in the first frame and always remains
within the same rectangle at the center of the rendered image.
The renderer does not apply any extra smoothing (Phong
shading, etc.) but uses the raw surface normals for lighting
thus exposing even the smallest dents in the map.

Selected frames from the resulting sequence for the full
KinectFusion algorithm are depicted in Fig. 6. The full
sequence is shown in the companion video along with
an external camera view. While the rich geometry on the
tabletop is in view KinectFusion works well generating a
nicely smooth, detailed map. As soon as only the wall is in
view it gradually destroys the map. Note how the bottom
door hinge appears multiple times in the map and how the
left corner of the table is cut off. This happens because not all
degrees of freedom (DoF) of the sensor pose are constrained
by the sensor data in this case: With only the wall and parts
of the ground in view the pose estimate can be shifted left
or right without resulting in any (significant) point-to-surface
errors. During the reverse sweep, KinectFusion manages to
recover while the table is in view — the accumulated drift
was small enough for ICP to be able to snap in again. To
the right of the table only the floor is in view leaving too
many DoF unconstrained so that the corresponding checks
in the ICP code signal a failure and KinectFusion aborts.

The same frame sequence is shown for the multi-scale
mapping-with-known-poses case in the two top rows of
Fig. 7, the bottom row contains selected frames from the
remainder of the sweep, i.e., after KinectFusion has already
aborted. For a pure mapping-with-known-poses approach the
results show remarkably good precision. Even the small bolt

Fig. 6. Full sweep of the robot’s workspace using head and torso pan-axes (top-left to bottom right): KinectFusion works fine while the table is in view
(image 1,2,3), intermittently leads to an inconsistent model to the left of the table (image 4,5,6; note the duplicate door hinges and the chopped-off corner
of the table), partially recovers on the return sweep across the table (image 6,7,8), but aborts when the scene geometry no longer constrains sensor pose
at all to the right of the table (just after image 8). See text for details and also the companion video.

Fig. 7. Full sweep of the robot’s workspace using head and torso pan-axes: Mapping-with-known poses based on forward kinematics leads to a consistent
model throughout the entire sweep. See the companion video for a direct split-screen comparison with KinectFusion.

on the table with a diameter of just 0.5cm at the top and
about 1cm at the bottom does not wash out in the model after
the forward and reverse sweep. The table is nearly perfectly
flat and the map is correctly aligned where the left-most and
right-most parts of the sweep overlap (Fig. 7, bottom-right).

Contour plots of the EDT are depicted in Fig. 8. These
show two things: a) The high-resolution in the inner-most
grid is needed for grasp planning with small objects such
as the bolt which washes out at the lower resolutions. b)
Our multi-scale TSDF mapping-with-known-poses approach

actually delivers the precision required to, e.g., localize
objects or perform grasp planning.

A comparison of the per-frame computing times of the
multi-scale mapping versus our previous single-scale imple-
mentation [11] is given in Table L.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we have introduced the multi-scale TSDF
map data structure and modified the KinectFusion algorithm
to work with it retaining its real-time SLAM capabilities.
We have also (re-)established the link to optimization-based

Fig. 8. The same multi-scale EDT model at different resolutions (decreasing exponentially from 2 mm on the left to 16 mm on the right) generated using
mapping-with-known poses and the forward kinematics. The contour plots focus on the workspace center on the tabletop (lower-resolution grid layers are
cut off where the highest resolution ends) with several objects to be manipulated. It is obvious that grasp planning would require the highest resolution

for the bolt at the front.

TABLE I
PER-FRAME COMPUTING TIMES

Step Multi-Scale [ms] Single-Scale [ms]
(four 2563 layers) (one 5123 layer)

Ray-Casting & ICP 16-33 19-23

Map Update 6 8

motion planning by computing the multi-scale Euclidean
distance transform (EDT) as a structure function encoding
obstacle information.

The multi-scale approach allows us to represent views of
the world starting with a high resolution but a small volume
all the way to very large volumes albeit at a lower resolution.
Since these views are maintained simultaneously we get the
benefits of both ends of this spectrum all within the still very
limited GPU memory. Although KinectFusion benefits from
the added volume of the coarse multi-scale layers and the
extra resolution of the fine layers it is still very dependent
on the scene geometry and fails if this does not constrain the
sensor pose sufficiently.

It turns out that if we take just the mapping part of our
multi-scale KinectFusion variant in a mapping-with-known-
poses approach based on forward kinematics we get maps
all the time independently from the scene. The result has the
desired properties that it is computed in real-time (1.5 ms per
TSDF grid layer and depth frame), covers the entire labora-
tory, does not depend on scene properties (geometry, texture,
etc.), and is precise enough to facilitate grasp planning for
fine manipulation tasks in the center of the workspace — all
in a single map.

In future work, we intend to investigate fusion of Kinect-
Fusion (ICP) pose estimates and odometry information pos-
sibly following a similar approach as [13] to allow Agile
Justin to drive around. Odometry alone is insufficient for
mapping with known poses over longer distances.

ACKNOWLEDGEMENTS

This work was partly supported under DFG grant SFB/TR 8
Spatial Cognition. We thank O. Birbach for performing the Kinect
calibration and T. Hammer for preparing the graphics in Fig. 2.

(1]

(2]

(3]

[4

—

(5]

(6]

(7]

(8]

9

—

(10]

(11]

(12]

[13]

[14]

REFERENCES

B. Bauml and G. Hirzinger. When hard realtime matters:
Software for complex mechatronic systems. Robotics and
Autonomous Systems, 56(1):5-13, 2008.

B. Bduml, F. Schmidt, et al. Catching Flying Balls and
Preparing Coffee: Humanoid Rollin’Justin Performs Dynamic
and Sensitive tasks. In [EEE Int. Conf. on Robotics and
Automation, 2011.

P. J. Besl and N. McKay. A method for registration of 3-
D shapes. IEEE Trans. on Pattern Analysis and Machine
Intelligence, 14(2):239 — 256, 1992.

O. Birbach, B. Biauml, and U. Frese. Automatic and self-
contained calibration of a multi-sensorial humanoid’s upper
body. In IEEE Int. Conf. on Robotics and Automation, 2012.
T.-T. Cao, K. Tang, A. Mohamed, and T.-S. Tan. Parallel
banding algorithm to compute exact distance transform with
the GPU. In ACM SIGGRAPH symposium on Interactive 3D
Graphics and Games, 2010.

P. F. Felzenszwalb and D. P. Huttenlocher. Distance transforms
of sampled functions. Technical Report TR2004-1963, Cornell
University, 2004.

A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and
W. Burgard. OctoMap: An efficient probabilistic 3D mapping
framework based on octrees. Autonomous Robots, 34(3):189—
206, 2013.

R. A. Newcombe, S. Izadi, et al. KinectFusion: Real-time
dense surface mapping and tracking. In /EEE Int. Symposium
on Mixed and Augmented Reality, 2011.

N. Ratliff, M. Zucker, J. A. Bagnell, and S. Srinivasa. Chomp:
Gradient optimization techniques for efficient motion plan-
ning. In IEEE Int. Conf. on Robotics and Automation, 2009.
H. Roth and M. Vona. Moving volume KinectFusion. In
British Machine Vision Converence, 2012.

R. Wagner, U. Frese, and B. Bduml. 3D modeling, dis-
tance and gradient computation for motion planning: A direct
GPGPU approach. In IEEE Int. Conf. on Robotics and
Automation, 2013.

T. Whelan, J. B. McDonald, M. Kaess, M. F. Fallon, H. Jo-
hannsson, and J. J. Leonard. Kintinuous: Spatially extended
KinectFusion. In RSS Workshop on RGB-D: Advanced Rea-
soning with Depth Cameras, 2012.

T. Whelan, H. Johannsson, M. Kaess, J. Leonard, and J. Mc-
Donald. Robust real-time visual odometry for dense RGB-D
mapping. In IEEE Int. Conf. on Robotics and Automation,
2013.

M. Zeng, F. Zhao, J. Zheng, and X. Liu. A memory-efficient
kinectfusion using octree. In S.-M. Hu and R. R. Martin,
editors, Computational Visual Media, volume 7633 of Lecture
Notes in Computer Science, pages 234-241. Springer, 2012.

